Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Sci Rep ; 14(1): 20577, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232239

RESUMO

Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.


Assuntos
Espécies em Perigo de Extinção , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Quercus , Quercus/genética , Genoma de Cloroplastos/genética , Uso do Códon , Cloroplastos/genética
2.
BMC Plant Biol ; 24(1): 823, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223458

RESUMO

BACKGROUND: DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT: A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION: This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.


Assuntos
Metilação de DNA , Quercus , Quercus/genética , Quercus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Epigênese Genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Genoma de Planta
3.
Ecotoxicol Environ Saf ; 283: 116942, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216217

RESUMO

Metal tolerance protein (MTP) is a cation transporter that plays an important role in tolerance to heavy metal stress. However, thus far, there has been no genome-wide investigation of the MTP gene family in Quercus plants. Quercus dentata is one of the main constructive species of forest in northern China. It has strong tolerance to a variety of heavy metal stresses. In this study, 25 MTPs were identified from the Q. dentata genome and classified into three subfamilies and seven groups according to their sequence characteristics and phylogenetic relationships. Both tandem and segmental duplication events contributed to the expansion of the QdMTP gene family. Interestingly, all 10 tandem duplication events contributed to the expansion of the Mn-CDF subfamily. The expression of Mn-CDF subfamily members in different organs and tissues of Q. dentata was different, and they responded differently to manganese, iron, zinc and cadmium stress treatments. QdMTP10.7, a member of the Mn-CDF subfamily, enhanced yeast growth under manganese, zinc and iron stresses. The subcellular localization in tobacco leaf epidermis cells showed that QdMTP10.7 was located in vacuoles. These data generated from this study provide an important foundation to elucidate the biological roles of QdMTP genes related to heavy metal tolerance in Q. dentata.


Assuntos
Metais Pesados , Filogenia , Proteínas de Plantas , Quercus , Metais Pesados/toxicidade , Quercus/genética , Quercus/efeitos dos fármacos , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , China , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Poluentes do Solo/toxicidade
4.
Sci Rep ; 14(1): 19357, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169119

RESUMO

In recent decades an extensive mortality and decline of Quercus suber populations mainly caused by Phytophthora cinnamomi has been observed. In the current study, a chestnut gene homologous to ginkbilobin-2 (Cast_Gnk2-like), which in Ginkgo biloba codifies an antifungal protein, was transferred into cork oak somatic embryos of three different embryogenic lines by Agrobacterium mediated transformation. The transformation efficiency varied on the genotype from 2.5 to 9.2%, and a total of 22 independent transformed lines were obtained. The presence of Cast_Gnk2-like gene in transgenic embryos was verified in all lines by PCR. The number of transgene copies was estimated by qPCR in embryogenic lines with high proliferation ability and it varied between 1 and 5. In addition, the expression levels of Cast_Gnk2-like gene were determined in the embryogenic lines, with higher levels in lines derived from the genotype ALM6-WT. Transgenic plants were obtained from all transgenic lines and evaluated after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In vitro tolerance tests made under controlled conditions and following zoospore treatment showed that plants overexpressing Cast_Gnk2-like gene improved tolerance against Pc when compared to wild type ones.


Assuntos
Phytophthora , Doenças das Plantas , Plantas Geneticamente Modificadas , Quercus , Phytophthora/genética , Quercus/genética , Quercus/microbiologia , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Resistência à Doença/genética , Transformação Genética
5.
Genes (Basel) ; 15(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39062644

RESUMO

DNA barcodes can provide accurate identification of plants. We used previously reported DNA primers targeting the internal transcribed spacer (ITS1) region of the nuclear ribosomal cistron, internal transcribed spacer (ITS2), and chloroplast trnL (UAA) intron to identify four trees at Bergen Community College. Two of the four trees were identified as Acer rubrum and Fagus sylvatica. However, Quercus was only identified at the genus level, and the fourth tree did not show similar identification between barcodes. Next-generation sequencing of 16S rRNA genes showed that the predominant bacterial communities in the rhizosphere mainly consisted of the Pseudomonadota, Actinomycetota, Bacteroidota, and Acidobacteriota. A. rubrum showed the most diverse bacterial community while F. sylvatica was less diverse. The genus Rhodoplanes showed the highest relative bacterial abundance in all trees. Fungal ITS sequence analysis demonstrated that the communities predominantly consisted of the Ascomycota and Basidiomycota. Quercus showed the highest fungi diversity while F. sylvatica showed the lowest. Russula showed the highest abundance of fungi genera. Average similarity values in the rhizosphere for fungi communities at the phylum level were higher than for bacteria. However, at the genus level, bacterial communities showed higher similarities than fungi. Similarity values decreased at lower taxonomical levels for both bacteria and fungi, indicating each tree has selected for specific bacterial and fungal communities. This study confirmed the distinctiveness of the microbial communities in the rhizosphere of each tree and their importance in sustaining and supporting viability and growth but also demonstrating the limitations of DNA barcoding with the primers used in this study to identify genus and species for some of the trees. The optimization of DNA barcoding will require additional DNA sequences to enhance the resolution and identification of trees at the study site.


Assuntos
Bactérias , Código de Barras de DNA Taxonômico , Microbiota , Quercus , RNA Ribossômico 16S , Rizosfera , Árvores , Código de Barras de DNA Taxonômico/métodos , Microbiota/genética , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S/genética , Quercus/microbiologia , Quercus/genética , Árvores/microbiologia , Árvores/genética , Microbiologia do Solo , Fagus/microbiologia , Fagus/genética , Fungos/genética , Fungos/classificação , Genótipo , Filogenia , Acer/microbiologia , Acer/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Mol Ecol ; 33(17): e17483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056407

RESUMO

Adaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival. For the genomic component, we quantified genetic differentiation for 26 populations from the same region using RAD-seq. Because hybridisation with Quercus ellipsoidalis occurs in other parts of the species' range, we included two populations of this congener for comparison. In the common garden study, we found a strong signal of population differentiation that was significantly associated with at least one climate factor for nine of 10 measured traits. In contrast, we found no evidence of genomic differentiation among populations based on FST or any other measures. However, both distance-based and genotype-environment association analyses identified loci showing the signature of selection, with one locus in common across five analyses. This locus was associated with the minimum temperature of the coldest month, a factor that defines the climate zones and was also significant in the common garden analyses. In addition, we documented introgression from Q. ellipsoidalis into Q. rubra, with rates of introgression correlated with the climate gradient. In sum, this study reveals signatures of selection at the quantitative trait and genomic level consistent with climate adaptation, a pattern that is more often documented at a much broader geographical scale, especially in long-lived wind-pollinated species.


Assuntos
Fluxo Gênico , Genética Populacional , Fenótipo , Quercus , Seleção Genética , Quercus/genética , Genótipo , Deriva Genética , Variação Genética , Lagos , Genômica
7.
Plant Physiol Biochem ; 214: 108969, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068877

RESUMO

Quercus aliena, a native Chinese tree species, is significant in industry and landscaping. However, it is traditionally propagated by seeds with many limitations, such as pest infestations, seed yield and quality. Thus, this study firstly introduces a somatic embryogenesis (SE) system for Q. aliena, enhancing its cultivation prospects. Thereinto, the development stage of zygotic embryo had a significant effect on SE, only immature embryos in 10-11 weeks after full bloom (WAF), rich in endogenous abscisic acid (ABA), could induce SE. Exogenous application ABA had positive roles in the early development process of both primary and secondary SE, while its antagonist had opposite roles. Transcriptome analysis showed that transcription regulation occupied the major position. Mfuzz cluster and WGCNA co-expression analysis showed that 24 candidate genes were involved in the SE process. The expression of the 24 genes were also affected by exogenous ABA signals, among which QaLEC2, QaCALS11 and QaSSRP1 occupied the important roles. Additionally, the callose content were also affected by exogenous ABA signals, which had significantly positive correlations with the expression of QaLEC2 and QaCALS11. This study not only established an efficient reproduction system for Q. aliena, but also revealed the difference in embryogenic ability of zygotic embryos from the aspects of transcriptome and endogenous hormone content, and lay a foundation for clarifying the molecular mechanism of SE, and provided a reference for exploring the vital roles of ABA in SE.


Assuntos
Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Técnicas de Embriogênese Somática de Plantas , Quercus , Quercus/genética , Quercus/metabolismo , Quercus/embriologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sementes/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Transcriptoma
8.
Forensic Sci Int Genet ; 73: 103094, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39059037

RESUMO

The use of genetic data for timber species and population assignment is a powerful tool for combating the illegal timber trade, but the challenges of extracting DNA from timber have prevented the routine use of genetics as a supply chain management tool. To overcome these challenges, we explored the feasibility of focused ultrasound extraction (FUSE) for rapid DNA release from timber. Using high-pressure ultrasound pulses, FUSE generates a cavitation bubble cloud that disintegrates samples into acellular debris, resulting in the mechanical release of DNA. In this work, FUSE was applied to white oak (Quercus alba) timber shavings to test the feasibility of using FUSE for timber DNA extraction for the first time. Results showed that FUSE processing disintegrated the tissue samples and released significant quantities of DNA. After five minutes of tissue processing DNA quantities of 0.21 ± 0.02 ng/mg, 0.99 ± 0.32 ng/mg, and 0.14 ± 0.01 ng/mg, were released from medium, coarse, and combination shaving groups, respectively. Amplification and sequencing of regions within the matK and rbcL chloroplast genes confirmed that the quality of DNA prepared with FUSE was suitable for PCR and short-read sequencing applications. Overall, these results show that FUSE can serve as a DNA sample preparation method capable of releasing high-quality DNA from timber in a fraction of the time required by conventional extraction methods. Based on the improved efficiency of DNA release with FUSE, ongoing work aims to develop this technology into portable systems that can be used to rapidly prepare timber samples for genetic species identification.


Assuntos
DNA de Plantas , Reação em Cadeia da Polimerase , Quercus , DNA de Plantas/genética , Quercus/genética , Análise de Sequência de DNA , Especificidade da Espécie , Impressões Digitais de DNA , Madeira , Ultrassom , Manejo de Espécimes/métodos , Estudos de Viabilidade
9.
J Exp Bot ; 75(18): 5568-5584, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38889253

RESUMO

In the last 20 years, several techniques have been developed for quantifying DNA methylation, the most studied epigenetic marks in eukaryotes, including the gold standard method, whole-genome bisulfite sequencing (WGBS). WGBS quantifies genome-wide DNA methylation but has several inconveniences rendering it less suitable for population-scale epigenetic studies. The high cost of deep sequencing and the large amounts of data generated prompted us to seek an alternative approach. Restricting studies to parts of the genome would be a satisfactory alternative had there not been a major limitation: the need to select upstream targets corresponding to differentially methylated regions as targets. Given the need to study large numbers of samples, we propose a strategy for investigating DNA methylation variation in natural populations, taking into account the structural complexity of genomes, their size, and their content in unique coding regions versus repeated regions as transposable elements. We first identified regions of highly variable DNA methylation in a subset of genotypes representative of the biological diversity in the population by WGBS. We then analysed the variations of DNA methylation in these targeted regions at the population level by sequencing capture bisulfite (SeqCapBis). The entire strategy was then validated by applying it to another species. Our strategy was developed as a proof of concept on natural populations of two forest species: Populus nigra and Quercus petraea.


Assuntos
Metilação de DNA , Epigênese Genética , Populus , Quercus , Populus/genética , Quercus/genética , Variação Genética , Genoma de Planta
10.
BMC Genom Data ; 25(1): 57, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858616

RESUMO

The Quercus L. species is widely recognized as a significant group in the broad-leaved evergreen forests of tropical and subtropical East Asia. These plants hold immense economic value for their use as firewood, furniture, and street trees. However, the identification of Quercus species is considered challenging, and the relationships between these species remain unclear. In this study, we sequenced and assembled the chloroplast (cp.) genomes of four Quercus section Cyclobalanopsis species (Quercus disciformis, Quercus dinghuensis, Quercus blackei, and Quercus hui). Additionally, we retrieved six published cp. genome sequences of Cyclobalanopsis species (Quercus fleuryi, Quercus pachyloma, Quercus ningangensis, Quercus litseoides, Quercus gilva, and Quercus myrsinifolia). Our aim was to perform comparative genomics and phylogenetic analyses of the cp. whole genome sequences of ten Quercus section Cyclobalanopsis species. The results revealed that: (1) Quercus species exhibit a typical tetrad structure, with the cp. genome lengths of the newly sequenced species (Q. disciformis, Q. dinghuensis, Q. blakei, and Q. hui) being 160,805 bp, 160,801 bp, 160,787 bp, and 160,806 bp, respectively; (2) 469 SSRs were detected, among which A/T base repeats were the most common; (3) no rearrangements or inversions were detected within the chloroplast genomes. Genes with high nucleotide polymorphism, such as rps14-psaB, ndhJ-ndhK, rbcL-accD, and rps19-rpl2_2, provided potential reference loci for molecular identification within the Cyclobalanopsis section; (4) phylogenetic analysis showed that the four sections of Cyclobalanopsis were grouped into sister taxa, with Q. hui being the first to diverge from the evolutionary branch and Q. disciformis being the most closely related to Q. blackei. The results of this study form the basis for future studies on taxonomy and phylogenetics.


Assuntos
Genoma de Cloroplastos , Filogenia , Quercus , Quercus/genética , Genoma de Cloroplastos/genética
11.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825683

RESUMO

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Assuntos
Casca de Planta , Quercus , Quercus/genética , Quercus/crescimento & desenvolvimento , Casca de Planta/genética , Casca de Planta/química , Casca de Planta/metabolismo , Transcriptoma , Hibridização Genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos
12.
Plant Biol (Stuttg) ; 26(5): 798-810, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864838

RESUMO

Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development, and physical appearance are controlled by the inducer. The underlying molecular mechanisms of gall formation, by which one or a small number of cells are reprogrammed and commit to a novel developmental path, are poorly understood. In this study, we sought a deeper insight into the molecular underpinnings of this process. Oak gall wasps have two generations each year, one sexual, and one asexual. Galls formed by these two generations exhibit a markedly different appearance. We sequenced transcriptomes of both the asexual and sexual generations of Neuroterus quercusbaccarum and Neuroterus numismalis. We then deployed Nanopore sequencing to generate long-read sequences to test the hypothesis that gall wasps introduce DNA insertions to determine gall development. We detected potential genome rearrangements but did not uncover any non-host DNA insertions. Transcriptome analysis revealed that transcriptomes of the sexual generations of distinct species of wasp are more similar than inter-generational comparisons from the same species of wasp. Our results highlight the intricate interplay between the host leaves and gall development, suggesting that season and requirements of the gall structure play a larger role than species in controlling gall development and structure.


Assuntos
Tumores de Planta , Quercus , Transcriptoma , Vespas , Animais , Vespas/fisiologia , Vespas/genética , Tumores de Planta/parasitologia , Tumores de Planta/genética , Quercus/genética , Quercus/parasitologia , Transcriptoma/genética , Reprodução Assexuada/genética , Interações Hospedeiro-Parasita/genética , Perfilação da Expressão Gênica
13.
J Hered ; 115(5): 575-587, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38881254

RESUMO

Strong gene flow from outcrossing relatives tends to blur species boundaries, while divergent ecological selection can counteract gene flow. To better understand how these two forces affect the maintenance of species boundaries, we focused on a species complex including a rare species, maple-leaf oak (Quercus acerifolia), which is found in only four disjunct ridges in Arkansas. Its limited range and geographic proximity to co-occurring close relatives create the possibility for genetic swamping. In this study, we gathered genome-wide single nucleotide polymorphisms (SNPs) using restriction-site-associated DNA sequencing (RADseq) from 190 samples of Q. acerifolia and three of its close relatives, Q. shumardii, Q. buckleyi, and Q. rubra. We found that Q. shumardii and Q. acerifolia are reciprocally monophyletic with low support, suggesting incomplete lineage sorting, introgression between Q. shumardii and Q. acerifolia, or both. Analyses that model allele distributions demonstrate that admixture contributes strongly to this pattern. Populations of Q. acerifolia experience gene flow from Q. shumardii and Q. rubra, but we found evidence that divergent selection is likely maintaining species boundaries: 1) ex situ collections of Q. acerifolia have a higher proportion of hybrids compared to the mature trees of the wild populations, suggesting ecological selection against hybrids at the seed/seedling stage; 2) ecological traits co-vary with genomic composition; and 3) Q. acerifolia shows genetic differentiation at loci hypothesized to influence tolerance of radiation, drought, and high temperature. Our findings strongly suggest that in maple-leaf oak, selection results in higher divergence at regions of the genome despite gene flow from close relatives.


Assuntos
Fluxo Gênico , Polimorfismo de Nucleotídeo Único , Quercus , Seleção Genética , Quercus/genética , Genética Populacional , Arkansas , Filogenia , Genoma de Planta
14.
Sci Adv ; 10(22): eado6611, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820152

RESUMO

Northern glacial refugia are a hotly debated concept. The idea that many temperate organisms survived the Last Glacial Maximum (LGM; ~26.5 to 19 thousand years) in several sites across central and northern Europe stems from phylogeographic analyses, yet direct fossil evidence has thus far been missing. Here, we present the first unequivocal proof that thermophilous trees such as oak (Quercus), linden (Tilia), and common ash (Fraxinus excelsior) survived the LGM in Central Europe. The persistence of the refugium was promoted by a steady influx of hydrothermal waters that locally maintained a humid and warm microclimate. We reconstructed the geological and palaeohydrological factors responsible for the emergence of hot springs during the LGM and argue that refugia of this type, allowing the long-term survival and rapid post-LGM dispersal of temperate elements, were not exceptional in the European periglacial zone.


Assuntos
Fontes Termais , Refúgio de Vida Selvagem , Árvores , Europa (Continente) , Árvores/genética , Filogeografia , Clima Desértico , Camada de Gelo , Fósseis , Quercus/genética
15.
Physiol Plant ; 176(3): e14333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38710501

RESUMO

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proantocianidinas , Quercus , Proantocianidinas/metabolismo , Proantocianidinas/biossíntese , Quercus/genética , Quercus/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Frutas/genética , Frutas/metabolismo
16.
Plant Physiol Biochem ; 211: 108724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744084

RESUMO

Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Quercus , Estresse Fisiológico , Quercus/metabolismo , Quercus/efeitos dos fármacos , Quercus/genética , Cádmio/toxicidade , Cádmio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
17.
J Genet Genomics ; 51(5): 554-565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575109

RESUMO

The Fagaceae, a plant family with a wide distribution and diverse adaptability, has garnered significant interest as a subject of study in plant speciation and adaptation. Meanwhile, certain Fagaceae species are regarded as highly valuable wood resources due to the exceptional quality of their wood. In this study, we present two high-quality, chromosome-scale genome sequences for Quercus sichourensis (848.75 Mb) and Quercus rex (883.46 Mb). Comparative genomics analysis reveals that the difference in the number of plant disease resistance genes and the nonsynonymous and synonymous substitution ratio (Ka/Ks) of protein-coding genes among Fagaceae species are related to different environmental adaptations. Interestingly, most genes related to starch synthesis in the investigated Quercoideae species are located on a single chromosome, as compared to the outgroup species, Fagus sylvatica. Furthermore, resequencing and population analysis of Q. sichourensis and Q. rex reveal that Q. sichourensis has lower genetic diversity and higher deleterious mutations compared to Q. rex. The high-quality, chromosome-level genomes and the population genomic analysis of the critically endangered Q. sichourensis and Q. rex will provide an invaluable resource as well as insights for future study in these two species, even the genus Quercus, to facilitate their conservation.


Assuntos
Adaptação Fisiológica , Cromossomos de Plantas , Genoma de Planta , Quercus , Quercus/genética , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Evolução Molecular , Filogenia , Variação Genética/genética , Genômica , Resistência à Doença/genética
18.
BMC Genomics ; 25(1): 328, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566015

RESUMO

BACKGROUND: Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS: Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION: Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.


Assuntos
Quercus , Retroelementos , Quercus/genética , Genoma de Planta , Cariótipo , Sequências Repetidas Terminais/genética , Evolução Molecular , Filogenia
19.
BMC Plant Biol ; 24(1): 279, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609850

RESUMO

BACKGROUND: Climate change is expected to alter the factors that drive changes in adaptive variation. This is especially true for species with long life spans and limited dispersal capabilities. Rapid climate changes may disrupt the migration of beneficial genetic variations, making it challenging for them to keep up with changing environments. Understanding adaptive genetic variations in tree species is crucial for conservation and effective forest management. Our study used landscape genomic analyses and phenotypic traits from a thorough sampling across the entire range of Quercus longinux, an oak species native to Taiwan, to investigate the signals of adaptation within this species. RESULTS: Using ecological data, phenotypic traits, and 1,933 single-nucleotide polymorphisms (SNPs) from 205 individuals, we classified three genetic groups, which were also phenotypically and ecologically divergent. Thirty-five genes related to drought and freeze resistance displayed signatures of natural selection. The adaptive variation was driven by diverse environmental pressures such as low spring precipitation, low annual temperature, and soil grid sizes. Using linear-regression-based methods, we identified isolation by environment (IBE) as the optimal model for adaptive SNPs. Redundancy analysis (RDA) further revealed a substantial joint influence of demography, geology, and environments, suggesting a covariation between environmental gradients and colonization history. Lastly, we utilized adaptive signals to estimate the genetic offset for each individual under diverse climate change scenarios. The required genetic changes and migration distance are larger in severe climates. Our prediction also reveals potential threats to edge populations in northern and southeastern Taiwan due to escalating temperatures and precipitation reallocation. CONCLUSIONS: We demonstrate the intricate influence of ecological heterogeneity on genetic and phenotypic adaptation of an oak species. The adaptation is also driven by some rarely studied environmental factors, including wind speed and soil features. Furthermore, the genetic offset analysis predicted that the edge populations of Q. longinux in lower elevations might face higher risks of local extinctions under climate change.


Assuntos
Quercus , Humanos , Quercus/genética , Mudança Climática , Genômica , Temperatura Baixa , Solo
20.
New Phytol ; 242(6): 2702-2718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38515244

RESUMO

Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that ß-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for ß-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different ß-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding ß-glucogallin and HT biosynthesis in closely related oak species.


Assuntos
Biomarcadores , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Taninos Hidrolisáveis , Quercus , Biomarcadores/metabolismo , Genômica/métodos , Taninos Hidrolisáveis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Quercus/genética , Quercus/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...