Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.755
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124521, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830329

RESUMO

The USFDA recently approved mirabegron, a novel once-daily ß-3 adrenoceptor agonist for oral administration, as a transformative treatment for overactive bladder. Despite the existence of numerous analytical methods for the assay and bioanalysis of mirabegron, it's perplexing that none have explored the domain of microwave-assisted sensitive spectrofluorimetric method for mirabegron estimation, even after extensive literature review. Adding to the enigma is the insistence of current analytical methods on using expensive and harmful organic solvents, posing a threat to marine life and the broader environment. Recently, the white analytical chemistry approach has been introduced to develop analytical methods that are cost-effective, environmentally friendly, and user-friendly. Consequently, a white analytical chemistry-based, sensitive, and eco-friendly spectrofluorimetric estimation of mirabegron has been initiated, using 4-Chloro-7-nitrobenzofurazan as a fluorescent biosensing probe. The development of this robust method involved a series of experiments designed to minimize solvent and time wastage. Through a combination of fractional factorial and Box-Behnken designs, researchers identified the critical variables and optimized the method to perfection. This method was validated according to the stringent ICH Q2 (R2) and USFDA guidelines, ensuring its reliability and accuracy. Once approved, this sensitive spectrofluorimetric method was tested, accurately estimating mirabegron levels in commercial formulations and rat plasma samples. To further enrich the study, a comprehensive evaluation of existing analytical methods was conducted alongside the proposed spectrofluorimetric method, using advanced tools like the AGREE calculator, GAPI software, and RGB model to assess their eco-friendliness and effectiveness in mirabegron estimation.


Assuntos
Acetanilidas , Corantes Fluorescentes , Micro-Ondas , Espectrometria de Fluorescência , Tiazóis , Tiazóis/química , Tiazóis/sangue , Tiazóis/análise , Acetanilidas/análise , Acetanilidas/sangue , Acetanilidas/química , Animais , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Técnicas Biossensoriais/métodos , Química Verde/métodos , Reprodutibilidade dos Testes , Ratos , Limite de Detecção , Masculino
2.
Pharmazie ; 79(3): 42-48, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38872274

RESUMO

Silver nanoparticles (AgNPs), owing to their unusual characteristics, have been used in various pharmaceutical, cosmetic, and healthcare products. AgNPs, with their exceptional biological potential, exhibit antibacterial, antifungal, antiviral, anti-inflammatory, anticancer, and wound healing properties and have been extensively used in burn therapy. Several studies have established the use of silver nanoparticles in the treatment of burn injuries, resulting in reduced inflammation, quick tissue regeneration, and the remarkable creation of collagen fibers. Conventional physical and chemical techniques have synthesized AgNPs, but they appear to be highly costly and hazardous. Recently, there has been considerable interest in the synthesis of AgNPs using the green chemistry approach because of its tremendous benefits, including being non-toxic, low energy consumption, pollution-free, economical, environmentally friendly, and more sustainable. This review emphasizes the green synthesis of AgNPs using bacteria, fungi, plants, and other microorganisms and the current research related to the application of green synthesized AgNPs in burn therapy, including the biological aspects of AgNPs, their mode of action, and any possible detrimental effects.


Assuntos
Queimaduras , Química Verde , Nanopartículas Metálicas , Prata , Queimaduras/tratamento farmacológico , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Química Verde/métodos , Humanos , Animais , Cicatrização/efeitos dos fármacos , Anti-Infecciosos/farmacologia
3.
Sci Rep ; 14(1): 13459, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862646

RESUMO

Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Nanopartículas Metálicas/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Química Verde/métodos , Linhagem Celular Tumoral , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Sci Rep ; 14(1): 13032, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844676

RESUMO

Green products such as plant tints are becoming more and more well-known worldwide due to their superior biological and ayurvedic properties. In this work, colorant from Amba Haldi (Curcuma aromatica) was isolated using microwave (MW), and bio-mordants were added to produce colorfast shades. Response surface methodology was used to develop a central composite design (CCD), which maximizes coloring variables statistically. The findings from 32 series of experiments show that excellent color depth (K/S = 12.595) was established onto MW-treated silk fabric (RS = 4 min) by employing 65 mL of radiated aqueous extract (RE = 4 min) of 5 pH cutting-edge the existence of 1.5 g/100 mL used sodium chloride at 75 °C for 45 min. It was discovered that acacia (keekar) extract (1%), pomegranate extract (2%), and pistachio extract (1.5%) were present before coloring by the use of bio-mordants. On the other hand, upon dyeing, acacia extract (1.5%), pomegranate extract (1.5%), and pistachio extract (2%) have all shown extremely strong colorfast colors. Comparatively, before dyeing, salts of Al3+ (1.5%), Fe2+ (2%), and TA (1.5%) gave good results; after dyeing, salts of Al3+ (1%) and Fe2+ (1.5%) and TA (2%) gave good results. When applied to silk fabric, MW radiation has increased the production of dyes recovered from rhizomes. Additionally, the right amount of chemical and biological mordants have been added, resulting in color fastness ratings ranging from outstanding to good. Therefore, the natural color extracted from Amba Haldi can be a sustainable option for the dyeing of silk fabric in the textile dyeing and finishing industries.


Assuntos
Corantes , Curcuma , Extratos Vegetais , Rizoma , Seda , Curcuma/química , Rizoma/química , Corantes/química , Extratos Vegetais/química , Seda/química , Micro-Ondas , Cor , Química Verde/métodos
5.
Mol Biol Rep ; 51(1): 730, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864973

RESUMO

BACKGROUND: Antimicrobial resistance has surged due to widespread antimicrobial drug use, prompting interest in biosynthesizing nanoparticles from marine-derived actinomycetes extracellular metabolites, valued for their diverse bioactive compounds. This approach holds promise for addressing the urgent need for novel antimicrobial agents. The current study aimed to characterize novel bioactive compounds from unexplored biodiversity hotspots, halophilic Streptomyces sp. isolated from mangrove sediment in the Pichavaram region, India. METHODS AND RESULTS: Streptomyces rochei SSCM102 was conclusively identified through morphological and molecular characterization. Synthesis of silver nanoparticles (AgNPs) from Streptomyces rochei SSCM102 was characterized using various techniques, including UV-Vis, XRD, SEM, EDX, and FT-IR. The UV-Vis spectrum of the reduced AgNPs exhibited a prominent peak at 380 nm, confirming the AgNPs. The UV-Vis spectrum confirmed the synthesis of AgNP, and SEM analysis revealed a cubic morphology with sizes ranging from 11 to 21 nm. The FTIR spectrum demonstrated a shift in frequency widths between 626 cm-1 and 3432 cm-1. The EDX analysis substantiated the presence of metallic silver, evident from a strong band at 1.44 keV. The synthesized AgNPs exhibited antibacterial efficacy against human pathogens Escherichia coli (64 ± 0.32 µg/ml), Klebsiella pneumoniae (32 ± 0.16 µg/ml), and Pseudomonas aeruginosa (16 ± 0.08 µg/ml) by MIC and MBC values of 128 ± 0.64 (µg/ml), 64 ± 0.32 (µg/ml) and 32 ± 0.16 (µg/ml), respectively. Additionally, at a concentration of 400 µg/ml, the AgNPs displayed a 72% inhibition of DPPH radicals, indicating notable antioxidant capacity. The LC50 value of 130 µg/mL indicates that the green-synthesized AgNPs have lower toxicity by Brine Shrimp Larvae assay. CONCLUSION: The study's novel approach to synthesizing eco-friendly silver nanoparticles using Halophilic Streptomyces rochei SSCM102 contributes significantly to the field of biomedical research and drug development. By demonstrating potent antibacterial properties and aligning with sustainability goals, these nanoparticles offer promising avenues for novel antibacterial therapies.


Assuntos
Antibacterianos , Sedimentos Geológicos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Streptomyces , Streptomyces/metabolismo , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Sedimentos Geológicos/microbiologia , Química Verde/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Índia , Bactérias/efeitos dos fármacos
6.
J Chromatogr A ; 1729: 465055, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38852265

RESUMO

Universal microchip isotachophoresis (µITP) methods were developed for the determination of cationic and anionic macrocomponents (active pharmaceutical ingredients and counterions) in cardiovascular drugs marketed in salt form, amlodipine besylate and perindopril erbumine. The developed methods are characterized by low reagent and sample consumption, waste production and energy consumption, require only minimal sample preparation and provide fast analysis. The greenness of the proposed methods was assessed using AGREE. An internal standard addition was used to improve the quantitative parameters of µITP. The proposed methods were validated according to the ICH guideline. Linearity, precision, accuracy and specificity were evaluated for each of the studied analytes and all set validation criteria were met. Good linearity was observed in the presence of matrix and in the absence of matrix, with a correlation coefficient of at least 0.9993. The developed methods allowed precise and accurate determination of the studied analytes, the RSD of the quantitative and qualitative parameters were less than 1.5% and the recoveries ranged from 98 to 102%. The developed µITP methods were successfully applied to the determination of cationic and anionic macrocomponents in six commercially available pharmaceutical formulations.


Assuntos
Anlodipino , Isotacoforese , Isotacoforese/métodos , Anlodipino/análise , Reprodutibilidade dos Testes , Química Verde/métodos , Controle de Qualidade , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Perindopril/análise , Limite de Detecção , Eletroforese em Microchip/métodos , Fármacos Cardiovasculares/análise
7.
Sci Rep ; 14(1): 13470, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866790

RESUMO

The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 µg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.


Assuntos
Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Rhus , Neoplasias de Mama Triplo Negativas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Rhus/química , Química Verde/métodos , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
8.
An Acad Bras Cienc ; 96(2): e20230373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747835

RESUMO

Bioactive substances can be found in wine lees, a waste from the winemaking industry. This work developed two formulations, a nanoemulsion with coconut oil (NE-OC) and a nanoemulsion with coconut oil and 0.5% of wine lees extract (NE-OC-Ext), to investigate their effect on untreated, bleached, and bleached-colored hair. The oil-in-water (O/W) nanoemulsions were prepared with coconut oil, TweenTM 80, SpanTM 80, AristoflexTM AVC, Conserve NovaMit MFTM, wine lees extract, and deionized water. The hydration measurements were carried out using a Corneometer® CM 825 with the capacitance method. Scanning electron microscopy (SEM) was used to characterize the effect of formulations on hair fibers. Differential Thermal Analysis (DTA) was to assess the thermal stability and compatibility of wine lees and coconut oil in formulations. Compared to NE-OC, NE-OC-Ext showed a greater hydration effect on bleached-colored hair. DTA showed that NE-OC-Ext presented a smaller number of exothermic degradation events than those of NE-OC, suggesting good interaction and compatibility of the wine lees extract in this formulation. This study highlights the value of wine lees, a residue from the winemaking process, and its possibility of use as raw material for the cosmetic hair industry since it shows a greater moisturizing potential in colored hair.


Assuntos
Óleo de Coco , Emulsões , Vinho , Vinho/análise , Óleo de Coco/química , Microscopia Eletrônica de Varredura , Cabelo/química , Cabelo/efeitos dos fármacos , Humanos , Química Verde/métodos
9.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731426

RESUMO

The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.


Assuntos
Antioxidantes , Azeite de Oliva , Extratos Vegetais , Polifenóis , Azeite de Oliva/química , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Química Verde/métodos , Olea/química , Cromatografia Líquida de Alta Pressão/métodos , Solventes/química
10.
Int J Nanomedicine ; 19: 4137-4162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756417

RESUMO

Background: In the current scenario, the synthesis of nanoparticles (NPs) using environmentally benign methods has gained significant attention due to their facile processes, cost-effectiveness, and eco-friendly nature. Methods: In the present study, copper oxide nanoparticles (CuO NPs) were synthesized using aqueous extract of Coelastrella terrestris algae as a reducing, stabilizing, and capping agent. The synthesized CuO NPs were characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Results: XRD investigation revealed that the biosynthesized CuO NPs were nanocrystalline with high-phase purity and size in the range of 4.26 nm to 28.51 nm. FTIR spectra confirmed the existence of secondary metabolites on the surface of the synthesized CuO NPs, with characteristic Cu-O vibrations being identified around 600 cm-1, 496 cm-1, and 440 cm-1. The FE-SEM images predicted that the enhancement of the algal extract amount converted the flattened rice-like structures of CuO NPs into flower petal-like structures. Furthermore, the degradation ability of biosynthesized CuO NPs was investigated against Amido black 10B (AB10B) dye. The results displayed that the optimal degradation efficacy of AB10B dye was 94.19%, obtained at 6 pH, 50 ppm concentration of dye, and 0.05 g dosage of CuO NPs in 90 min with a pseudo-first-order rate constant of 0.0296 min-1. The CuO-1 NPs synthesized through algae exhibited notable antibacterial efficacy against S. aureus with a zone of inhibition (ZOI) of 22 mm and against P. aeruginosa with a ZOI of 17 mm. Conclusion: Based on the findings of this study, it can be concluded that utilizing Coelastrella terrestris algae for the synthesis of CuO NPs presents a promising solution for addressing environmental contamination.


Assuntos
Antibacterianos , Cobre , Química Verde , Nanopartículas Metálicas , Cobre/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Química Verde/métodos , Nanopartículas Metálicas/química , Catálise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Food Res Int ; 183: 114240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760119

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Assuntos
Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos , Alimentos Marinhos , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/análise , Alimentos Marinhos/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Brasil , Química Verde/métodos
12.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791552

RESUMO

Polyurethanes are among the most significant types of polymers in development; these materials are used to produce construction products intended for work in various conditions. Nowadays, it is important to develop methods for fire load reduction by using new kinds of additives or monomers containing elements responsible for materials' fire resistance. Currently, additive antipyrines or reactive flame retardants can be used during polyurethane material processing. The use of additives usually leads to the migration or volatilization of the additive to the surface of the material, which causes the loss of the resistance and aesthetic values of the product. Reactive flame retardants form compounds containing special functional groups that can be chemically bonded with monomers during polymerization, which can prevent volatilization or migration to the surface of the material. In this study, reactive flame retardants are compared. Their impacts on polyurethane flame retardancy, combustion mechanism, and environment are described.


Assuntos
Retardadores de Chama , Poliuretanos , Retardadores de Chama/análise , Poliuretanos/química , Química Verde/métodos
13.
Int J Nanomedicine ; 19: 4451-4464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799694

RESUMO

Introduction: Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods: UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results: UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion: The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.


Assuntos
Química Verde , Nanopartículas Metálicas , Prata , Nanomedicina Teranóstica , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Química Verde/métodos , Humanos , Nanomedicina Teranóstica/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Invasividade Neoplásica/prevenção & controle , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
14.
Sci Rep ; 14(1): 12088, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802402

RESUMO

Nowadays, scientists are currently attempting to lessen the harmful effects of chemicals on the environment. Stability testing identifies how a drug's quality changes over time. The current work suggests a first and sustainable differential pulse voltammetry technique for quantifying difluprednate (DIF) as an anti-inflammatory agent in the presence of its alkaline degradation product (DEG). The optimum conditions for the developed method were investigated with a glassy carbon electrode and a scan rate of 100 mV s-1. The linearity range was 2.0 × 10-7-1.0 × 10-6 M for DIF. DIF was found to undergo alkaline degradation, when refluxed for 8 h using 2.0 M NaOH, and DEG was successfully characterized utilizing IR and MS/MS. The intended approach demonstrated the selectivity for DIF identification in pure, pharmaceutical, and degradation forms. The student's t-test and F value were used to compare the suggested and reported approaches statistically. The results were validated according to ICH requirements. The greenness of the studied approach was evaluated using the Green Analytical Procedure Index and the Analytical Greenness metric. Additionally, the whiteness features of the proposed approach were examined with the recently released red, green, and blue 12 model, and the recommended strategy performed better than the reported approaches in greenness and whiteness.


Assuntos
Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Eletrodos , Hidróxido de Sódio/química , Espectrometria de Massas em Tandem/métodos , Concentração de Íons de Hidrogênio , Química Verde/métodos
15.
Sci Rep ; 14(1): 11535, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773159

RESUMO

In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.


Assuntos
Raios gama , Grafite , Hesperidina , Metaloproteinase 2 da Matriz , Nanocompostos , Proteína Smad4 , Humanos , Grafite/química , Grafite/farmacologia , Nanocompostos/química , Hesperidina/farmacologia , Hesperidina/química , Proteína Smad4/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Química Verde/métodos , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Células Hep G2 , Linhagem Celular Tumoral , MAP Quinase Quinase 4/metabolismo
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124398, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38710140

RESUMO

In this study, graphene quantum dots (GQDs) were employed for quantitatively analyzing lamivudine using a fluorescence quenching technique. This approach allows for sensitive determination of the concentration of lamivudine in different matrices without requiring derivatization. The mechanism behind the fluorescence intensity quenching between GQDs and lamivudine molecules was explored using the Stern Volmer equation, revealing dynamic quenching behavior. Additionally, various factors affecting fluorescence quenching efficiency such as pH, GQDs concentration, and incubation time were carefully tuned. Moreover, our developed method successfully met ICH guidelines for validation parameters including linearity, accuracy, precision, and selectivity demonstrating excellent performance. The results showed good accuracy and precision, with a mean recovery value of 101.91% for method accuracy and a relative standard deviation of 0.682 and 1.489 for intraday and interday precision, respectively. Finally, the greenness and blueness of the developed method were also investigated to assess its environmental friendliness and analytical practicality. Greenness evaluation using the AGREE tool demonstrated that the developed method has a low environmental impact with an AGREE score of 0.75, Besides, the blueness evaluating using the BAGI tool indicated that the developed method is practical, reliable, and well-suited for routine analysis of lamivudine in various samples.


Assuntos
Grafite , Lamivudina , Pontos Quânticos , Espectrometria de Fluorescência , Grafite/química , Pontos Quânticos/química , Lamivudina/análise , Espectrometria de Fluorescência/métodos , Química Verde/métodos , Reprodutibilidade dos Testes , Limite de Detecção , Concentração de Íons de Hidrogênio , Corantes Fluorescentes/química
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124400, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38710139

RESUMO

Eletriptan (ETR), a selective pharmaceutical agent agonist of the 5-hydroxytryptamine1 receptor subtype, are primarily used to treat acute migraine attacks. ETR is a triptan-class medication that works by narrowing cerebral blood vessels and reducing chemicals that produce headache pain, light and sound sensitivity, and nausea. Due to its effectiveness in reducing migraine symptoms, it is a worthwhile choice for those looking for quick and efficient treatment. A green, raid, one-pot and straightforward fluorescence spectrometric method was employed to evaluate ETR in tablets and biological samples. By introducing the ETR drug and the fluorescent ligand, Acid red 87, in an acidic buffer, a quenching of the ligand native fluorescent was promptly produced. The quenching action was simply attributed to the selective ion-pair complex generation between the cationic target and the selected ligand. An increase in ETR concentration was linearly proportional to the quenching response in the 50.0 - 500.0 ng/mL range. The optimal configurations for adjusting the system's variable parameters were determined by examining the ETR-Acid red 87 system's response. Additionally, the sensor that was developed met the standards set by the International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use. The sensitivity thresholds of the approach were 13.8 and 42.0 ng/mL for the detection and quantification parameters, respectively, LOD and LOQ. This approach proficiently evaluated the pharmaceutical and biological samples of ETR. Finally, the proposed approach not only simplifies the analysis process but also limits the badimpact on the environment, making it a promising technique for analytical applications.


Assuntos
Pirrolidinas , Espectrometria de Fluorescência , Triptaminas , Triptaminas/análise , Triptaminas/sangue , Triptaminas/química , Espectrometria de Fluorescência/métodos , Humanos , Pirrolidinas/química , Química Verde/métodos , Transtornos de Enxaqueca/tratamento farmacológico , Comprimidos , Limite de Detecção , Concentração de Íons de Hidrogênio
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124371, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728846

RESUMO

A green, sensitive and rapid spectrofluorimetric method for quantitative assay of an anti-allergic medication composed of montelukast and fexofenadine mixture in raw materials and dosage form was developed. The method was based on measuring the synchronous fluorimetric peak without interference, pre-separation or pre-extraction procedures. Montelukast was analyzed at 360 nm while fexofenadine was measured at 263 nm using Δλ = 20 nm for both drugs using ethanol as diluting solvent and acetate buffer of pH 4. The assay was rectilinear over the concentration range of 1.0-10.0 µg/mL for fexofenadine and 0.1-0.6 µg/mL for montelukast. The method was full validated according to ICH guidelines. The applicability of the method enables the assay of both drugs in raw materials, synthetic mixture as well as combined tablets. Moreover, the greenness of the method was assessed using different methods including; analytical eco-scale, GAPI and AGREE. All of these methods confirm that the proposed method is an eco-friendly method.


Assuntos
Acetatos , Antialérgicos , Ciclopropanos , Quinolinas , Espectrometria de Fluorescência , Sulfetos , Terfenadina , Espectrometria de Fluorescência/métodos , Terfenadina/análise , Terfenadina/análogos & derivados , Quinolinas/análise , Quinolinas/química , Acetatos/análise , Sulfetos/análise , Sulfetos/química , Antialérgicos/análise , Química Verde/métodos , Comprimidos , Reprodutibilidade dos Testes , Limite de Detecção , Formas de Dosagem , Concentração de Íons de Hidrogênio
19.
Int J Biol Macromol ; 269(Pt 1): 131985, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692538

RESUMO

Polylactic acid (PLA) is a promising renewable polymer material with excellent biodegradability and good mechanical properties. However, the easy flammability and slow natural degradation limited its further applications, especially in high-security fields. In this work, a fully bio-based intumescent flame-retardant system was designed to reduce the fire hazard of PLA. Firstly, arginine (Arg) and phytic acid (PA) were combined through electrostatic ionic interaction, followed by the introduction of starch as a carbon source, namely APS. The UL-94 grade of PLA/APS composites reached V-0 grade by adding 3 wt% of APS and exhibited excellent anti-dripping performance. With APS addition increasing to 7 wt%, LOI value increased to 26 % and total heat release decreased from 58.4 (neat PLA) to 51.1 MJ/m2. Moreover, the addition of APS increased its crystallinity up to 83.5 % and maintained the mechanical strength of pristine PLA. Noteworthy, APS accelerated the degradation rate of PLA under submerged conditions. Compared with pristine PLA, PLA/APS showed more apparent destructive network morphology and higher mass and Mn loss, suggesting effective degradation promotion. This work provides a full biomass modification strategy to construct renewable plastic with both good flame retardancy and high degradation efficiency.


Assuntos
Incêndios , Retardadores de Chama , Poliésteres , Poliésteres/química , Incêndios/prevenção & controle , Ácido Fítico/química , Química Verde/métodos , Arginina/química
20.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714767

RESUMO

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Assuntos
Nanopartículas Metálicas , Compostos de Prata , Nanopartículas Metálicas/química , Animais , Humanos , Compostos de Prata/química , Compostos de Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Artemia/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Células Vero , Antifúngicos/farmacologia , Antifúngicos/química , Prata/química , Prata/farmacologia , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA