Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
PLoS One ; 19(7): e0305927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024326

RESUMO

Fibrotic skin diseases, such as keloids, are pathological results of aberrant tissue healing and are characterized by overgrowth of dermal fibroblasts. Remdesivir (RD), an antiviral drug, has been reported to have pharmacological activities in a wide range of fibrotic diseases. However, whether RD function on skin fibrosis remains unclear. Therefore, in our study, we explored the potential effect and mechanisms of RD on skin fibrosis both in vivo and in vitro. As expected, the results demonstrated that RD alleviated BLM-induced skin fibrosis and attenuates the gross weight of keloid tissues in vivo. Further studies suggested that RD suppressed fibroblast activation and autophagy both in vivo and in vitro. In addition, mechanistic research showed that RD attenuated fibroblasts activation by the TGF-ß1/Smad signaling pathway and inhibited fibroblasts autophagy by the PI3K/Akt/mTOR signaling pathway. In summary, our results demonstrate therapeutic potential of RD for skin fibrosis in the future.


Assuntos
Monofosfato de Adenosina , Alanina , Fibroblastos , Fibrose , Transdução de Sinais , Pele , Fator de Crescimento Transformador beta1 , Animais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose/tratamento farmacológico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Camundongos , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Humanos , Autofagia/efeitos dos fármacos , Queloide/tratamento farmacológico , Queloide/metabolismo , Queloide/patologia , Antivirais/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Bleomicina , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo
2.
Int Immunopharmacol ; 137: 112423, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861914

RESUMO

Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-ß, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.


Assuntos
Fibrose , Transdução de Sinais , ortoaminobenzoatos , Humanos , ortoaminobenzoatos/uso terapêutico , ortoaminobenzoatos/farmacologia , Fibrose/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antifibróticos/uso terapêutico , Antifibróticos/farmacologia , Queloide/tratamento farmacológico , Queloide/patologia , Queloide/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
J Cell Biochem ; 125(7): e30609, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860429

RESUMO

Keloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high-expressing subtype of fibroblast by reanalyzing a public single-cell RNA-sequence data set of keloid. The number of BMP1-positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL-1ß secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF-ß pathways, including p-p38 and p-ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid-bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF-ß/p38 MAPK, and TGF-ß/ERK pathways. BMP1-lowing strategies may appear as a potential new therapeutic target for keloid.


Assuntos
Proteína Morfogenética Óssea 1 , Fibroblastos , Inflamação , Queloide , Queloide/metabolismo , Queloide/patologia , Queloide/genética , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 1/genética , Animais , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Masculino , Camundongos Nus , Proliferação de Células , Feminino , Movimento Celular , Fibrose , Adulto , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases
4.
Toxicol Appl Pharmacol ; 489: 117012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906511

RESUMO

Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-ß1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-ß/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-ß/Smad activation in TGF-ß1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-ß1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-ß1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-ß1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.


Assuntos
Movimento Celular , Proliferação de Células , Matriz Extracelular , Fibroblastos , Queloide , Sistema de Sinalização das MAP Quinases , Proteínas Smad , Fator de Crescimento Transformador beta1 , Humanos , Queloide/patologia , Queloide/metabolismo , Queloide/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Proteínas Smad/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais , Células Cultivadas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Masculino , Feminino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Adulto
5.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892032

RESUMO

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Assuntos
Fibroblastos , Queloide , Piruvatos , Esferoides Celulares , Humanos , Queloide/metabolismo , Queloide/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Piruvatos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Colágeno/metabolismo , Colágeno/biossíntese , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Regulação para Cima/efeitos dos fármacos , Masculino
6.
Front Immunol ; 15: 1326728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915394

RESUMO

Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for ß-galactosidase revealed a significantly lower number of ß-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.


Assuntos
Fibroblastos , Queloide , Telomerase , Humanos , Queloide/patologia , Queloide/metabolismo , Fibroblastos/metabolismo , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
7.
Arch Dermatol Res ; 316(7): 412, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878082

RESUMO

Keloid scars and folliculitis keloidalis nuchae (FKN) are benign fibroproliferative dermal lesions of unknown aetiology and ill-defined treatment, which typically present in genetically susceptible individuals. Their pathognomonic hallmarks include local aggressive invasive behaviour plus high recurrence post-therapy. In view of this, we investigated proliferative and key parameters of bioenergetic cellular characteristics of site-specific keloid-derived fibroblasts (intra(centre)- and peri(margin)-lesional) and FKN compared to normal skin and normal flat non-hypertrophic scar fibroblasts as negative controls.The results showed statistically significant (P < 0.01) and variable growth dynamics with increased proliferation and migration in keloid fibroblasts, while FKN fibroblasts showed a significant (P < 0.001) increase in proliferation but similar migration profile to controls. A statistically significant metabolic switch towards aerobic glycolysis in the fibroblasts from the disease conditions was noted. Furthermore, an increase in basal glycolysis with a concomitant increase in the cellular maximum glycolytic capacity was also demonstrated in perilesional keloid and FKN fibroblasts (P < 0.05). Mitochondrial function parameters showed increased oxidative phosphorylation in the disease conditions (P < 0.05) indicating functional mitochondria. These findings further suggest that Keloids and FKN demonstrate a switch to a metabolic phenotype of aerobic glycolysis. Increased glycolytic flux inhibition is a potential mechanistic basis for future therapy.


Assuntos
Proliferação de Células , Fibroblastos , Foliculite , Glicólise , Queloide , Humanos , Queloide/metabolismo , Queloide/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Foliculite/metabolismo , Foliculite/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Cultivadas , Fosforilação Oxidativa , Movimento Celular , Adulto , Pele/patologia , Pele/metabolismo , Metabolismo Energético , Feminino , Masculino
8.
PeerJ ; 12: e17551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887622

RESUMO

Background: Keloid is a chronic proliferative fibrotic disease caused by abnormal fibroblasts proliferation and excessive extracellular matrix (ECM) production. Numerous fibrotic disorders are significantly influenced by ferroptosis, and targeting ferroptosis can effectively mitigate fibrosis development. This study aimed to investigate the role and mechanism of ferroptosis in keloid development. Methods: Keloid tissues from keloid patients and normal skin tissues from healthy controls were collected. Iron content, lipid peroxidation (LPO) level, and the mRNA and protein expression of ferroptosis-related genes including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined. Mitochondrial morphology was observed using transmission electron microscopy (TEM). Keloid fibroblasts (KFs) were isolated from keloid tissues, and treated with ferroptosis inhibitor ferrostatin-1 (fer-1) or ferroptosis activator erastin. Iron content, ferroptosis-related marker levels, LPO level, mitochondrial membrane potential, ATP content, and mitochondrial morphology in KFs were detected. Furthermore, the protein levels of α-smooth muscle actin (α-SMA), collagen I, and collagen III were measured to investigate whether ferroptosis affect fibrosis in KFs. Results: We found that iron content and LPO level were substantially elevated in keloid tissues and KFs. SLC7A11, GPX4, and Nrf2 were downregulated and TFRC was upregulated in keloid tissues and KFs. Mitochondria in keloid tissues and KFs exhibited ferroptosis-related pathology. Fer-1 treatment reduced iron content, restrained ferroptosis and mitochondrial dysfunction in KFs, Moreover, ferrostatin-1 restrained the protein expression of α-SMA, collagen I, and collagen III in KFs. Whereas erastin treatment showed the opposite results. Conclusion: Ferroptosis exists in keloid. Ferrostatin-1 restrained ECM deposition and fibrosis in keloid through inhibiting ferroptosis, and erastin induced ECM deposition and fibrosis through intensifying ferroptosis.


Assuntos
Cicloexilaminas , Ferroptose , Fibroblastos , Fibrose , Queloide , Fator 2 Relacionado a NF-E2 , Fenilenodiaminas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Humanos , Ferroptose/efeitos dos fármacos , Queloide/patologia , Queloide/metabolismo , Queloide/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Cicloexilaminas/farmacologia , Fibrose/metabolismo , Fibrose/patologia , Fenilenodiaminas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos , Feminino , Adulto , Ferro/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Piperazinas/farmacologia , Actinas/metabolismo , Actinas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
9.
Pathol Oncol Res ; 30: 1611789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903488

RESUMO

Background: The desmoplastic reaction is considered a promising prognostic parameter for colorectal cancer. However, intermediate desmoplastic reaction is characterized by sizeable stromal heterogeneity, including both small amounts of keloid-like collagen (KC) in the fibrotic stroma and thick tufts of KC circumferentially surrounding cancer nests and occupying most of the fields of view. The present study aimed to evaluate the diagnostic and prognostic significance of KC histophenotyping with a quantitative visual assessment of its presence in the stroma of the invasive margin of TNM (The "tumor-node-metastasis" classification) stage II/III colorectal cancer (CRC). Methods and results: 175 resected tumors from patients with TNM stage II/III CRC were examined. Keloid-like collagen was assessed according to Ueno H. criteria. KC was assessed at the primary tumor invasive margin using Hematoxylin & Eosin and Masson's trichrome staining. The cut-off point for KC was examined using "the best cutoff approach by log-rank test." Using a cutoff point of 30%, we histologically divided fibrous stroma in the invasive area into two groups: "type A"-KC ≤ 0.3 and "type B"-KC>0.3. Type A stroma was observed in 48% of patients, type B-in 52%. The association between collagen amount and 5-year recurrence-free survival (5-RFS) was assessed using Cox regression analysis. Kaplan-Meier analysis and log-rank tests were used to assess the significance of survival analysis. Analysis of categorical variables showed that increased KC in CRC stroma predicted adverse outcomes for 5-RFS (hazard ratio [HR] = 3.143, 95%, confidence interval [CI] = 1.643-6.012, p = 0.001). Moreover, in Kaplan-Meier analysis, the log-rank test showed that type B exhibited worse 5-RFS than type A (p = 0.000). Conclusion: KC is an independent predictor of 5-year overall and RFS in patients with TNM stage II/III CRC treated with surgery, with worse survival rates when the amount of KC increases by >30%.


Assuntos
Colágeno , Neoplasias Colorretais , Matriz Extracelular , Queloide , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Colágeno/metabolismo , Idoso , Matriz Extracelular/patologia , Matriz Extracelular/metabolismo , Queloide/patologia , Queloide/metabolismo , Adulto , Idoso de 80 Anos ou mais , Taxa de Sobrevida , Seguimentos
10.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840411

RESUMO

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Assuntos
Proliferação de Células , Quimiocina CXCL12 , Fibroblastos , Queloide , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT3 , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fibroblastos/metabolismo , Movimento Celular , Retroalimentação Fisiológica , Cromograninas/genética , Cromograninas/metabolismo , Masculino , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Adulto , Células Cultivadas , Regulação para Cima
11.
Biochem Biophys Res Commun ; 715: 149963, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676999

RESUMO

Keloids represent a prevalent dermal fibroproliferative disorder. They only affect humans and exhibit several tumor characteristics, such as excessive extracellular matrix (ECM) deposition, which usually occurs after skin injury. Kreotoxin type A (KTA) can inhibit the release of acetylcholine, and thereby inhibit the proliferation of keloid fibroblasts and reducing the formation of scars. Thus, KTA could be used as a therapeutic agent for keloids. However, the mechanisms of action of KTA in keloid treatment remain unclear. In this study, we aimed to explore the underlying mechanisms of action of KTA in human keloid treatment using human tissue and a cell-based model. Integrative microarray analysis revealed that hypoxia-inducible factor 1-alpha (HIF-1α) expression was frequently upregulated in hypertrophic scar and keloid tissues, whereas it was downregulated in the KTA-treated samples. Furthermore, KTA addition to keloid-derived fibroblasts (KDFs) reduced the growth rate and viability, induced apoptosis, and decreased inflammation and oxidative stress in KDFs. However, overexpression of HIF-1α restored cell number and survival, decreased apoptosis, and promoted inflammation and oxidative stress in KTA-treated KDFs. Furthermore, KTA treatment reduced the expression of ECM proteins, including vascular endothelial growth factor (VEGF), collagen I and III, whereas HIF-1α overexpression abolished the effects of KTA on KDFs. In conclusion, our findings provide novel insights into the mechanisms of action of KTA as a potential therapeutic agent for keloids via modulating HIF-1α expression.


Assuntos
Proliferação de Células , Regulação para Baixo , Fibroblastos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Inflamação , Queloide , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Queloide/metabolismo , Queloide/patologia , Toxinas Bacterianas/farmacologia
12.
Artigo em Chinês | MEDLINE | ID: mdl-38664034

RESUMO

Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.


Assuntos
Fibrose , Glicólise , Humanos , Fibrose/metabolismo , Fibrose/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia , Dermatopatias/tratamento farmacológico , Pele/patologia , Pele/metabolismo , Queloide/metabolismo , Queloide/patologia , Queloide/tratamento farmacológico , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/tratamento farmacológico
13.
Sci Rep ; 14(1): 8725, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622256

RESUMO

Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Queloide/metabolismo , Miofibroblastos/metabolismo , Cicatriz Hipertrófica/metabolismo , Fibroblastos/metabolismo , Cicatrização/genética
14.
Exp Dermatol ; 33(5): e15088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685820

RESUMO

Recently, the pathomechanisms of keloids have been extensively researched using transcriptomic analysis, but most studies did not consider the activity of keloids. We aimed to profile the transcriptomics of keloids according to their clinical activity and location within the keloid lesion, compared with normal and mature scars. Tissue samples were collected (keloid based on its activity (active and inactive), mature scar from keloid patients and normal scar (NS) from non-keloid patients). To reduce possible bias, all keloids assessed in this study had no treatment history and their location was limited to the upper chest or back. Multiomics assessment was performed by using single-cell RNA sequencing and multiplex immunofluorescence. Increased mesenchymal fibroblasts (FBs) was the main feature in keloid patients. Noticeably, the proportion of pro-inflammatory FBs was significantly increased in active keloids compared to inactive ones. To explore the nature of proinflammatory FBs, trajectory analysis was conducted and CCN family associated with mechanical stretch exhibited higher expression in active keloids. For vascular endothelial cells (VECs), the proportion of tip and immature cells increased in keloids compared to NS, especially at the periphery of active keloids. Also, keloid VECs highly expressed genes with characteristics of mesenchymal activation compared to NS, especially those from the active keloid center. Multiomics analysis demonstrated the distinct expression profile of active keloids. Clinically, these findings may provide the future appropriate directions for development of treatment modalities of keloids. Prevention of keloids could be possible by the suppression of mesenchymal activation between FBs and VECs and modulation of proinflammatory FBs may be the key to the control of active keloids.


Assuntos
Fibroblastos , Queloide , Queloide/patologia , Queloide/metabolismo , Humanos , Fibroblastos/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Feminino , Adulto , Masculino , Perfilação da Expressão Gênica , Análise de Célula Única
15.
J Gene Med ; 26(5): e3688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686583

RESUMO

BACKGROUND: Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation. METHODS: Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exossh-MEG3. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified. RESULTS: hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exossh-MEG3, leading to reduced KF activity. CONCLUSIONS: hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.


Assuntos
Exossomos , Fibroblastos , Queloide , Células-Tronco Mesenquimais , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Masculino , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Queloide/terapia , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
16.
Skin Res Technol ; 30(5): e13686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682767

RESUMO

BACKGROUND: Our study aims to delineate the miRSNP-microRNA-gene-pathway interactions in the context of hypertrophic scars (HS) and keloids. MATERIALS AND METHODS: We performed a computational biology study involving differential expression analysis to identify genes and their mRNAs in HS and keloid tissues compared to normal skin, identifying key hub genes and enriching their functional roles, comprehensively analyzing microRNA-target genes and related signaling pathways through bioinformatics, identifying MiRSNPs, and constructing a pathway-based network to illustrate miRSNP-miRNA-gene-signaling pathway interactions. RESULTS: Our results revealed a total of 429 hub genes, with a strong enrichment in signaling pathways related to proteoglycans in cancer, focal adhesion, TGF-ß, PI3K/Akt, and EGFR tyrosine kinase inhibitor resistance. Particularly noteworthy was the substantial crosstalk between the focal adhesion and PI3K/Akt signaling pathways, making them more susceptible to regulation by microRNAs. We also identified specific miRNAs, including miRNA-1279, miRNA-429, and miRNA-302e, which harbored multiple SNP loci, with miRSNPs rs188493331 and rs78979933 exerting control over a significant number of miRNA target genes. Furthermore, we observed that miRSNP rs188493331 shared a location with microRNA302e, microRNA202a-3p, and microRNA20b-5p, and these three microRNAs collectively targeted the gene LAMA3, which is integral to the focal adhesion signaling pathway. CONCLUSIONS: The study successfully unveils the complex interactions between miRSNPs, miRNAs, genes, and signaling pathways, shedding light on the genetic factors contributing to HS and keloid formation.


Assuntos
Cicatriz Hipertrófica , Queloide , MicroRNAs , Humanos , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Biologia Computacional , Queloide/genética , Queloide/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética
17.
Burns ; 50(5): 1259-1268, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492983

RESUMO

BACKGROUND: Keloid is a benign hyperplastic dermatosis with high recurrence rate and complex pathogenesis. There is no universally effective treatment yet. New therapies and elucidation of pathogenesis are urgently required. AIMS: To explore the function of IRE1α/XBP1 in keloid fibroblasts and to investigate the potential mechanism of artesunate in inhibiting keloid hyperplasia. METHODS: Human keloid fibroblasts (KFs) were cultured, and the expressions of XBP1 and TGF-ß1 were detected by immunohistochemistry. The expression of IRE1 was interfered with through cell transfection and the effects of IRE1 interference on cell proliferation and the cell cycle were assessed using MTS, colony formation assays, and flow cytometry. Detection of the expressions of XBP1 and TGF-ß1 by qRT-PCR and Western blot. Then artesunate was applied to a subset of the cells, and its effects on cell viability and the expression of related proteins using the same methods. RESULTS: The IRE1α/XBP1 pathway was activated in KFs. Knocking out the gene IRE1α can inhibit the expression of TGF-ß1, in addition, the cell viability and cell cycle progression of KFs were also significantly affected. After artesunate treatment, there was a remarkable reduction in cell proliferation. Meanwhile, the cell cycle of KFs treated with artesunate was blocked in G1 phase.After upregulating the expression of IRE1α and treating KFs with artesunate, both cell cycle and proliferation showed inhibitory effects, and related proteins also exhibited suppressed expression. CONCLUSIONS: The IRE1α/XBP1 pathway is activated in keloid, and inhibiting the expression of this pathway can affect the cell proliferation activity. In addition, artesunate also has a significant effect on fibroblast proliferation, and the IRE1α/XBP1 pathway may participate in this process. These findings suggest that IRE1α/XBP1 signal pathway may be a potential target for scar treatment, and artesunate could also be a powerful candidate for keloid treatment.


Assuntos
Artemisininas , Artesunato , Proliferação de Células , Endorribonucleases , Fibroblastos , Queloide , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Proteína 1 de Ligação a X-Box , Adulto , Feminino , Humanos , Masculino , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endorribonucleases/metabolismo , Endorribonucleases/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Queloide/metabolismo , Queloide/tratamento farmacológico , Queloide/patologia , Queloide/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
18.
Mol Ther ; 32(6): 1984-1999, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38553852

RESUMO

Keloids are characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix (ECM) and are a major global health care burden among cutaneous diseases. However, the function of long noncoding RNA (lncRNA)-mediated ECM remodeling during the pathogenesis of keloids is still unclear. Herein, we identified a long noncoding transcript, namely, lymphocyte-specific protein 1 pseudogene 5 (LSP1P5), that modulates ECM component deposition in keloids. First, high-throughput transcriptome analysis showed that LSP1P5 was selectively upregulated in keloids and correlated with more severe disease in a clinical keloid cohort. Therapeutically, the attenuation of LSP1P5 significantly decreased the expression of ECM markers (COL1, COL3, and FN1) both in vitro and in vivo. Intriguingly, an antifibrotic gene, CCAAT enhancer binding protein alpha (CEBPA), is a functional downstream candidate of LSP1P5. Mechanistically, LSP1P5 represses CEBPA expression by hijacking Suppressor of Zeste 12 to the promoter of CEBPA, thereby enhancing the polycomb repressive complex 2-mediated H3K27me3 and changing the chromosomal opening status of CEBPA. Taken together, these findings indicate that targeting LSP1P5 abrogates fibrosis in keloids through epigenetic regulation of CEBPA, revealing a novel antifibrotic therapeutic strategy that bridges our current understanding of lncRNA regulation, histone modification and ECM remodeling in keloids.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Matriz Extracelular , Queloide , RNA Longo não Codificante , Queloide/genética , Queloide/metabolismo , Queloide/patologia , Humanos , RNA Longo não Codificante/genética , Matriz Extracelular/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Animais , Camundongos , Regulação da Expressão Gênica , Fibroblastos/metabolismo , Regiões Promotoras Genéticas , Masculino , Regulação para Cima
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508477

RESUMO

Scarring, a prevalent issue in clinical settings, is characterized by the excessive generation of extracellular matrix within the skin tissue. Among the numerous regulatory factors implicated in fibrosis across various organs, the apelin/APJ axis has emerged as a potential regulator of fibrosis. Given the shared attribute of heightened extracellular matrix production between organ fibrosis and scarring, we hypothesize that the apelin/APJ axis also plays a regulatory role in scar development. In this study, we examined the expression of apelin and APJ in scar tissue, normal skin, and fibroblasts derived from these tissues. We investigated the impact of the hypoxic microenvironment in scars on apelin/APJ expression to identify the transcription factors influencing apelin/APJ expression. Through overexpressing or knocking down apelin/APJ expression, we observed their effects on fibroblast secretion of extracellular matrix proteins. We further validated these effects in animal experiments while exploring the underlying mechanisms. Our findings demonstrated that the apelin/APJ axis is expressed in fibroblasts from keloid, hypertrophic scar, and normal skin. The regulation of apelin/APJ expression by the hypoxic environment in scars plays a significant role in hypertrophic scar and keloid development. This regulation promotes extracellular matrix secretion through upregulation of TGF-ß1 expression via the PI3K/Akt/CREB1 pathway.


Assuntos
Cicatriz Hipertrófica , Queloide , Animais , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Fibrose , Queloide/metabolismo , Fosfatidilinositol 3-Quinases , Humanos
20.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396801

RESUMO

It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/metabolismo , Pele/metabolismo , Queloide/metabolismo , Fibroblastos/metabolismo , Opsinas/metabolismo , Opsinas de Bastonetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...