Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.533
Filtrar
1.
PLoS One ; 19(7): e0305927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024326

RESUMO

Fibrotic skin diseases, such as keloids, are pathological results of aberrant tissue healing and are characterized by overgrowth of dermal fibroblasts. Remdesivir (RD), an antiviral drug, has been reported to have pharmacological activities in a wide range of fibrotic diseases. However, whether RD function on skin fibrosis remains unclear. Therefore, in our study, we explored the potential effect and mechanisms of RD on skin fibrosis both in vivo and in vitro. As expected, the results demonstrated that RD alleviated BLM-induced skin fibrosis and attenuates the gross weight of keloid tissues in vivo. Further studies suggested that RD suppressed fibroblast activation and autophagy both in vivo and in vitro. In addition, mechanistic research showed that RD attenuated fibroblasts activation by the TGF-ß1/Smad signaling pathway and inhibited fibroblasts autophagy by the PI3K/Akt/mTOR signaling pathway. In summary, our results demonstrate therapeutic potential of RD for skin fibrosis in the future.


Assuntos
Monofosfato de Adenosina , Alanina , Fibroblastos , Fibrose , Transdução de Sinais , Pele , Fator de Crescimento Transformador beta1 , Animais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose/tratamento farmacológico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Camundongos , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Humanos , Autofagia/efeitos dos fármacos , Queloide/tratamento farmacológico , Queloide/metabolismo , Queloide/patologia , Antivirais/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Bleomicina , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo
2.
Hum Genomics ; 18(1): 80, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014455

RESUMO

BACKGROUND: Keloid is a disease characterized by proliferation of fibrous tissue after the healing of skin tissue, which seriously affects the daily life of patients. However, the clinical treatment of keloids still has limitations, that is, it is not effective in controlling keloids, resulting in a high recurrence rate. Thus, it is urgent to identify new signatures to improve the diagnosis and treatment of keloids. METHOD: Bulk RNA seq and scRNA seq data were downloaded from the GEO database. First, we used WGCNA and MEGENA to co-identify keloid/immune-related DEGs. Subsequently, we used three machine learning algorithms (Randomforest, SVM-RFE, and LASSO) to identify hub immune-related genes of keloid (KHIGs) and investigated the heterogeneous expression of KHIGs during fibroblast subpopulation differentiation using scRNA-seq. Finally, we used HE and Masson staining, quantitative reverse transcription-PCR, western blotting, immunohistochemical, and Immunofluorescent assay to investigate the dysregulated expression and the mechanism of retinoic acid in keloids. RESULTS: In the present study, we identified PTGFR, RBP5, and LIF as KHIGs and validated their diagnostic performance. Subsequently, we constructed a novel artificial neural network molecular diagnostic model based on the transcriptome pattern of KHIGs, which is expected to break through the current dilemma faced by molecular diagnosis of keloids in the clinic. Meanwhile, the constructed IG score can also effectively predict keloid risk, which provides a new strategy for keloid prevention. Additionally, we observed that KHIGs were also heterogeneously expressed in the constructed differentiation trajectories of fibroblast subtypes, which may affect the differentiation of fibroblast subtypes and thus lead to dysregulation of the immune microenvironment in keloids. Finally, we found that retinoic acid may treat or alleviate keloids by inhibiting RBP5 to differentiate pro-inflammatory fibroblasts (PIF) to mesenchymal fibroblasts (MF), which further reduces collagen secretion. CONCLUSION: In summary, the present study provides novel immune signatures (PTGFR, RBP5, and LIF) for keloid diagnosis and treatment, and identifies retinoic acid as potential anti-keloid drugs. More importantly, we provide a new perspective for understanding the interactions between different fibroblast subtypes in keloids and the remodeling of their immune microenvironment.


Assuntos
Queloide , RNA-Seq , Queloide/genética , Queloide/diagnóstico , Queloide/patologia , Queloide/imunologia , Queloide/tratamento farmacológico , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/imunologia , Redes Reguladoras de Genes , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Análise de Célula Única/métodos , Diferenciação Celular/genética , Análise de Sequência de RNA/métodos , Aprendizado de Máquina , Análise da Expressão Gênica de Célula Única
3.
Int Immunopharmacol ; 137: 112423, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861914

RESUMO

Fibrosis is the excessive deposition of extracellular matrix in an organ or tissue that results from an impaired tissue repair in response to tissue injury or chronic inflammation. The progressive nature of fibrotic diseases and limited treatment options represent significant healthcare challenges. Despite the substantial progress in understanding the mechanisms of fibrosis, a gap persists translating this knowledge into effective therapeutics. Here, we discuss the critical mediators involved in fibrosis and the role of tranilast as a potential antifibrotic drug to treat fibrotic conditions. Tranilast, an antiallergy drug, is a derivative of tryptophan and has been studied for its role in various fibrotic diseases. These include scleroderma, keloid and hypertrophic scars, liver fibrosis, renal fibrosis, cardiac fibrosis, pulmonary fibrosis, and uterine fibroids. Tranilast exerts antifibrotic effects by suppressing fibrotic pathways, including TGF-ß, and MPAK. Because it disrupts fibrotic pathways and has demonstrated beneficial effects against keloid and hypertrophic scars, tranilast could be used to treat other conditions characterized by fibrosis.


Assuntos
Fibrose , Transdução de Sinais , ortoaminobenzoatos , Humanos , ortoaminobenzoatos/uso terapêutico , ortoaminobenzoatos/farmacologia , Fibrose/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antifibróticos/uso terapêutico , Antifibróticos/farmacologia , Queloide/tratamento farmacológico , Queloide/patologia , Queloide/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
J Cell Biochem ; 125(7): e30609, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860429

RESUMO

Keloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high-expressing subtype of fibroblast by reanalyzing a public single-cell RNA-sequence data set of keloid. The number of BMP1-positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL-1ß secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF-ß pathways, including p-p38 and p-ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid-bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF-ß/p38 MAPK, and TGF-ß/ERK pathways. BMP1-lowing strategies may appear as a potential new therapeutic target for keloid.


Assuntos
Proteína Morfogenética Óssea 1 , Fibroblastos , Inflamação , Queloide , Queloide/metabolismo , Queloide/patologia , Queloide/genética , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 1/genética , Animais , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Masculino , Camundongos Nus , Proliferação de Células , Feminino , Movimento Celular , Fibrose , Adulto , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases
5.
Toxicol Appl Pharmacol ; 489: 117012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906511

RESUMO

Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-ß1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-ß/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-ß/Smad activation in TGF-ß1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-ß1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-ß1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-ß1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.


Assuntos
Movimento Celular , Proliferação de Células , Matriz Extracelular , Fibroblastos , Queloide , Sistema de Sinalização das MAP Quinases , Proteínas Smad , Fator de Crescimento Transformador beta1 , Humanos , Queloide/patologia , Queloide/metabolismo , Queloide/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Proteínas Smad/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais , Células Cultivadas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Masculino , Feminino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Adulto
6.
Arch Dermatol Res ; 316(7): 368, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850361

RESUMO

Intralesional corticosteroid injections are a first-line treatment for keloids; yet clinical treatment results are highly variable and often suboptimal. Variation in triamcinolone acetonide (TAC) biodistribution may be an important reason for the variable effects of TAC treatment in keloids. In this exploratory study we investigated the biodistribution of TAC in keloids and normal skin using different drug delivery techniques. Fluorescent-labeled TAC suspension was administered into keloids and normal skin with a hypodermic needle and an electronic pneumatic jet injector. TAC biodistribution was represented by the fluorescent TAC volume and 3D biodistribution shape of TAC, using a 3D-Fluorescence-Imaging Cryomicrotome System. Twenty-one keloid and nine normal skin samples were analyzed. With needle injections, the mean fluorescent TAC volumes were 990 µl ± 479 in keloids and 872 µl ± 227 in normal skin. With the jet injector, the mean fluorescent TAC volumes were 401 µl ± 252 in keloids and 249 µl ± 67 in normal skin. 3D biodistribution shapes of TAC were highly variable in keloids and normal skin. In conclusion, TAC biodistribution in keloids is highly variable for both needle and jet injection. This may partly explain the variable treatment effects of intralesional TAC in keloids. Future research is needed to confirm this preliminary finding and to optimize drug delivery in keloids.


Assuntos
Queloide , Triancinolona Acetonida , Queloide/tratamento farmacológico , Queloide/patologia , Humanos , Triancinolona Acetonida/farmacocinética , Triancinolona Acetonida/administração & dosagem , Adulto , Feminino , Distribuição Tecidual , Masculino , Pessoa de Meia-Idade , Injeções Intralesionais , Pele/metabolismo , Pele/patologia , Pele/diagnóstico por imagem , Crioultramicrotomia/métodos , Adulto Jovem , Imageamento Tridimensional , Sistemas de Liberação de Medicamentos/métodos
7.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892032

RESUMO

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Assuntos
Fibroblastos , Queloide , Piruvatos , Esferoides Celulares , Humanos , Queloide/metabolismo , Queloide/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Piruvatos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Colágeno/metabolismo , Colágeno/biossíntese , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Regulação para Cima/efeitos dos fármacos , Masculino
8.
Front Immunol ; 15: 1326728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915394

RESUMO

Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for ß-galactosidase revealed a significantly lower number of ß-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.


Assuntos
Fibroblastos , Queloide , Telomerase , Humanos , Queloide/patologia , Queloide/metabolismo , Fibroblastos/metabolismo , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
9.
Arch Dermatol Res ; 316(7): 412, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878082

RESUMO

Keloid scars and folliculitis keloidalis nuchae (FKN) are benign fibroproliferative dermal lesions of unknown aetiology and ill-defined treatment, which typically present in genetically susceptible individuals. Their pathognomonic hallmarks include local aggressive invasive behaviour plus high recurrence post-therapy. In view of this, we investigated proliferative and key parameters of bioenergetic cellular characteristics of site-specific keloid-derived fibroblasts (intra(centre)- and peri(margin)-lesional) and FKN compared to normal skin and normal flat non-hypertrophic scar fibroblasts as negative controls.The results showed statistically significant (P < 0.01) and variable growth dynamics with increased proliferation and migration in keloid fibroblasts, while FKN fibroblasts showed a significant (P < 0.001) increase in proliferation but similar migration profile to controls. A statistically significant metabolic switch towards aerobic glycolysis in the fibroblasts from the disease conditions was noted. Furthermore, an increase in basal glycolysis with a concomitant increase in the cellular maximum glycolytic capacity was also demonstrated in perilesional keloid and FKN fibroblasts (P < 0.05). Mitochondrial function parameters showed increased oxidative phosphorylation in the disease conditions (P < 0.05) indicating functional mitochondria. These findings further suggest that Keloids and FKN demonstrate a switch to a metabolic phenotype of aerobic glycolysis. Increased glycolytic flux inhibition is a potential mechanistic basis for future therapy.


Assuntos
Proliferação de Células , Fibroblastos , Foliculite , Glicólise , Queloide , Humanos , Queloide/metabolismo , Queloide/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Foliculite/metabolismo , Foliculite/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Cultivadas , Fosforilação Oxidativa , Movimento Celular , Adulto , Pele/patologia , Pele/metabolismo , Metabolismo Energético , Feminino , Masculino
10.
PeerJ ; 12: e17551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887622

RESUMO

Background: Keloid is a chronic proliferative fibrotic disease caused by abnormal fibroblasts proliferation and excessive extracellular matrix (ECM) production. Numerous fibrotic disorders are significantly influenced by ferroptosis, and targeting ferroptosis can effectively mitigate fibrosis development. This study aimed to investigate the role and mechanism of ferroptosis in keloid development. Methods: Keloid tissues from keloid patients and normal skin tissues from healthy controls were collected. Iron content, lipid peroxidation (LPO) level, and the mRNA and protein expression of ferroptosis-related genes including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined. Mitochondrial morphology was observed using transmission electron microscopy (TEM). Keloid fibroblasts (KFs) were isolated from keloid tissues, and treated with ferroptosis inhibitor ferrostatin-1 (fer-1) or ferroptosis activator erastin. Iron content, ferroptosis-related marker levels, LPO level, mitochondrial membrane potential, ATP content, and mitochondrial morphology in KFs were detected. Furthermore, the protein levels of α-smooth muscle actin (α-SMA), collagen I, and collagen III were measured to investigate whether ferroptosis affect fibrosis in KFs. Results: We found that iron content and LPO level were substantially elevated in keloid tissues and KFs. SLC7A11, GPX4, and Nrf2 were downregulated and TFRC was upregulated in keloid tissues and KFs. Mitochondria in keloid tissues and KFs exhibited ferroptosis-related pathology. Fer-1 treatment reduced iron content, restrained ferroptosis and mitochondrial dysfunction in KFs, Moreover, ferrostatin-1 restrained the protein expression of α-SMA, collagen I, and collagen III in KFs. Whereas erastin treatment showed the opposite results. Conclusion: Ferroptosis exists in keloid. Ferrostatin-1 restrained ECM deposition and fibrosis in keloid through inhibiting ferroptosis, and erastin induced ECM deposition and fibrosis through intensifying ferroptosis.


Assuntos
Cicloexilaminas , Ferroptose , Fibroblastos , Fibrose , Queloide , Fator 2 Relacionado a NF-E2 , Fenilenodiaminas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Humanos , Ferroptose/efeitos dos fármacos , Queloide/patologia , Queloide/metabolismo , Queloide/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Cicloexilaminas/farmacologia , Fibrose/metabolismo , Fibrose/patologia , Fenilenodiaminas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos , Feminino , Adulto , Ferro/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Piperazinas/farmacologia , Actinas/metabolismo , Actinas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
11.
Pathol Oncol Res ; 30: 1611789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903488

RESUMO

Background: The desmoplastic reaction is considered a promising prognostic parameter for colorectal cancer. However, intermediate desmoplastic reaction is characterized by sizeable stromal heterogeneity, including both small amounts of keloid-like collagen (KC) in the fibrotic stroma and thick tufts of KC circumferentially surrounding cancer nests and occupying most of the fields of view. The present study aimed to evaluate the diagnostic and prognostic significance of KC histophenotyping with a quantitative visual assessment of its presence in the stroma of the invasive margin of TNM (The "tumor-node-metastasis" classification) stage II/III colorectal cancer (CRC). Methods and results: 175 resected tumors from patients with TNM stage II/III CRC were examined. Keloid-like collagen was assessed according to Ueno H. criteria. KC was assessed at the primary tumor invasive margin using Hematoxylin & Eosin and Masson's trichrome staining. The cut-off point for KC was examined using "the best cutoff approach by log-rank test." Using a cutoff point of 30%, we histologically divided fibrous stroma in the invasive area into two groups: "type A"-KC ≤ 0.3 and "type B"-KC>0.3. Type A stroma was observed in 48% of patients, type B-in 52%. The association between collagen amount and 5-year recurrence-free survival (5-RFS) was assessed using Cox regression analysis. Kaplan-Meier analysis and log-rank tests were used to assess the significance of survival analysis. Analysis of categorical variables showed that increased KC in CRC stroma predicted adverse outcomes for 5-RFS (hazard ratio [HR] = 3.143, 95%, confidence interval [CI] = 1.643-6.012, p = 0.001). Moreover, in Kaplan-Meier analysis, the log-rank test showed that type B exhibited worse 5-RFS than type A (p = 0.000). Conclusion: KC is an independent predictor of 5-year overall and RFS in patients with TNM stage II/III CRC treated with surgery, with worse survival rates when the amount of KC increases by >30%.


Assuntos
Colágeno , Neoplasias Colorretais , Matriz Extracelular , Queloide , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Colágeno/metabolismo , Idoso , Matriz Extracelular/patologia , Matriz Extracelular/metabolismo , Queloide/patologia , Queloide/metabolismo , Adulto , Idoso de 80 Anos ou mais , Taxa de Sobrevida , Seguimentos
12.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840411

RESUMO

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Assuntos
Proliferação de Células , Quimiocina CXCL12 , Fibroblastos , Queloide , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT3 , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fibroblastos/metabolismo , Movimento Celular , Retroalimentação Fisiológica , Cromograninas/genética , Cromograninas/metabolismo , Masculino , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Adulto , Células Cultivadas , Regulação para Cima
13.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791322

RESUMO

A keloid is a benign fibroproliferative hypertrophy of scar tissue that extends outside the original wound and invades adjacent healthy skin. Keloid formation is thought to be a complex process including overactivity of the interleukin-6 signaling pathway and genetic susceptibility. The aim of the study was to investigate possible associations between rs1800797, rs1800796, and rs1800795 polymorphisms in the promoter of the IL6 gene encoding interleukin-6 and the rs2228145 polymorphism in the IL6R gene encoding the interleukin-6 receptor subunit alpha with the predisposition to keloids in Polish patients. The genetic polymorphisms were identified either using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) or sequencing of samples of genomic DNA extracted from blood leukocytes of 86 adult patients with keloids and 100 newborns comprising a control group. No significant differences in the distributions of IL6 or IL6R alleles or genotypes were found between keloid patients and newborn controls. There were also no significant differences between both groups in the distribution of IL6 haplotypes. The IL6 rs1800797, rs1800796 and rs1800795 and IL6R rs2228145 polymorphisms were not found to predispose individuals in the study group to keloids. IL6 promoter haplotypes were not found to be associated with a higher risk of keloids in the studied group.


Assuntos
Predisposição Genética para Doença , Interleucina-6 , Queloide , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6 , Humanos , Queloide/genética , Queloide/patologia , Interleucina-6/genética , Receptores de Interleucina-6/genética , Masculino , Feminino , Adulto , Polônia , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Estudos de Casos e Controles , Haplótipos , Alelos , Adolescente , Adulto Jovem , Frequência do Gene , Genótipo , Recém-Nascido , Estudos de Associação Genética
14.
Biochem Biophys Res Commun ; 715: 149963, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676999

RESUMO

Keloids represent a prevalent dermal fibroproliferative disorder. They only affect humans and exhibit several tumor characteristics, such as excessive extracellular matrix (ECM) deposition, which usually occurs after skin injury. Kreotoxin type A (KTA) can inhibit the release of acetylcholine, and thereby inhibit the proliferation of keloid fibroblasts and reducing the formation of scars. Thus, KTA could be used as a therapeutic agent for keloids. However, the mechanisms of action of KTA in keloid treatment remain unclear. In this study, we aimed to explore the underlying mechanisms of action of KTA in human keloid treatment using human tissue and a cell-based model. Integrative microarray analysis revealed that hypoxia-inducible factor 1-alpha (HIF-1α) expression was frequently upregulated in hypertrophic scar and keloid tissues, whereas it was downregulated in the KTA-treated samples. Furthermore, KTA addition to keloid-derived fibroblasts (KDFs) reduced the growth rate and viability, induced apoptosis, and decreased inflammation and oxidative stress in KDFs. However, overexpression of HIF-1α restored cell number and survival, decreased apoptosis, and promoted inflammation and oxidative stress in KTA-treated KDFs. Furthermore, KTA treatment reduced the expression of ECM proteins, including vascular endothelial growth factor (VEGF), collagen I and III, whereas HIF-1α overexpression abolished the effects of KTA on KDFs. In conclusion, our findings provide novel insights into the mechanisms of action of KTA as a potential therapeutic agent for keloids via modulating HIF-1α expression.


Assuntos
Proliferação de Células , Regulação para Baixo , Fibroblastos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Inflamação , Queloide , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Queloide/metabolismo , Queloide/patologia , Toxinas Bacterianas/farmacologia
15.
Artigo em Chinês | MEDLINE | ID: mdl-38664034

RESUMO

Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.


Assuntos
Fibrose , Glicólise , Humanos , Fibrose/metabolismo , Fibrose/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia , Dermatopatias/tratamento farmacológico , Pele/patologia , Pele/metabolismo , Queloide/metabolismo , Queloide/patologia , Queloide/tratamento farmacológico , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/tratamento farmacológico
16.
Wound Repair Regen ; 32(4): 419-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602106

RESUMO

Keloid scars tend to occur in high-tension sites due to mechanical stimuli that are involved in their development. To date, a detailed analysis of keloid distribution focused specifically on facial and neck areas has not been reported, and limited literature exists as to the related mechanical factors. To rectify this deficiency of knowledge, we first quantified the facial and neck keloid distribution observed clinically in 113 patients. Subsequently, we performed a rigorous investigation into the mechanical factors and their associated changes at these anatomic sites in healthy volunteers without a history of pathologic scarring. The association between keloid-predilection sites and sebaceous gland-dense and acne-prone sites was also examined. To assess skin stretch, thickness and stiffness, VECTRA, ultrasound and indentometer were utilised. Baseline skin stiffness and thickness were measured, as well as the magnitude of change in these values associated with facial expression and postural changes. Within the face and neck, keloids were most common near the mandibular angle (41.3%) and lateral submental (20.0%) regions. These areas of increased keloid incidence were not associated with areas more dense in sebaceous glands, nor linked consistently with acne-susceptible regions. Binomial logistic regression revealed that changes in skin stiffness and thickness related to postural changes significantly predicted keloid distribution. Skin stiffness and thickness changes related to prolonged mechanical forces (postural changes) are most pronounced at sites of high keloid predilection. This finding further elucidates the means by which skin stretch and tension are related to keloid development. As a more detailed analysis of mechanical forces on facial and neck skin, this study evaluates the nuances of multiple skin-mechanical properties, and their changes in a three-dimensional framework. Such factors may be critical to better understanding keloid progression and development in the face and neck.


Assuntos
Face , Queloide , Pescoço , Pele , Humanos , Queloide/patologia , Queloide/fisiopatologia , Masculino , Feminino , Pescoço/patologia , Face/patologia , Adulto , Pele/patologia , Pessoa de Meia-Idade , Movimento/fisiologia , Adulto Jovem , Adolescente
18.
Exp Dermatol ; 33(5): e15088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685820

RESUMO

Recently, the pathomechanisms of keloids have been extensively researched using transcriptomic analysis, but most studies did not consider the activity of keloids. We aimed to profile the transcriptomics of keloids according to their clinical activity and location within the keloid lesion, compared with normal and mature scars. Tissue samples were collected (keloid based on its activity (active and inactive), mature scar from keloid patients and normal scar (NS) from non-keloid patients). To reduce possible bias, all keloids assessed in this study had no treatment history and their location was limited to the upper chest or back. Multiomics assessment was performed by using single-cell RNA sequencing and multiplex immunofluorescence. Increased mesenchymal fibroblasts (FBs) was the main feature in keloid patients. Noticeably, the proportion of pro-inflammatory FBs was significantly increased in active keloids compared to inactive ones. To explore the nature of proinflammatory FBs, trajectory analysis was conducted and CCN family associated with mechanical stretch exhibited higher expression in active keloids. For vascular endothelial cells (VECs), the proportion of tip and immature cells increased in keloids compared to NS, especially at the periphery of active keloids. Also, keloid VECs highly expressed genes with characteristics of mesenchymal activation compared to NS, especially those from the active keloid center. Multiomics analysis demonstrated the distinct expression profile of active keloids. Clinically, these findings may provide the future appropriate directions for development of treatment modalities of keloids. Prevention of keloids could be possible by the suppression of mesenchymal activation between FBs and VECs and modulation of proinflammatory FBs may be the key to the control of active keloids.


Assuntos
Fibroblastos , Queloide , Queloide/patologia , Queloide/metabolismo , Humanos , Fibroblastos/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Feminino , Adulto , Masculino , Perfilação da Expressão Gênica , Análise de Célula Única
19.
J Gene Med ; 26(5): e3688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686583

RESUMO

BACKGROUND: Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation. METHODS: Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exossh-MEG3. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified. RESULTS: hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exossh-MEG3, leading to reduced KF activity. CONCLUSIONS: hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.


Assuntos
Exossomos , Fibroblastos , Queloide , Células-Tronco Mesenquimais , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Masculino , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Queloide/terapia , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Burns ; 50(5): 1259-1268, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492983

RESUMO

BACKGROUND: Keloid is a benign hyperplastic dermatosis with high recurrence rate and complex pathogenesis. There is no universally effective treatment yet. New therapies and elucidation of pathogenesis are urgently required. AIMS: To explore the function of IRE1α/XBP1 in keloid fibroblasts and to investigate the potential mechanism of artesunate in inhibiting keloid hyperplasia. METHODS: Human keloid fibroblasts (KFs) were cultured, and the expressions of XBP1 and TGF-ß1 were detected by immunohistochemistry. The expression of IRE1 was interfered with through cell transfection and the effects of IRE1 interference on cell proliferation and the cell cycle were assessed using MTS, colony formation assays, and flow cytometry. Detection of the expressions of XBP1 and TGF-ß1 by qRT-PCR and Western blot. Then artesunate was applied to a subset of the cells, and its effects on cell viability and the expression of related proteins using the same methods. RESULTS: The IRE1α/XBP1 pathway was activated in KFs. Knocking out the gene IRE1α can inhibit the expression of TGF-ß1, in addition, the cell viability and cell cycle progression of KFs were also significantly affected. After artesunate treatment, there was a remarkable reduction in cell proliferation. Meanwhile, the cell cycle of KFs treated with artesunate was blocked in G1 phase.After upregulating the expression of IRE1α and treating KFs with artesunate, both cell cycle and proliferation showed inhibitory effects, and related proteins also exhibited suppressed expression. CONCLUSIONS: The IRE1α/XBP1 pathway is activated in keloid, and inhibiting the expression of this pathway can affect the cell proliferation activity. In addition, artesunate also has a significant effect on fibroblast proliferation, and the IRE1α/XBP1 pathway may participate in this process. These findings suggest that IRE1α/XBP1 signal pathway may be a potential target for scar treatment, and artesunate could also be a powerful candidate for keloid treatment.


Assuntos
Artemisininas , Artesunato , Proliferação de Células , Endorribonucleases , Fibroblastos , Queloide , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Proteína 1 de Ligação a X-Box , Adulto , Feminino , Humanos , Masculino , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endorribonucleases/metabolismo , Endorribonucleases/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Queloide/metabolismo , Queloide/tratamento farmacológico , Queloide/patologia , Queloide/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...