Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.370
Filtrar
1.
Sci Immunol ; 9(98): eadk2612, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093956

RESUMO

Aberrant activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway causes autoimmunity in humans and mice; however, the exact mechanism by which the cGAS-STING pathway initiates adaptive immunity and tissue pathology is still not fully understood. Here, we used a cGAS knockin (KI) mouse model that develops systemic autoimmunity. In the lungs of cGAS-KI mice, blood vessels were enclosed by organized lymphoid tissues that resemble tertiary lymphoid structures (TLSs). Cell-intrinsic cGAS induction promoted up-regulation of CCR5 in CD8+ T cells and led to CCL5 production in vascular endothelial cells. Peripheral CD8+ T cells were recruited to the lungs and produced CXCL13 and interferon-γ. The latter triggered endothelial cell death, potentiated CCL5 production, and was essential for TLS establishment. Blocking CCL5 or CCR5, or depleting CD8+ T cells, impaired TLS formation. cGAS-mediated TLS formation also enhanced humoral and antitumor responses. These data demonstrate that cGAS signaling drives a specialized lymphoid structure that underlies autoimmune tissue pathology.


Assuntos
Linfócitos T CD8-Positivos , Células Endoteliais , Nucleotidiltransferases , Estruturas Linfoides Terciárias , Animais , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Camundongos , Células Endoteliais/imunologia , Estruturas Linfoides Terciárias/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL5/imunologia , Quimiocina CCL5/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Receptores CCR5/imunologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Autoimunidade/imunologia
2.
Elife ; 132024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949655

RESUMO

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Assuntos
Quimiocina CCL5 , Quimiotaxia , Cricetulus , Heparitina Sulfato , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Animais , Heparitina Sulfato/metabolismo , Humanos , Células CHO , Camundongos , Heparina/metabolismo , Heparina/farmacologia , Separação de Fases
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928033

RESUMO

Bladder cancer (BC) is the 12th most commonly diagnosed cancer worldwide. Although there are several well-established molecular and immunological classifications, prognostic and predictive markers for tumor cells and immune cells are still needed. Using a tissue microarray, we analyzed the expression of the chemokine CC motif ligand 5 (CCL5) by immunohistochemistry (IHC) in 175 muscle-invasive BC samples. The application of a single cutoff for the staining status of tumor cells (TCs; positive vs. negative) and immune cells (ICs; positive vs. negative) revealed 75 patients (42.9%) and 123 patients (70.3%) with CCL5-positive TCs or ICs, respectively. IHC results were associated with prognostic and predictive data. Multivariate Cox regression analysis revealed that positive CCL5 staining in TCs was associated with significantly shorter disease-specific survival (DSS; RR = 1.51; p = 0.047), but CCL5-negative ICs were associated with significantly shorter overall survival (OS; RR = 1.66; p = 0.005), DSS (RR = 2.02; p = 0.001) and recurrence-free survival (RFS; RR = 1.94; p = 0.002). Adjuvant chemotherapy was favorable for patients with CCL5-negative ICs for OS (RR = 0.30; p = 0.006), DSS (RR = 0.36; p = 0.022) and RFS (RR = 0.41; p = 0.046) but not for patients with CCL5-positive ICs, except in the subgroup of N1 + N2 patients, where it was associated with better OS. We suggest that CCL5 expression can be a prognostic and predictive marker for muscle-invasive bladder cancer patients.


Assuntos
Biomarcadores Tumorais , Quimiocina CCL5 , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Masculino , Feminino , Idoso , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Invasividade Neoplásica , Idoso de 80 Anos ou mais , Adulto , Imuno-Histoquímica
4.
Adv Sci (Weinh) ; 11(29): e2400611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873823

RESUMO

Immunosuppression is a major hallmark of tumor progression in non-small cell lung cancer (NSCLC). Cluster of differentiation 147 (CD147), an important pro-tumorigenic factor, is closely linked to NSCLC immunosuppression. However, the role of CD147 di-methylation in the immunosuppressive tumor microenvironment (TME) remains unclear. Here, di-methylation of CD147 at Lys148 (CD147-K148me2) is identified as a common post-translational modification (PTM) in NSCLC that is significantly associated with unsatisfying survival outcomes among NSCLC sufferers, especially those in the advanced stages of the disease. The methyltransferase NSD2 catalyzes CD147 to generate CD147-K148me2. Further analysis demonstrates that CD147-K148me2 reestablishes the immunosuppressive TME and promotes NSCLC progression. Mechanistically, this modification promotes the interaction between cyclophilin A (CyPA) and CD147, and in turn, increases CCL5 gene transcription by activating p38-ZBTB32 signaling, leading to increased NSCLC cell-derived CCL5 secretion. Subsequently, CD147-K148me2-mediated CCL5 upregulation facilitates M2-like tumor-associated macrophage (TAM) infiltration in NSCLC tissues via CCL5/CCR5 axis-dependent intercellular crosstalk between tumor cells and macrophages, which is inhibited by blocking CD147-K148me2 with the targeted antibody 12C8. Overall, this study reveals the role of CD147-K148me2-driven intercellular crosstalk in the development of NSCLC immunosuppression, and provides a potential interventional strategy for PTM-targeted NSCLC therapy.


Assuntos
Basigina , Carcinoma Pulmonar de Células não Pequenas , Quimiocina CCL5 , Neoplasias Pulmonares , Receptores CCR5 , Microambiente Tumoral , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Basigina/metabolismo , Basigina/genética , Camundongos , Animais , Receptores CCR5/metabolismo , Receptores CCR5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Microambiente Tumoral/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Linhagem Celular Tumoral , Terapia de Imunossupressão , Modelos Animais de Doenças , Transdução de Sinais
5.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899522

RESUMO

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Assuntos
Senescência Celular , Quimiocina CCL5 , Células Progenitoras Endoteliais , MicroRNAs , Neovascularização Fisiológica , Animais , Humanos , Masculino , Camundongos , Angiogênese , Proliferação de Células , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Regulação para Baixo/genética , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Isquemia/metabolismo , Isquemia/patologia , Isquemia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/genética , Receptores CCR5/metabolismo , Receptores CCR5/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
6.
J Transl Med ; 22(1): 502, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797830

RESUMO

BACKGROUND: Inflammation and dysregulated immunity play vital roles in idiopathic pulmonary arterial hypertension (IPAH), while the mechanisms that initiate and promote these processes are unclear. METHODS: Transcriptomic data of lung tissues from IPAH patients and controls were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA), differential expression analysis, protein-protein interaction (PPI) and functional enrichment analysis were combined with a hemodynamically-related histopathological score to identify inflammation-associated hub genes in IPAH. The monocrotaline-induced rat model of pulmonary hypertension was utilized to confirm the expression pattern of these hub genes. Single-cell RNA-sequencing (scRNA-seq) data were used to identify the hub gene-expressing cell types and their intercellular interactions. RESULTS: Through an extensive bioinformatics analysis, CXCL9, CCL5, GZMA and GZMK were identified as hub genes that distinguished IPAH patients from controls. Among these genes, pulmonary expression levels of Cxcl9, Ccl5 and Gzma were elevated in monocrotaline-exposed rats. Further investigation revealed that only CCL5 and GZMA were highly expressed in T and NK cells, where CCL5 mediated T and NK cell interaction with endothelial cells, smooth muscle cells, and fibroblasts through multiple receptors. CONCLUSIONS: Our study identified a new inflammatory pathway in IPAH, where T and NK cells drove heightened inflammation predominantly via the upregulation of CCL5, providing groundwork for the development of targeted therapeutics.


Assuntos
Quimiocina CCL5 , Hipertensão Pulmonar Primária Familiar , Células Matadoras Naturais , RNA-Seq , Análise de Célula Única , Linfócitos T , Animais , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Masculino , Comunicação Celular/genética , Ratos Sprague-Dawley , Pulmão/patologia , Ratos , Redes Reguladoras de Genes , Monocrotalina , Mapas de Interação de Proteínas/genética , Biologia Computacional
7.
J Immunother Cancer ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719543

RESUMO

The CCR/L5 axis is known for its role in immune regulation in a variety of settings and has been shown to have dichotomous functions in cancer, influencing both tumor progression and immune responses. Battaglin et al investigated its role using genomic and transcriptomic data from several datasets of patients with advanced colorectal cancer (CRC), including patients treated on CALGB/SWOG 80405, a trial of chemotherapy plus cetuximab versus bevacizumab, as well as a larger population of patients whose CRCs underwent commercially available Caris NGS and CODEai assays. These authors showed that CCR/L5 expression was both prognostic and predictive. They reported that low expression of the CCR/L5 axis was correlated with improved survival broadly, with particular benefit in patients treated with chemotherapy plus cetuximab. They demonstrated that high expression of CCR/L5 was associated with infiltration by negatively prognostic Tregs, M1 and M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. They also showed that increased expression was correlated a wide variety of immune suppressive proteins, including PD-1, PD-L1, PD-L2, CTLA4, CD80, CD86, TIM3, IDO1, LAG3, and IFN-γ. This suggests mechanisms by which CRC resists anti-cancer immune responses. This study enhances our understanding of the role of the CCR/L5 axis in advanced CRC.


Assuntos
Quimiocina CCL5 , Neoplasias Colorretais , Receptores CCR5 , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Receptores CCR5/metabolismo , Receptores CCR5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Metástase Neoplásica
8.
Oncogene ; 43(28): 2215-2227, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802647

RESUMO

Approximately 40% of patients with lung adenocarcinoma (LUAD) often develop bone metastases during the course of their disease. However, scarcely any in vivo model of LUAD bone metastasis has been established, leading to a poor understanding of the mechanisms underlying LUAD bone metastasis. Here, we established a multiorgan metastasis model via the left ventricular injection of luciferase-labeled LUAD cells into nude mice and then screened out lung metastasis (LuM) and bone metastasis (BoM) cell subpopulations. BoM cells exhibited greater stemness and epithelial-mesenchymal transition (EMT) plasticity than LuM cells and initially colonized the bone and subsequently disseminated to distant organs after being reinjected into mice. Moreover, a CD74-ROS1 fusion mutation (C6; R34) was detected in BoM cells but not in LuM cells. Mechanistically, BoM cells bearing the CD74-ROS1 fusion highly secrete the C-C motif chemokine ligand 5 (CCL5) protein by activating STAT3 signaling, recruiting macrophages in tumor microenvironment and strongly inducing M2 polarization of macrophages. BoM cell-activated macrophages produce a high level of TGF-ß1, thereby facilitating EMT and invasion of LUAD cells via TGF-ß/SMAD2/3 signaling. Targeting the CD74-ROS1/CCL5 axis with Crizotinib (a ROS1 inhibitor) and Maraviroc (a CCL5 receptor inhibitor) in vivo strongly impeded bone metastasis and secondary metastasis of BoM cells. Our findings reveal the critical role of the CD74-ROS1/STAT3/CCL5 axis in the interaction between LUAD bone metastasis cells and macrophages for controlling LUAD cell dissemination, highlighting the significance of the bone microenvironment in LUAD bone metastasis and multiorgan secondary metastasis, and suggesting that targeting CD74-ROS1 and CCL5 is a promising therapeutic strategy for LUAD bone metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Ósseas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Macrófagos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Animais , Humanos , Camundongos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/secundário , Adenocarcinoma de Pulmão/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Microambiente Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais
9.
J Immunother ; 47(6): 195-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654631

RESUMO

SUMMARY: Immunocytokines are a promising immunotherapeutic approach in cancer therapy. Anti-VEGFR2-interferon α (IFNα) suppressed colorectal cancer (CRC) growth and enhanced CD8 + T-cell infiltration in the tumor microenvironment, exhibiting great clinical translational potential. However, the mechanism of how the anti-VEGFR2-IFNα recruits T cells has not been elucidated. Here, we demonstrated that anti-VEGFR2-IFNα suppressed CRC metastasis and enhanced CD8 + T-cell infiltration. RNA sequencing revealed a transcriptional activation of CCL5 in metastatic CRC cells, which was correlated with T-cell infiltration. IFNα but not anti-VEGFR2 could further upregulate CCL5 in tumors. In immunocompetent mice, both IFNα and anti-VEGFR2-IFNα increased the subset of tumor-infiltrating CD8 + T cells through upregulation of CCL5. Knocking down CCL5 in tumor cells attenuated the infiltration of CD8 + T cells and dampened the antitumor efficacy of anti-VEGFR2-IFNα treatment. We, therefore, propose upregulation of CCL5 is a key to enhance infiltration of CD8 + T cells in metastatic CRC with IFNα and IFNα-based immunocytokine treatments. These findings may help the development of IFNα related immune cytokines for the treatment of less infiltrated tumors.


Assuntos
Linfócitos T CD8-Positivos , Quimiocina CCL5 , Neoplasias Colorretais , Interferon-alfa , Linfócitos do Interstício Tumoral , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
10.
Am J Physiol Cell Physiol ; 326(5): C1320-C1333, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497114

RESUMO

Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.


Assuntos
Adipócitos , Quimiocina CCL5 , Miocinas , Obesidade , Animais , Camundongos , Quimiocina CCL5/genética , Quimiocina CCL5/farmacologia , Ligantes , Camundongos Obesos , Músculo Esquelético/metabolismo , Receptores CCR/metabolismo , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
11.
Clin Cancer Res ; 30(9): 1934-1944, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372707

RESUMO

PURPOSE: Neoadjuvant anti-PD1 (aPD1) therapies are being explored in surgically resectable head and neck squamous cell carcinoma (HNSCC). Encouraging responses have been observed, but further insights into the mechanisms underlying resistance and approaches to improve responses are needed. EXPERIMENTAL DESIGN: We integrated data from syngeneic mouse oral carcinoma (MOC) models and neoadjuvant pembrolizumab HNSCC patient tumor RNA-sequencing data to explore the mechanism of aPD1 resistance. Tumors and tumor-draining lymph nodes (DLN) from MOC models were analyzed for antigen-specific priming. CCL5 expression was enforced in an aPD1-resistant model. RESULTS: An aPD1-resistant mouse model showed poor priming in the tumor DLN due to type 1 conventional dendritic cell (cDC1) dysfunction, which correlated with exhausted and poorly responsive antigen-specific T cells. Tumor microenvironment analysis also showed decreased cDC1 in aPD1-resistant tumors compared with sensitive tumors. Following neoadjuvant aPD1 therapy, pathologic responses in patients also positively correlated with baseline transcriptomic cDC1 signatures. In an aPD1-resistant model, intratumoral cDC1 vaccine was sufficient to restore aPD1 response by enhancing T-cell infiltration and increasing antigen-specific responses with improved tumor control. Mechanistically, CCL5 expression significantly correlated with neoadjuvant aPD1 response and enforced expression of CCL5 in an aPD1-resistant model, enhanced cDC1 tumor infiltration, restored antigen-specific responses, and recovered sensitivity to aPD1 treatment. CONCLUSIONS: These data highlight the contribution of tumor-infiltrating cDC1 in HNSCC aPD1 response and approaches to enhance cDC1 infiltration and function that may circumvent aPD1 resistance in patients with HNSCC.


Assuntos
Células Dendríticas , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos , Humanos , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Modelos Animais de Doenças , Terapia Neoadjuvante/métodos , Feminino , Linhagem Celular Tumoral
12.
Sci China Life Sci ; 67(6): 1226-1241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300441

RESUMO

Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.


Assuntos
Quimiocina CCL5 , Cisplatino , Epóxido Hidrolases , Neoplasias Ovarianas , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica , Ácido Araquidônico/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos
13.
Medicine (Baltimore) ; 103(8): e36897, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394497

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common and recurrent inflammatory disease with strong genetic susceptibility. The abnormal production of chemokines plays an important role in the occurrence and development of AD. METHODS: A comprehensive online literature search was performed in databases of China National Knowledge Infrastructure, Wanfang, VIP China Science and Technology Journal Database, China Biomedical Literature Database, PubMed, Embase and Cochrane Library to retrieve relevant articles published from January 2000 to October 2022. The odds ratio (OR) with its 95% confidence interval (CI) was employed to calculate this relationship. RESULTS: A total of 7 studies were finally screened out, including 1316 AD patients and 1099 controls. There were 3 studies for CC chemokine ligand 5 (CCL5) polymorphisms, 2 for CCL11 polymorphisms, and 2 for CCL17 polymorphisms, respectively. The meta-analysis revealed a significant association between the CCL5 - 403G/A polymorphism and AD under the allelic model (A vs G: OR = 1.25, 95% CI = 1.02-1.52, P = .03), heterozygous model (AG vs GG: OR = 1.40, 95% CI = 1.08-1.80, P = .01) and dominant model (AA + AG vs GG: OR = 1.38, 95% CI = 1.08-1.76, P = .01) in a fixed-effect model. The allelic model (G vs C: OR = 1.46, 95% CI = 1.07-1.98, P < .01) and dominant model (GG + GC vs CC: OR = 1.74, 95% CI = 1.23-2.47, P < .001) of the CCL5 - 28C/G polymorphism were also associated with an increased risk of AD. However, this significant association was not found in other alleles and genotypes (P > .05). CONCLUSION: Our results show that the A allele, AG and AA + AG genotypes of the CCL5 - 403G/A polymorphism, the G allele and GG + GC genotype of the CCL5 - 28C/G polymorphism are risk factors for AD. Future studies with large population are still needed to further explore those correlations.


Assuntos
Quimiocina CCL11 , Quimiocina CCL17 , Quimiocina CCL5 , Dermatite Atópica , Humanos , Quimiocina CCL11/genética , Quimiocina CCL17/genética , Quimiocina CCL5/genética , Dermatite Atópica/genética , Predisposição Genética para Doença , Genótipo , Ligantes , Polimorfismo de Nucleotídeo Único , Fatores de Risco
14.
Hypertension ; 81(4): 776-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240165

RESUMO

BACKGROUND: Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS: Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS: Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.


Assuntos
Aldosterona , Quimiocina CCL5 , Hipertensão , Receptores CCR5 , Animais , Camundongos , Aldosterona/farmacologia , Células Endoteliais/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Inflamação , Receptores CCR5/genética , Receptores CCR5/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
15.
J Immunother Cancer ; 12(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212126

RESUMO

BACKGROUND: The C-C motif chemokine receptor 5 (CCR5)/C-C motif chemokine ligand 5 (CCL5) axis plays a major role in colorectal cancer (CRC). We aimed to characterize the molecular features associated with CCR5/CCL5 expression in CRC and to determine whether CCR5/CCL5 levels could impact treatment outcomes. METHODS: 7604 CRCs tested with NextGen Sequencing on DNA and RNA were analyzed. Molecular features were evaluated according to CCR5 and CCL5 tumor gene expression quartiles. The impact on treatment outcomes was assessed in two cohorts, including 6341 real-world patients and 429 patients from the Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial. RESULTS: CCR5/CCL5 expression was higher in right-sided versus left-sided tumors, and positively associated with consensus molecular subtypes 1 and 4. Higher CCR5/CCL5 expression was associated with higher tumor mutational burden, deficiency in mismatch repair and programmed cell death ligand 1 (PD-L1) levels. Additionally, high CCR5/CCL5 were associated with higher immune cell infiltration in the tumor microenvironment (TME) of MMR proficient tumors. Ingenuity pathway analysis revealed upregulation of the programmed cell death protein 1 (PD-1)/PD-L1 cancer immunotherapy pathway, phosphatase and tensin homolog (PTEN) and peroxisome proliferator-activated receptors (PPAR) signaling, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) signaling in cytotoxic T lymphocytes, whereas several inflammation-related pathways were downregulated. Low CCR5/CCL5 expression was associated with increased benefit from cetuximab-FOLFOX treatment in the CALGB/SWOG 80405 trial, where significant treatment interaction was observed with biologic agents and chemotherapy backbone. CONCLUSIONS: Our data show a strong association between CCR5/CCL5 gene expression and distinct molecular features, gene expression profiles, TME cell infiltration, and treatment benefit in CRC. Targeting the CCR5/CCL5 axis may have clinical applications in selected CRC subgroups and may play a key role in developing and deploying strategies to modulate the immune TME for CRC treatment.


Assuntos
Neoplasias Colorretais , Receptores de Quimiocinas , Humanos , Antígeno B7-H1/genética , Ligantes , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocinas/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Expressão Gênica , Microambiente Tumoral , Receptores CCR5/genética , Receptores CCR5/metabolismo
16.
Cancer Res ; 84(2): 276-290, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37890164

RESUMO

Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE: The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Humanos , Feminino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Mama/patologia , Fatores de Transcrição de Choque Térmico/genética , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
17.
J Gene Med ; 26(1): e3630, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985959

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) stands as an aggressive malignancy of the biliary tract. The interplay between the tumor and immune system plays a pivotal role in disease progression and treatment outcomes. Hence, the present study aimed to extensively explore the immunogenomic landscape of CCA, with the objective of unveiling unique molecular and immunological signatures that could guide personalized therapeutic approaches. METHODS: The study collected data from The Cancer Genome Atlas databases, performed gene set variation analysis for the chemokine ligand 5 (CCL5) high/low expression group, conducted principal component analysis, gene set enrichment analysis enrichment and mutation pattern analysis, generated a heatmap, and performed cox regression analysis. RESULTS: The two discrete subpopulations were found to exhibit contrasting mutational and immunogenomic characteristics, emphasizing the heterogeneity of CCA. These subsets also showed pronounced discrepancies in the infiltration of immune cells, indicating diverse interactions with the tumor immune microenvironment. Furthermore, the dissimilarities in mutational patterns were observed within the two CCA subgroups, with PBRM1 and BAP1 emerging as the most frequently mutated genes. In addition, a prognostic framework was formulated and validated utilizing the expression profiles of COX16 and RSAD2 genes, effectively segregating patients into high-risk and low-risk cohorts. Furthermore, the connections between immune-related parameters and these risk groups were identified, underscoring the potential significance of the immune microenvironment in patient prognosis. In vitro experiments have shown that COX16 promotes the proliferation and metastasis of CCA cells, whereas RSAD2 inhibits it. CONCLUSIONS: The present study provides an intricate depiction of the immunogenomic landscape of CCA based on CCL5 expression, thereby paving the way for novel immunotherapy strategies and prognostic assessment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Prognóstico , Ligantes , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/terapia , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Microambiente Tumoral/genética , Quimiocina CCL5/genética
18.
Curr Cancer Drug Targets ; 24(3): 308-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37581517

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant tumor of bone tissue, which has an insidious onset and is difficult to detect early, and few early diagnostic markers with high specificity and sensitivity. Therefore, this study aims to identify potential biomarkers that can help diagnose OS in its early stages and improve the prognosis of patients. METHODS: The data sets of GSE12789, GSE28424, GSE33382 and GSE36001 were combined and normalized to identify Differentially Expressed Genes (DEGs). The data were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG) and Disease Ontology (DO). The hub gene was selected based on the common DEG that was obtained by applying two regression methods: the Least Absolute Shrinkage and Selection Operator (LASSO) and Support vVector Machine (SVM). Then the diagnostic value of the hub gene was evaluated in the GSE42572 data set. Finally, the correlation between immunocyte infiltration and key genes was analyzed by CIBERSORT. RESULTS: The regression analysis results of LASSO and SVM are the following three DEGs: FK501 binding protein 51 (FKBP5), C-C motif chemokine ligand 5 (CCL5), complement component 1 Q subcomponent B chain (C1QB). We evaluated the diagnostic performance of three biomarkers (FKBP5, CCL5 and C1QB) for osteosarcoma using receiver operating characteristic (ROC) analysis. In the training group, the area under the curve (AUC) of FKBP5, CCL5 and C1QB was 0.907, 0.874 and 0.676, respectively. In the validation group, the AUC of FKBP5, CCL5 and C1QB was 0.618, 0.932 and 0.895, respectively. It is noteworthy that these genes were more expressed in tumor tissues than in normal tissues by various immune cell types, such as plasma cells, CD8+ T cells, T regulatory cells (Tregs), activated NK cells, activated dendritic cells and activated mast cells. These immune cell types are also associated with the expression levels of the three diagnostic genes that we identified. CONCLUSION: We found that CCL5 can be considered an early diagnostic gene of osteosarcoma, and CCL5 interacts with immune cells to influence tumor occurrence and development. These findings have important implications for the early detection of osteosarcoma and the identification of novel therapeutic targets.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Ligantes , Osteossarcoma/diagnóstico , Osteossarcoma/genética , Osteossarcoma/terapia , Biomarcadores , Imunoterapia , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Quimiocina CCL5/genética
19.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003358

RESUMO

The imbalance that occurs in bone remodeling induced by irradiation (IR) is the disruption of the balance between bone formation and bone resorption. In this study, primary osteocytes (OCYs) of femoral and tibial origin were cultured and irradiated. It was observed that irradiated OCY showed extensive DNA damage, which led to the initiation of a typical phenotype of cellular senescence, including the secretion of senescence-associated secretory phenotype (SASP), especially the C-C motif chemokine ligand 5 (CCL5). In order to explore the regulation of osteoclastogenic potential by IR-induced senescent OCYs exocytosis factor CCL5, the conditioned medium (CM) of OCYs was co-cultured with RAW264.7 precursor cells. It was observed that in the irradiated OCY co-cultured group, the migration potential increased compared with the vehicle culture group, accompanied by an enhancement of typical mature OCs; the expression of the specific function of enzyme tartrate-resistant acid phosphatase (TRAP) increased; and the bone-destructive function was enhanced. However, a neutralizing antibody to CCL5 could reverse the extra-activation of osteoclastogenesis. Accordingly, the overexpression of p-STAT3 in irradiated OCY was accompanied by CCL5. It was concluded that CCL5 is a potential key molecule and the interventions targeting CCL5 could be a potential strategy for inhibiting osteoclastogenesis and restoring bone remodeling.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Remodelação Óssea , Reabsorção Óssea/metabolismo , Senescência Celular/genética , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Ligantes , Osteoclastos/metabolismo , Osteogênese/genética , Ligante RANK/metabolismo , Animais , Camundongos
20.
J Cancer Res Clin Oncol ; 149(19): 17335-17346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831273

RESUMO

PURPOSE: The CCR5/CCL5 axis is essential for interactions between malignant cells and microenvironment components, promoting tumor progression in oral squamous cell carcinoma (OSCC). This study aims to evaluate the association of CCL5 and CCR5 with the behavior of oral cancer and assess the therapeutic potential of a CCR5 antagonist. METHODS: A retrospective study to analyze CCR5 and CCL5 expression on paraffin-embedded tissues was performed. In cell lines, rhCCL5 was added to induce CCR5-related pathways, and Maraviroc and shRNA against CCR5 were used to neutralize the receptor. Finally, an in vivo murine orthotopic xenograft model of tongue cancer was used to evaluate Maraviroc as an oncologic therapy. After 15 days, the mice were killed, and the primary tumors and cervical lymph nodes were analyzed. RESULTS: The expression of CCR5 was associated with clinical stage and metastasis, and CCL5 was related to overall survival. Adding rhCCL5 induced cell proliferation, while shRNA and Maraviroc reduced it in a dose-dependent manner. Maraviroc treatment also increased apoptosis and modified cytoskeletal organization. In vivo, Maraviroc reduced neck metastasis. CONCLUSIONS: The effects of CCR5 antagonists in OSCC have been poorly studied, and this study reports in vitro and in vivo evidence for the effects of Maraviroc in OSCC. Our results suggest that the CCR5/CCL5 axis plays a role in oral cancer behavior, and that its inhibition is a promising new therapy alternative.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Animais , Camundongos , Maraviroc/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudos Retrospectivos , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...