Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.397
Filtrar
1.
J Transl Med ; 22(1): 605, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951874

RESUMO

BACKGROUND: Uveal melanoma (UM), the most common adult intraocular tumor, is characterized by high malignancy and poor prognosis in advanced stages. Angiogenesis is critical for UM development, however, not only the role of vascular endothelial dysfunction in UM remains unknown, but also their analysis at the single-cell level has been lacking. A comprehensive analysis is essential to clarify the role of the endothelium in the development of UM. METHODS: By using single-cell RNA transcriptomics data of 11 cases of primary and liver metastasis UM, we analyzed the endothelial cell status. In addition, we analyzed and validated ECs in the in vitro model and collected clinical specimens. Subsequently, we explored the impact of endothelial dysfunction on UM cell migration and explored the mechanisms responsible for the endothelial cell abnormalities and the reasons for their peripheral effects. RESULTS: UM metastasis has a significantly higher percentage of vascular endothelial cells compared to in situ tumors, and endothelial cells in metastasis show significant senescence. Senescent endothelial cells in metastatic tumors showed significant Krüppel-like factor 4 (KLF4) upregulation, overexpression of KLF4 in normal endothelial cells induced senescence, and knockdown of KLF4 in senescent endothelium inhibited senescence, suggesting that KLF4 is a driver gene for endothelial senescence. KLF4-induced endothelial senescence drove tumor cell migration through a senescence-associated secretory phenotype (SASP), of which the most important component of the effector was CXCL12 (C-X-C motif chemokine ligand 12), and participated in the composition of the immunosuppressive microenvironment. CONCLUSION: This study provides an undesirable insight of senescent endothelial cells in promoting UM metastasis.


Assuntos
Movimento Celular , Senescência Celular , Células Endoteliais , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas , Melanoma , Análise de Célula Única , Neoplasias Uveais , Humanos , Neoplasias Uveais/patologia , Neoplasias Uveais/genética , Melanoma/patologia , Melanoma/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000231

RESUMO

Following metastatic spread, many hormone receptor positive (HR+) patients develop a more aggressive phenotype with an observed loss of the HRs estrogen receptor (ER) and progesterone receptor (PR). During metastasis, breast cancer cells are exposed to high magnitudes of fluid shear stress (FSS). Unfortunately, the role for FSS on the regulation of HR expression and function during metastasis is not fully understood. This study was designed to elucidate the impact of FSS on HR+ breast cancer. Utilizing a microfluidic platform capable of exposing breast cancer cells to FSS that mimics in situ conditions, we demonstrate the impact of FSS exposure on representative HR+ breast cancer cell lines through protein and gene expression analysis. Proteomics results demonstrated that 540 total proteins and 1473 phospho-proteins significantly changed due to FSS exposure and pathways of interest included early and late estrogen response. The impact of FSS on response to 17ß-estradiol (E2) was next evaluated and gene expression analysis revealed repression of ER and E2-mediated genes (PR and SDF1) following exposure to FSS. Western blot demonstrated enhanced phosphorylation of mTOR following exposure to FSS. Taken together, these studies provide initial insight into the effects of FSS on HR signaling in metastatic breast cancer.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio , Receptores de Progesterona , Estresse Mecânico , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Linhagem Celular Tumoral , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Estradiol/farmacologia , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteômica/métodos , Células MCF-7 , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética
3.
Shanghai Kou Qiang Yi Xue ; 33(2): 175-179, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-39005095

RESUMO

PURPOSE: To explore the therapeutic effect of stromal cell derived factor-1α(SDF-1α) combined with platelet-poor plasma(PPP) on permanent tooth avulsion injury. METHODS: One hundred and forty-four patients with permanent tooth avulsion injuries admitted to Hengshui People's Hospital from March 2020 to March 2022, with a total of 152 affected teeth were included. They were randomly divided into experimental group of 72 cases(76 teeth) and control group of 72 cases(76 teeth). The control group underwent routine replantation surgery, and the root tips were soaked and rinsed with PPP biological solution before surgery. On the basis of the control group, the experimental group implanted SDF-1α into the alveolar fossa before in vitro tooth implantation for treatment. The patients were followed up for 12 months after surgery, the success rate of implantation, degree of postoperative occlusal pain, expression of inflammatory factors in gingival fluid, serum growth factor expression, and incidence of postoperative complications were compared between the two groups. Statistical analysis was performed with SPSS 19.0 software package. RESULTS: The success rate of replantation in the control group was 90.79%(69/76), while the experimental group was 98.68%(75/76). The success rate of replantation in the experimental group was significantly higher than that in the control group(P<0.05). On the 2nd day, 3 months and 12 months after surgery, the pain scores of the two groups of patients gradually decreased (P<0.05). There was no significant difference in pain scores between the two groups at each time point(P>0.05). One month after surgery, the CRP and IL-6 levels in both groups decreased(P<0.05), while the experimental group was significantly lower than the control group(P<0.05). The soluble intercellular adhesion factor (sICAM-1) in both groups increased, and the experimental group was significantly higher than the control group (P<0.05). One month after surgery, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), transforming growth factor beta(TGF-ß)and platelet derived growth factor(PDGF) were all elevated, and the experimental group was significantly higher than the control group(P<0.05). The incidence of postoperative complications in the experimental group was significantly lower than that in the control group(P<0.05). CONCLUSIONS: The combination of PPP and SDF-1α in treating patients with permanent tooth avulsion injury has a high success rate of delayed replantation and a low incidence of postoperative adverse reactions.


Assuntos
Quimiocina CXCL12 , Avulsão Dentária , Reimplante Dentário , Humanos , Avulsão Dentária/cirurgia , Reimplante Dentário/métodos , Plasma , Dentição Permanente
4.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994928

RESUMO

Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS: We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS: We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS: Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.


Assuntos
Glicina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Isoquinolinas , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Remodelação Ventricular , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Camundongos , Remodelação Ventricular/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/uso terapêutico , Masculino , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Apoptose/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Miocárdio/patologia , Miocárdio/metabolismo
5.
Front Immunol ; 15: 1383136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979422

RESUMO

Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.


Assuntos
Antígeno de Maturação de Linfócitos B , Quimiocina CXCL12 , Imunoterapia Adotiva , Células Matadoras Naturais , Mieloma Múltiplo , Receptores CXCR4 , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Quimiocina CXCL12/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica
6.
Sci Rep ; 14(1): 15764, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982161

RESUMO

C-X-C motif chemokine receptor 4 (CXCR4) is a promising therapeutic target of breast cancer because it is overexpressed on cell surface of all molecular subtypes of breast cancer including triplenegative breast cancer (TNBC). Herein, CXCR4 antagonistic peptide-NaGdF4 nanodot conjugates (termed as anti-CXCR4-NaGdF4 NDs) have been constructed for magnetic resonance imaging (MRI)-guided biotherapy of TNBC through conjugation of the C-X-C Motif Chemokine 12 (CXCL12)-derived cyclic peptide with tryptone coated NaGdF4 nanodots (5 ± 0.5 nm in diameter, termed as Try-NaGdF4 NDs). The as-prepared anti-CXCR4-NaGdF4 NDs exhibits high longitudinal relaxivity (r1) value (21.87 mM-1S-1), reasonable biocompatibility and good tumor accumulation ability. The features of anti-CXCR4-NaGdF4 NDs improve the tumor-MRI sensitivity and facilitate tumor biotherapy after injection in mouse-bearing MDA-MB-231 tumor model in vivo. MRI-guided biotherapy using anti-CXCR4-NaGdF4 NDs enables to suppress 46% tumor growth. In addition, about 47% injection dose of anti-CXCR4-NaGdF4 NDs is found in the mouse urine at 24 h post-injection. These findings demonstrate that anti-CXCR4-NaGdF4 NDs enable to be used as renal clearable nanomedicine for biotherapy and MRI of breast cancer.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Receptores CXCR4 , Receptores CXCR4/metabolismo , Animais , Feminino , Imageamento por Ressonância Magnética/métodos , Humanos , Camundongos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Gadolínio/química , Quimiocina CXCL12/metabolismo , Camundongos Nus , Camundongos Endogâmicos BALB C , Nanopartículas/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peptídeos/química
7.
Cancer Med ; 13(14): e7471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015025

RESUMO

BACKGROUND: ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS: We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS: We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS: We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas de Fusão Oncogênica , Proteínas RGS , Humanos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Linhagem Celular Tumoral , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Regulação Leucêmica da Expressão Gênica , Transativadores
8.
Cell Death Dis ; 15(6): 434, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898023

RESUMO

The interaction between glioblastoma cells and glioblastoma-associated macrophages (GAMs) influences the immunosuppressive tumor microenvironment, leading to ineffective immunotherapies. We hypothesized that disrupting the communication between tumors and macrophages would enhance the efficacy of immunotherapies. Transcriptomic analysis of recurrent glioblastoma specimens indicated an enhanced neuroinflammatory pathway, with CXCL12 emerging as the top-ranked gene in secretory molecules. Single-cell transcriptome profiling of naïve glioblastoma specimens revealed CXCL12 expression in tumor and myeloid clusters. An analysis of public glioblastoma datasets has confirmed the association of CXCL12 with disease and PD-L1 expression. In vitro studies have demonstrated that exogenous CXCL12 induces pro-tumorigenic characteristics in macrophage-like cells and upregulated PD-L1 expression through NF-κB signaling. We identified CXCR7, an atypical receptor for CXCL12 predominantly present in tumor cells, as a negative regulator of CXCL12 expression by interfering with extracellular signal-regulated kinase activation. CXCR7 knockdown in a glioblastoma mouse model resulted in worse survival outcomes, increased PD-L1 expression in GAMs, and reduced CD8+ T-cell infiltration compared with the control group. Ex vivo T-cell experiments demonstrated enhanced cytotoxicity against tumor cells with a selective CXCR7 agonist, VUF11207, reversing GAM-induced immunosuppression in a glioblastoma cell-macrophage-T-cell co-culture system. Notably, VUF11207 prolonged survival and potentiated the anti-tumor effect of the anti-PD-L1 antibody in glioblastoma-bearing mice. This effect was mitigated by an anti-CD8ß antibody, indicating the synergistic effect of VUF11207. In conclusion, CXCL12 conferred immunosuppression mediated by pro-tumorigenic and PD-L1-expressing GAMs in glioblastoma. Targeted activation of glioblastoma-derived CXCR7 inhibits CXCL12, thereby eliciting anti-tumor immunity and enhancing the efficacy of anti-PD-L1 antibodies.


Assuntos
Antígeno B7-H1 , Quimiocina CXCL12 , Glioblastoma , Receptores CXCR , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animais , Receptores CXCR/metabolismo , Receptores CXCR/genética , Quimiocina CXCL12/metabolismo , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Mol Biol (Mosk) ; 58(1): 130-140, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38943584

RESUMO

Current data on the molecular mechanisms of liver fibrosis and cirrhosis fail to fully explain all stages of their development. Interactions between individual genes and signaling pathways are known to play an important role in their functions. However, data on their relationships are insufficient and often contradictory. For the first time, mRNA expression of Notch1, Notch2, Yap1, Tweak (Tnfsf12), Fn14 (Tnfrsf12a), Ang, Vegfa, Cxcl12 (Sdf), Nos2, and Mmp-9 was studied in detail at several stages of thioacetamide-induced liver fibrosis in Wistar rats. A factor analysis isolated three factors, which combined highly correlated target genes. The first factor included four genes: Cxcl12 (r = 0.829, p < 0.05), Tweak (r = 0.841, p < 0.05), Notch1 (r = 0.848, p < 0.05), and Yap1 (r = 0.921, p < 0.05). The second factor described the correlation between Mmp-9 (r = 0.791, p < 0.05) and Notch2 (r = 0.836, p < 0.05). The third factor included Ang (r = 0.748, p < 0.05) and Vegfa (r = 0.679, p < 0.05). The Nos2 and Fn14 genes were not included in any of the factors. The gene grouping by mRNA expression levels made it possible to assume a pathogenetic relationship between their products in the development of fibrotic changes due to liver toxicity.


Assuntos
Quimiocina CXCL12 , Citocina TWEAK , RNA Mensageiro , Ratos Wistar , Receptor Notch1 , Proteínas de Sinalização YAP , Animais , Ratos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Masculino , Receptor Notch1/genética , Receptor Notch1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Citocina TWEAK/genética , Citocina TWEAK/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Regulação da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Tioacetamida/toxicidade , Receptor Notch2/genética , Receptor Notch2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
10.
Cells ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920657

RESUMO

The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.


Assuntos
Quimiocina CXCL12 , Neoplasias , Receptores CXCR4 , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Fator de Transcrição STAT3/metabolismo , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Receptores CXCR/metabolismo , Receptores CXCR/genética
11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927998

RESUMO

Mesenchymal adipose stromal cells (ASCs) are considered the most promising and accessible material for translational medicine. ASCs can be used independently or within the structure of scaffold-based constructs, as these not only ensure mechanical support, but can also optimize conditions for cell activity, as specific features of the scaffold structure have an impact on the vital activity of the cells. This manuscript presents a study of the secretion and accumulation that occur in a conditioned medium during the cultivation of human ASCs within the structure of such a partial skin-equivalent that is in contact with it. It is demonstrated that the ASCs retain their functional activity during cultivation both within this partial skin-equivalent structure and, separately, on plastic substrates: they proliferate and secrete various proteins that can then accumulate in the conditioned media. Our comparative study of changes in the conditioned media during cultivation of ASCs on plastic and within the partial skin-equivalent structure reveals the different dynamics of the release and accumulation of such secretory factors in the media under a variety of conditions of cell functioning. It is also demonstrated that the optimal markers for assessment of the ASCs' secretory functions in the studied partial skin-equivalent structure are the trophic factors VEGF-A, HGF, MCP, SDF-1α, IL-6 and IL-8. The results will help with the development of an algorithm for preclinical studies of this skin-equivalent in vitro and may be useful in studying various other complex constructs that include ASCs.


Assuntos
Quimiocina CXCL12 , Interleucina-6 , Interleucina-8 , Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Meios de Cultivo Condicionados , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Células Cultivadas , Pele/metabolismo , Pele/citologia , Proliferação de Células , Quimiocina CCL2/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo
12.
Cytokine ; 180: 156676, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857560

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS: Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS: Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/ß-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS: We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/ß-Catenin signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Quimiocina CXCL12 , Progressão da Doença , Interleucina-17 , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt , Interleucina-17/metabolismo , Quimiocina CXCL12/metabolismo , Humanos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Camundongos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismo
13.
Genes (Basel) ; 15(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927649

RESUMO

Numerous studies have tried to evaluate the potential role of thrombophilia-related genes in retinal vein occlusion (RVO); however, there is limited research on genes related to different pathophysiological mechanisms involved in RVO. In view of the strong contribution of oxidative stress and inflammation to the pathogenesis of RVO, the purpose of the present study was to investigate the association of inflammation- and oxidative-stress-related polymorphisms from three different genes [apolipoprotein E (APOE), paraoxonase 1 (PON1) and stromal cell-derived factor 1 (SDF-1)] and the risk of RVO in a Greek population. Participants in this case-control study were 50 RVO patients (RVO group) and 50 healthy volunteers (control group). Blood samples were collected on EDTA tubes and genomic DNA was extracted. Genotyping of rs854560 (L55M) and rs662 (Q192R) for the PON1 gene, rs429358 and rs7412 for the APOE gene and rs1801157 [SDF1-3'G(801)A] for SDF-1 gene was performed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Multiple genetic models (codominant, dominant, recessive, overdominant and log-additive) and haplotype analyses were performed using the SNPStats web tool to assess the correlation between the genetic polymorphisms and the risk of RVO. Binary logistic regression analysis was used for the association analysis between APOE gene variants and RVO. Given the multifactorial nature of the disease, our statistical analysis was adjusted for the most important systemic risk factors (age, hypertension and diabetes mellitus). The dominant genetic model for the PON1 Q192R single nucleotide polymorphism (SNP) of the association analysis revealed that there was a statistically significant difference between the RVO group and the control group. Specifically, after adjusting for age and hypertension, the PON1 192 R allele (QR + RR) was found to be associated with a statistically significantly higher risk of RVO compared to the QQ genotype (OR = 2.51; 95% CI = 1.02-6.14, p = 0.04). The statistically significant results were maintained after including diabetes in the multivariate model in addition to age and hypertension (OR = 2.83; 95% CI = 1.01-7.97, p = 0.042). No statistically significant association was revealed between the other studied polymorphisms and the risk of RVO. Haplotype analysis for PON1 SNPs, L55M and Q192R, revealed no statistically significant correlation. In conclusion, PON1 192 R allele carriers (QR + RR) were associated with a statistically significantly increased risk of RVO compared to the QQ homozygotes. These findings suggest that the R allele of the PON1 Q192R is likely to play a role as a risk factor for retinal vein occlusion.


Assuntos
Apolipoproteínas E , Arildialquilfosfatase , Quimiocina CXCL12 , Polimorfismo de Nucleotídeo Único , Oclusão da Veia Retiniana , Humanos , Arildialquilfosfatase/genética , Oclusão da Veia Retiniana/genética , Masculino , Feminino , Quimiocina CXCL12/genética , Estudos de Casos e Controles , Pessoa de Meia-Idade , Idoso , Apolipoproteínas E/genética , Predisposição Genética para Doença , Fatores de Risco , Grécia , Haplótipos
14.
PLoS One ; 19(6): e0302530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905184

RESUMO

At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear. Studies have shown that excess fluoride causes some degree of damage to the liver, including inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on the regulation of inflammation in human cells. In this study, we investigated the role of the SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8 assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative real-time polymerase chain reaction (qPCR) analysis. The protein expression levels of SDF-1/CXCR4 and the related inflammatory factors nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) were detected by ELISAs from the experimental and control groups. The mRNA expression levels of these inflammatory indicators were also determined by qPCR in both groups. Moreover, the expression levels of these factors were significantly higher in the experimental group than in the control group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the SDF-1/CXCR4 signaling axis, activating the inflammatory NF-κB signaling pathway and increasing the expression levels of the related inflammatory factors IL-6, TNF-α and IL-1ß. Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-induced liver injury.


Assuntos
Quimiocina CXCL12 , Hepatócitos , Receptores CXCR4 , Fluoreto de Sódio , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Humanos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fluoreto de Sódio/toxicidade , Fluoreto de Sódio/farmacologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Linhagem Celular , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Inflamação/metabolismo , Inflamação/induzido quimicamente
16.
J Dent Res ; 103(7): 723-733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822570

RESUMO

A ligature-induced periodontitis model was established in wild-type and CD146CreERT2; RosatdTomato mice to explore the function of pericytes in alveolar bone formation. We found that during periodontitis progression and periodontal wound healing, CD146+/NG2+ pericytes were enriched in the periodontal tissue areas, which could migrate to the alveolar bone surface and colocalize with ALP+/OCN+ osteoblasts. Chemokine C-X-C motif receptor 4 (CXCR4) inhibition using AMD3100 blocked CD146-Cre+ pericyte migration and osteogenesis, as well as further exacerbated periodontitis-associated bone loss. Next, primary pericytes were sorted out by magnetic-activated cell sorting and demonstrated that C-X-C motif chemokine ligand 12 (CXCL12) promotes pericyte migration and osteogenesis via CXCL12-CXCR4-Rac1 signaling. Finally, the local administration of an adeno-associated virus for Rac1 overexpression in NG2+ pericytes promotes osteoblast differentiation of pericytes and increases alveolar bone volume in periodontitis. Thus, our results provided the evidence that pericytes may migrate and osteogenesis via the CXCL12-CXCR4-Rac1 axis during the pathological process of periodontitis.


Assuntos
Movimento Celular , Quimiocina CXCL12 , Osteogênese , Pericitos , Periodontite , Receptores CXCR4 , Animais , Osteogênese/fisiologia , Movimento Celular/fisiologia , Camundongos , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Perda do Osso Alveolar , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Modelos Animais de Doenças , Antígeno CD146 , Osteoblastos , Diferenciação Celular , Ciclamos , Benzilaminas
17.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840411

RESUMO

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Assuntos
Proliferação de Células , Quimiocina CXCL12 , Fibroblastos , Queloide , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT3 , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fibroblastos/metabolismo , Movimento Celular , Retroalimentação Fisiológica , Cromograninas/genética , Cromograninas/metabolismo , Masculino , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Adulto , Células Cultivadas , Regulação para Cima
18.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928202

RESUMO

Blood-brain barrier (BBB) dysfunction is a key feature in neuroimmunological and neurodegenerative diseases. In this study, we developed a microfluidic human BBB-on-a-chip to model barrier dysfunction and immune cell migration using immortalized TY10 brain endothelial cells, pericytes, and astrocytes. It was found that immortalized TY10 brain endothelial cells developed a microvascular structure under flow. Pericytes were localized on the basal side surrounding the TY10 microvascular structure, showing an in vivo-like structure. Barrier integrity increased under co-culture with pericytes. In addition, both ethylenediaminetetraacetic acid (EDTA) and anti-Claudin-5 (CLDN5) neutralizing antibody caused a decrease in the transendothelial electrical resistance (TEER). EDTA caused the leakage of 20 kDa dextran, suggesting different effects on the BBB based on the mechanism of action, whereas anti-CLDN5 antibody did not cause leakage. In the tri-culture model, human T cells migrated through endothelial vessels towards basal C-X-C motif chemokine ligand 12 (CXCL12). The live-imaging analysis confirmed the extravasation of fluorescence-labelled T cells in a CXCL12-concentration- and time-dependent manner. Our BBB model had an in vivo-like structure and successfully represented barrier dysfunction and transendothelial T cell migration. In addition, our study suggests that the inhibition of CLDN5 attenuates the BBB in humans. This platform has various potential uses in relation to the BBB in both drug discovery research and in elucidating the mechanisms of central nervous system diseases.


Assuntos
Barreira Hematoencefálica , Movimento Celular , Células Endoteliais , Dispositivos Lab-On-A-Chip , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Descoberta de Drogas/métodos , Técnicas de Cocultura , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Claudina-5/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos
19.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772902

RESUMO

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Assuntos
Displasia Broncopulmonar , Quimiocina CXCL12 , Modelos Animais de Doenças , Células Progenitoras Endoteliais , Hiperóxia , Macrófagos Alveolares , Animais , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patologia , Células Progenitoras Endoteliais/transplante , Células Progenitoras Endoteliais/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Quimiocina CXCL12/metabolismo , Hiperóxia/terapia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Pulmão/patologia , Pulmão/metabolismo , Humanos , Transferência Adotiva/métodos , Transplante de Células-Tronco/métodos
20.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742709

RESUMO

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Assuntos
Colite , Mucosa Intestinal , Células-Tronco Mesenquimais , Receptores CXCR4 , Regeneração , Animais , Camundongos , Células da Medula Óssea/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Receptores CXCR4/metabolismo , Receptores CXCR4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...