RESUMO
PREMISE: Increasing aridity in the Mediterranean region affects ecosystems and plant life. Various anatomical changes in plants help them cope with dry conditions. This study focused on anatomical differences in leaves and xylem of five co-occurring Mediterranean plant species namely Quercus calliprinos, Pistacia palaestina, Pistacia lentiscus, Rhamnus lycioides, and Phillyrea latifolia in wet and dry sites. METHODS: Stomatal density, stomatal length, leaf mass area, lamina composition, percentage of intercellular air spaces, and mesophyll cell area in leaves of plants in wet and dry sites were analyzed. Xylem anatomy was assessed through vessel length and area in branches. RESULTS: In the dry site, three species had increased stomatal density and decreased stomatal length. Four species had increased palisade mesophyll and reduced air space volume. In contrast, phenotypic changes in the xylem were less pronounced; vessel length was unaffected by site conditions, but vessel diameter decreased in two species. Intercellular air spaces proved to be the most dynamic anatomical feature. Quercus calliprinos had the most extensive anatomical changes; Rhamnus lycioides had only minor changes. All these changes were observed in comparison to the species in the wet site. CONCLUSIONS: This study elucidated variations in anatomical responses in leaves among co-occurring Mediterranean plant species and identified the most dynamic traits. Understanding these adaptations provides valuable insights into the ability of plants to thrive under changing climate conditions.
Assuntos
Folhas de Planta , Caules de Planta , Quercus , Xilema , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Quercus/fisiologia , Região do Mediterrâneo , Xilema/anatomia & histologia , Xilema/fisiologia , Caules de Planta/anatomia & histologia , Pistacia/anatomia & histologia , Pistacia/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Oleaceae/anatomia & histologia , Oleaceae/fisiologia , Água , Rhamnaceae/anatomia & histologia , Rhamnaceae/fisiologiaRESUMO
Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.
Assuntos
Modelos Biológicos , Árvores , Árvores/crescimento & desenvolvimento , Árvores/anatomia & histologia , Xilema/crescimento & desenvolvimento , Xilema/anatomia & histologia , Quercus/crescimento & desenvolvimento , Quercus/anatomia & histologia , Quercus/fisiologia , Picea/crescimento & desenvolvimento , Picea/anatomia & histologia , Picea/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Pinus/crescimento & desenvolvimento , Pinus/anatomia & histologia , Simulação por ComputadorRESUMO
BACKGROUND: With the dramatic uplift of the Qinghai-Tibet Plateau (QTP) and the increase in altitude in the Pliocene, the environment became dry and cold, thermophilous plants that originally inhabited ancient subtropical forest essentially disappeared. However, Quercus sect. Heterobalanus (QSH) have gradually become dominant or constructive species distributed on harsh sites in the Hengduan Mountains range in southeastern QTP, Southwest China. Ecological stoichiometry reveals the survival strategies plants adopt to adapt to changing environment by quantifying the proportions and relationships of elements in plants. Simultaneously, as the most sensitive organs of plants to their environment, the structure of leaves reflects of the long-term adaptability of plants to their surrounding environments. Therefore, ecological adaptation mechanisms related to ecological stoichiometry and leaf anatomical structure of QSH were explored. In this study, stoichiometric characteristics were determined by measuring leaf carbon (C), nitrogen (N), and phosphorus (P) contents, and morphological adaptations were determined by examining leaf anatomical traits with microscopy. RESULTS: Different QSH life forms and species had different nutrient allocation strategies. Leaves of QSH plants had higher C and P and lower N contents and higher N and lower P utilization efficiencies. According to an N: P ratio threshold, the growth of QSH species was limited by N, except that of Q. aquifolioides and Q. longispica, which was limited by both N and P. Although stoichiometric homeostasis of C, N, and P and C: N, C: P, and N: P ratios differed slightly across life forms and species, the overall degree of homeostasis was strong, with strictly homeostatic, homeostatic, and weakly homeostatic regulation. In addition, QSH leaves had compound epidermis, thick cuticle, developed palisade tissue and spongy tissue. However, leaves were relatively thin overall, possibly due to leaf leathering and lignification, which is strategy to resist stress from UV radiation, drought, and frost. Furthermore, contents of C, N, and P and stoichiometric ratios were significantly correlated with leaf anatomical traits. CONCLUSIONS: QSH adapt to the plateau environment by adjusting the content and utilization efficiencies of C, N, and P elements. Strong stoichiometric homeostasis of QSH was likely a strategy to mitigate nutrient limitation. The unique leaf structure of the compound epidermis, thick cuticle, well-developed palisade tissue and spongy tissue is another adaptive mechanism for QSH to survive in the plateau environment. The anatomical adaptations and nutrient utilization strategies of QSH may have coevolved during long-term succession over millions of years.
Assuntos
Adaptação Fisiológica , Carbono , Nitrogênio , Fósforo , Folhas de Planta , Quercus , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Quercus/anatomia & histologia , Quercus/fisiologia , Fósforo/metabolismo , Nitrogênio/metabolismo , Tibet , Carbono/metabolismo , China , EcossistemaRESUMO
In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system where trees have been submitted to amplified drought (AD) (~-30% of annual precipitation) since April 2012 and compared them with trees under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs), transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49% drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.
Assuntos
Secas , Florestas , Folhas de Planta , Quercus , Quercus/fisiologia , Quercus/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Chuva , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Árvores/anatomia & histologia , Mudança Climática , Estômatos de Plantas/fisiologia , Estômatos de Plantas/anatomia & histologiaRESUMO
We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).
Assuntos
Ecossistema , Folhas de Planta , Quercus , Quercus/anatomia & histologia , Folhas de Planta/anatomia & histologia , China , Especificidade da Espécie , AltitudeRESUMO
The hydraulic traits of a plant species may reflect its climate adaptations. Southwest China is considered as a biodiversity hotpot of the genus Quercus (oak). However, the hydraulic adaptations of Asian oaks to their climate niches remain unclear. Ten common garden-grown oak species with distinct natural distributions in eastern Asia were used to determine their stem xylem embolism resistance (water potential at 50% loss of hydraulic conductivity, P50), stem hydraulic efficiency (vessel anatomy and sapwood specific hydraulic conductivity (Ks)) and leaf anatomical traits. We also compiled four key functional traits: wood density, hydraulic-weighted vessel diameter, Ks and P50 data for 31 oak species from previous literature. We analyzed the relationship between hydraulic traits and climatic factors over the native ranges of 41 oak species. Our results revealed that the 10 Asian oak species, which are mainly distributed in humid subtropical habitats, possessed a stem xylem with low embolism resistance and moderate hydraulic efficiency. The deciduous and evergreen species of the 10 Asian oaks differed in the stem and leaf traits related to hydraulic efficiency. Ks differed significantly between the two phenological groups (deciduous and evergreens) in the 41-oak dataset. No significant difference in P50 between the two groups was found for the 10 Asian oaks or the 41-oak dataset. The oak species that can distribute in arid habitats possessed a stem xylem with high embolism resistance. Ks negatively related to the humidity of the native range of the 10 Asian oaks, but showed no trend when assessing the entire global oak dataset. Our study suggests that stem hydraulic conductivity and embolism resistance in Quercus species are shaped by their climate niche. Our findings assist predictions of oak drought resistance with future climate changes for oak forest management.
Assuntos
Embolia , Quercus , Quercus/anatomia & histologia , Madeira , Xilema , Florestas , Folhas de Planta , Água , Árvores , SecasRESUMO
Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.
Assuntos
Dióxido de Carbono/metabolismo , Árvores/metabolismo , Madeira/anatomia & histologia , Xilema/metabolismo , Acer/anatomia & histologia , Acer/metabolismo , Transporte Biológico , Quercus/anatomia & histologia , Quercus/metabolismo , Especificidade da Espécie , Thuja/anatomia & histologia , Thuja/metabolismo , Árvores/anatomia & histologiaRESUMO
Studies on plasticity at the level of a single individual plant provide indispensable information to predict leaf responses to climate change, because they allow better identification of the environmental factors that determine differences in leaf traits in the absence of genetic differences. Most of these studies have focused on the responses of leaf traits to variations in the light environment along vertical gradients, thus paying less attention to possible differences in the intensity of water stress among canopy orientations. In this paper, we analyzed the differences in leaf traits traditionally associated with changes in the intensity of water stress between east and west crown orientations in three Quercus species. The leaves facing west experienced similar solar radiation levels but higher maximum temperatures and lower daily minimum water potentials than those of the east orientation. In response to these differences, the leaves of the west orientation showed smaller size and less chlorophyll concentration, higher percentage of palisade tissue and higher density of stomata and trichomes. These responses would confirm the role of such traits in the tolerance to water stress and control of water losses by transpiration. For all traits, the species with the longest leaf life span exhibited the greatest plasticity between orientations. By contrast, no differences between canopy positions were observed for leaf thickness, leaf mass per unit area and venation patterns.
Assuntos
Secas , Temperatura Alta , Folhas de Planta/fisiologia , Quercus/fisiologia , Meio Ambiente , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Especificidade da Espécie , Árvores/crescimento & desenvolvimentoRESUMO
The anatomical structure of wood is complex and contains considerable information about its specific species, physical properties, growth environment, and other factors. While conventional wood anatomy has been established by systematizing the xylem anatomical features, which enables wood identification generally up to genus level, it is difficult to describe all the information comprehensively. This study apply two computer vision approaches to optical micrographs: the scale-invariant feature transform algorithm and connected-component labelling. They extract the shape and pore size information, respectively, statistically from the whole micrographs. Both approaches enable the efficient detection of specific features of 18 species from the family Fagaceae. Although the methods ignore the positional information, which is important for the conventional wood anatomy, the simple information on the shape or size of the elements is enough to describe the species-specificity of wood. In addition, according to the dendrograms calculated from the numerical distances of the features, the closeness of some taxonomic groups is inconsistent with the types of porosity, which is one of the typical classification systems for wood anatomy, but consistent with the evolution based on molecular phylogeny; for example, ring-porous group Cerris and radial-porous group Ilex are nested in the same cluster. We analyse which part of the wood structure gave the taxon-specific information, indicating that the latewood zone of group Cerris is similar to the whole zone of group Ilex. Computer vision approaches provide statistical information that uncovers new aspects of wood anatomy that have been overlooked by conventional visual inspection.
Assuntos
Fagaceae/anatomia & histologia , Madeira/anatomia & histologia , Algoritmos , Evolução Biológica , Fagaceae/classificação , Processamento de Imagem Assistida por Computador , Quercus/anatomia & histologia , Quercus/classificação , Madeira/classificaçãoRESUMO
In many woody dicot plant species, colder temperatures correlate with a greater degree of leaf dissection and with larger and more abundant leaf teeth (the serrated edges along margins). The measurement of site-mean characteristics of leaf size and shape (physiognomy), including leaf dissection and tooth morphology, has been an important paleoclimate tool for over a century. These physiognomic-based climate proxies require that all woody dicot plants at a site, regardless of species, change their leaf shape rapidly and predictably in response to temperature. Here we experimentally test these assumptions by growing five woody species in growth cabinets under two temperatures (17 and 25°C). In keeping with global site-based patterns, plants tend to develop more dissected leaves with more abundant and larger leaf teeth in the cool treatment. Overall, this upholds the assumption that leaf shape responds in a particular direction to temperature change. The assumption that leaf shape variables respond to temperature in the same way regardless of species did not hold because the responses varied by species. Leaf physiognomic models for inferring paleoclimate should take into account these species-specific responses.
Assuntos
Acer/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Betulaceae/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Quercus/crescimento & desenvolvimento , Acer/anatomia & histologia , Betula/anatomia & histologia , Betulaceae/anatomia & histologia , Clima , Temperatura Baixa , Temperatura Alta , Quercus/anatomia & histologia , Sementes/crescimento & desenvolvimento , Especificidade da EspécieRESUMO
PREMISE: Water deficit and drought conditions are increasing in intensity, frequency, and duration in the Iberian Peninsula. We observed natural variation in leaf traits across the range of Quercus suber L. (cork oak), an ecologically important species within this region. Stomatal traits (e.g., pore length, maximum aperture) and carbon isotope composition (δ13 C) provide an opportunity to examine the integrative effects of drought and dry-season intensity on leaf development, maximum stomatal conductance, and adaptation to precipitation regimes. METHODS: Gross leaf traits (e.g., area, thickness), stomatal traits (e.g., pore length, size, aperture), and carbon isotope discrimination were measured in Q. suber leaves, and maximum stomatal conductance to water vapor (gwmax ) was calculated. Trees were sampled from nine natural populations across a climate gradient in the Iberian Peninsula, including trees from two genetic lineages. Linear mixed models compared total water deficit to leaf traits, accounting for tree and site as random effects. RESULTS: Quercus suber gross leaf morphology remained consistent across the climate gradient, but increasing water deficit was correlated with smaller stomata at the leaf level and low δ13 C at the tree level. No traits were significantly different between the two genetic lineages. CONCLUSIONS: While there were no significant differences in gross leaf morphology across the climate gradient or between the genetic lineages, stomatal traits and δ13 C responded to climate, suggesting that Q. suber can inhabit a range of environments in the Iberian Peninsula via micro-adjustments of the trait that controls water loss into the atmosphere.
Assuntos
Clima , Secas , Características de História de Vida , Folhas de Planta/fisiologia , Quercus/fisiologia , Isótopos de Carbono/análise , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Estações do Ano , EspanhaRESUMO
Studying the dynamic of Neolithic settlement on a local scale and its connection to climate variability is often difficult due to missing on-site climate reconstructions from natural archives. Here we bring together archaeological settlement data and a regional climate reconstruction from precipitation-sensitive trees. Both archives hold information about regional settlement dynamics and hydroclimate variability spanning the time of the first farming communities, the so called Linearbandkeramik (LBK) in Bavaria, Germany. Precipitation-sensitive tree-ring series from subfossil oak are used to develop a spring-summer precipitation reconstruction (5700-4800 B.C.E.) representative for southern Germany. Early Neolithic settlement data from Bavaria, mainly for the duration of the LBK settlement activities, are critically evaluated and compared to this unique regional hydroclimate reconstruction as well as to reconstructions of Greenland temperature, summer sea surface temperature, delta 18O and global solar irradiance to investigate the potential impact of climate on Neolithic settlers and their settlement dynamic during the LBK. Our hydroclimate reconstruction demonstrates an extraordinarily high frequency of severe dry and wet spring-summer seasons during the entire LBK, with particularly high year-to-year variability from 5400 to 5101 B.C.E. and with lower fluctuations until 4801 B.C.E. A significant influence of regional climate on the dynamic of the LBK is possible (e.g. around 4960 B.C.E.), but should be interpreted very carefully due to asynchronous trends in settlement dynamics. Thus, we conclude that even when a climate proxy such as tree rings that has excellent spatio-temporal resolution is available, it remains difficult to establish potential connections between the settlement dynamic of the LBK and climate variability.
Assuntos
Chuva , Estações do Ano , Árvores/anatomia & histologia , Agricultura , Calibragem , Clima , Fósseis , Geografia , Alemanha , Modelos Teóricos , Quercus/anatomia & histologia , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
Accurately estimating sapwood area is essential for modelling whole-tree or stand-scale transpiration from point-flow sap-flux observations. In this study, we tested the validity of electrical resistance tomography (ERT) to locate the sapwood-heartwood (SW/HW) interface for two ring porous (Quercus nigra L. and Quercus virginiana Mill.) and one diffuse porous (Acer rubrum L.) species. Estimates derived from the ERT analyses were compared with the SW/HW interface measured following dye perfusion testing. The ERT results revealed spatial variation in electrical resistance, with higher resistivity in the inner part of the cross sections. Regression analyses showed that ERT was able to accurately account for 97% and 80% of the variation in sapwood area (calculated as R2) for Q. virginiana (n = 19) and Q. nigra (n = 7), respectively, and 56% of the variation in the diffuse porous species (n = 8). Root mean square error (RMSE) values for sapwood areas of the ring porous species were 11.12 cm2 (19%) and 25.98 cm2 (33%) for Q. virginiana and Q. nigra, respectively. Sapwood area estimates for diffuse wood carried greater error (RMSE = 33.52 cm2 (131%)). Model bias for all sapwood area estimates was negative, suggesting that ERT had a tendency to overestimate sapwood areas. Electrical resistance tomography proved to be a significant predictor of sapwood area in the three investigated species, although it was more reliable for ring porous wood. In addition to the results, a comprehensive code sequence for use with R statistical software is provided, so that other investigators may follow the same method.
Assuntos
Acer/anatomia & histologia , Transpiração Vegetal , Quercus/anatomia & histologia , Tomografia/métodos , Árvores/anatomia & histologia , Madeira/anatomia & histologia , Acer/fisiologia , Impedância Elétrica , Florida , Quercus/fisiologia , Especificidade da Espécie , Árvores/fisiologia , Madeira/fisiologiaRESUMO
Effects on roots due to ozone and/or soil water deficit often occur through diminished belowground allocation of carbon. Responses of root biomass, morphology, anatomy and ectomycorrhizal communities were investigated in seedlings of three oak species: Quercus ilex L., Q. pubescens Willd. and Q. robur L., exposed to combined effects of elevated ozone (ambient air and 1.4â¯×â¯ambient air) and water deficit (100% and 10% irrigation relative to field capacity) for one growing season at a free-air ozone exposure facility. Effects on root biomass were observed as general reduction in coarse root biomass by -26.8% and in fine root biomass by -13.1% due to water deficit. Effect on coarse root biomass was the most prominent in Q. robur (-36.3%). Root morphological changes manifested as changes in proportions of fine root (<2â¯mm) diameter classes due to ozone and water deficit in Q. pubescens and due to water deficit in Q. robur. In addition, reduced fine root diameter (-8.49%) in Q. robur was observed under water deficit. Changes in root anatomy were observed as increased vessel density (+18.5%) due to ozone in all three species, as reduced vessel tangential diameter (-46.7%) in Q. ilex due to interaction of ozone and water, and as generally increased bark to secondary xylem ratio (+47.0%) due to interaction of ozone and water. Water deficit influenced occurrence of distinct growth ring boundaries in roots of Q. ilex and Q. robur. It shifted the ectomycorrhizal community towards dominance of stress-resistant species, with reduced relative abundance of Tomentella sp. 2 and increased relative abundances of Sphaerosporella brunnea and Thelephora sp. Our results provide evidence that expression of stress effects varies between root traits; therefore the combined analysis of root traits is necessary to obtain a complete picture of belowground responses.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Secas , Micorrizas/fisiologia , Ozônio/efeitos adversos , Quercus/anatomia & histologia , Quercus/microbiologia , Biomassa , Itália , Microbiota/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Quercus/fisiologia , Especificidade da EspécieRESUMO
MAIN CONCLUSION: Atmospheric p CO 2 impacts Quercus petraea biomass production and cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhances foliar non-structural carbohydrate levels and sucrose contents in a pCO 2 concentration-dependent manner. Sessile oak (Quercus petraea Liebl.) was grown for ca. half a year from seeds at ambient control (525 ppm), 750, 900, and 1000 ppm atmospheric pCO2 under controlled conditions. Increasing pCO2 enhanced biomass production, modified the cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhanced the foliar non-structural carbohydrate level, in particular the sucrose content; as well as total N content of leaves by increased levels of all major N fractions, i.e., soluble proteins, total amino acids, and structural N. The enhanced total amino acid level was largely due to 2-ketoglutarate and oxalo acetate-derived compounds. Increasing pCO2 alleviated oxidative stress in the leaves as indicated by reduced H2O2 contents. High in vitro glutathione reductase activity at reduced H2O2 contents suggests enhanced ROS scavenging, but increased lipid peroxidation may also have contributed, as indicated by a negative correlation between malone dialdehyde and H2O2 contents. Almost all these effects were at least partially reversed, when pCO2 exceeded 750 or 900 ppm. Apparently, the interaction of atmospheric pCO2 with leaf structural and physiological traits of Q. petraea seedlings is characterized by a dynamic response depending on the pCO2 level.
Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Plântula/anatomia & histologia , Atmosfera , Metabolismo dos Carboidratos , Dióxido de Carbono/farmacologia , Parede Celular/metabolismo , Celulose/metabolismo , Relação Dose-Resposta a Droga , Lignina/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Quercus/metabolismo , Quercus/fisiologia , Plântula/metabolismo , Plântula/fisiologiaRESUMO
Sparkling wine production comprises two successive fermentations performed by Sacharomyces cerevisiae strains. This research aimed to: develop yeast immobilisation processes on two wine-compatible supports; study the effects of yeast type (IOC 18-2007 and 55A) and the immobilisation support type (oak chips and cellulose powder) on the fermentation kinetics, the deposition rate of lees and the volatile composition of the finished sparkling wine; compare the fermentation parameters of the wines inoculated with immobilised or non-immobilised cells. Proper immobilisation of yeast on oak chips and cellulose powder was demonstrated by electron microscopy. Total sugar consumption occurred in under 60 days in all bottles, regardless of the strain used and the way they were inoculated in wine. Deposition of lees was 3-fold faster in the bottles containing immobilised cells than in those with free cells; no addition of adjuvants was necessary. The analysis of the volatile compounds of the finished sparkling wines showed significant differences in the formation of esters, acids, alcohols, aldehydes and lactones according to the yeast and the immobilisation support used. Oak chips were the more appropriate support for yeast immobilisation. No significant differences in the sensorial analysis of the sparkling wines produced by the different strategies were found.
Assuntos
Células Imobilizadas/metabolismo , Celulose/metabolismo , Fermentação/fisiologia , Quercus/microbiologia , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Células Imobilizadas/ultraestrutura , Ésteres/análise , Etanol/análise , Microscopia Eletrônica , Quercus/anatomia & histologia , Saccharomyces cerevisiae/ultraestrutura , Paladar , Vitis/microbiologia , Compostos Orgânicos Voláteis/análiseRESUMO
BACKGROUND: Stemflow is an essential hydrologic process shaping the soil of forests by providing a concentrated input of rainwater and solutions. However, the transport of metazoans by stemflow has yet to be investigated. This 8-week study documented the organisms (< 2 mm) present in the stemflow of different tree species. Because the texture of the tree bark is a crucial determination of stemflow, trees with smooth bark (Carpinus betulus and Fagus sylvatica) and rough bark (Quercus robur) were examined. RESULTS: Up to 1170 individuals per liter of stemflow were collected. For rotifers and nematodes, a highly positive correlation between abundance and stemflow yield was determined. Both taxa were predominant (rotifers: up to 70%, nematodes: up to 13.5%) in the stemflow of smooth-barked trees whereas in that of the oak trees collembolans were the most abundant organisms (77.3%). The mean number of organisms collected per liter of stemflow from the two species of smooth-barked trees was very similar. A higher number of nematode species was found in the stemflow of these trees than in the stemflow of rough-barked oak and all were typical colonizers of soil- and bark-associated habitats. CONCLUSION: This pilot study showed for the first time that stemflow is a transport vector for numerous small metazoans. By connecting tree habitats (e.g., bark, moss, lichens or water-filled tree holes) with soil, stemflow may influence the composition of soil fauna by mediating intensive organismal dispersal.
Assuntos
Florestas , Invertebrados/fisiologia , Casca de Planta/anatomia & histologia , Solo , Árvores/anatomia & histologia , Árvores/fisiologia , Animais , Betulaceae/anatomia & histologia , Betulaceae/fisiologia , Fagus/anatomia & histologia , Fagus/fisiologia , Hidrologia , Projetos Piloto , Quercus/anatomia & histologia , Quercus/fisiologiaRESUMO
Background and Aims: Understanding root traits and their trade-off with other plant processes is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of several orders of fine roots (<2 mm) for species differing in shade tolerance (low, moderate and high). Methods: The morphological, anatomical and hydraulic traits across five distal root orders were measured in species with different levels of shade tolerance and life history strategies. The species studied were Acer negundo, Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula lenta, Quercus alba, Quercus rubra, Pinus strobus and Pinus virginiana. Key Results: Compared with shade-tolerant species, shade-intolerant species produced thinner absorptive roots with smaller xylem lumen diameters and underwent secondary development less frequently, suggesting that they had shorter life spans. Shade-tolerant species had greater root specific hydraulic conductance among these roots due to having larger diameter xylems, although these roots had a lower calculated critical tension for conduit collapse. In addition, shade-intolerant species exhibited greater variation in hydraulic conductance across different root growth rings in woody transport roots of the same root order as compared with shade-tolerant species. Conclusions: Plant growth strategies were extended to include root hydraulic properties. It was found that shade intolerance in trees was associated with conservative root hydraulics but greater plasticity in number of xylem conduits and hydraulic conductance. Root traits of shade-intolerant species were consistent with the ability to proliferate roots quickly for rapid water uptake needed to support rapid shoot growth, while minimizing risk in uncertain environments.
Assuntos
Acer/anatomia & histologia , Betula/anatomia & histologia , Pinus/anatomia & histologia , Transpiração Vegetal/fisiologia , Quercus/anatomia & histologia , Acer/fisiologia , Acer/efeitos da radiação , Adaptação Fisiológica , Betula/fisiologia , Betula/efeitos da radiação , Ecossistema , Luz , Pinus/fisiologia , Pinus/efeitos da radiação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Quercus/fisiologia , Quercus/efeitos da radiação , Árvores , Água/metabolismo , Madeira , Xilema/anatomia & histologia , Xilema/fisiologia , Xilema/efeitos da radiaçãoRESUMO
In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.
Assuntos
Mudança Climática , Secas , Pinus sylvestris/fisiologia , Quercus/fisiologia , Câmbio/anatomia & histologia , Câmbio/química , Câmbio/crescimento & desenvolvimento , Nitrogênio/metabolismo , Pinus sylvestris/anatomia & histologia , Pinus sylvestris/química , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Quercus/anatomia & histologia , Quercus/química , Quercus/crescimento & desenvolvimento , Espanha , Água/metabolismoRESUMO
The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used QST -FST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.