Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.574
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791448

RESUMO

Chemokines are key proteins that regulate cell migration and immune responses and are essential for modulating the tumor microenvironment. Despite their close association with colon cancer, the expression patterns, prognosis, immunity, and specific roles of chemokines in colon cancer are still not fully understood. In this study, we investigated the mutational features, differential expression, and immunological characteristics of chemokines in colon cancer (COAD) by analyzing the Tumor Genome Atlas (TCGA) database. We clarified the biological functions of these chemokines using Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. By univariate and multivariate COX regression analyses, we developed chemokine-based prognostic risk models. In addition, using Gene Set Enrichment Analysis (GSEA) and Gene Set Variant Analysis (GSVA), we analyzed the differences in immune responses and signaling pathways among different risk groups. The results showed that the mutation rate of chemokines was low in COAD, but 25 chemokines were significantly differentially expressed. These chemokines function in several immune-related biological processes and play key roles in signaling pathways including cytokine-cytokine receptor interactions, NF-kappa B, and IL-17. Prognostic risk models based on CCL22, CXCL1, CXCL8, CXCL9, and CXCL11 performed well. GSEA and GSVA analyses showed significant differences in immune responses and signaling pathways across risk groups. In conclusion, this study reveals the potential molecular mechanisms of chemokines in COAD and proposes a new prognostic risk model based on these insights.


Assuntos
Quimiocinas , Neoplasias do Colo , Humanos , Quimiocinas/genética , Quimiocinas/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Mutação , Transdução de Sinais , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Ontologia Genética , Feminino , Masculino , Bases de Dados Genéticas , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica
2.
Int Immunopharmacol ; 134: 112172, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703566

RESUMO

BACKGROUND: The clinical significance and comprehensive characteristics of chemokines and chemokine receptors in colorectal cancer (CRC) have not been previously reported. Our study aims to investigate the expression profiles of chemokines and chemokine receptors, as well as establish subtypes in CRC. METHODS: 1009 CRC samples were enrolled in our study. Consensus unsupervised clustering analysis was conducted to establish subtypes, and a risk score model was developed using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses. 36 pairs of tissue specimens of CRC patients and two CRC cell lines were used to validate the subtypes and risk score in vitro. Quantitative real-time PCR and western blotting were employed to validate mRNA and protein expression levels, respectively. Flow cytometry was utilized for analyzing cell apoptosis, while cell viability assay and EdU assay were conducted to assess cell proliferation ability. RESULTS: The Cluster B group shares similarities with the low-risk group in terms of exhibiting a higher level of immune cell infiltration and belonging to hot tumor. Patients CRC in the Cluster B group demonstrate a more favorable prognosis and exhibit better response to immunotherapy and chemotherapy. On the other hand, the Cluster A group resembles the high-risk group as it displays lower levels of immune cell infiltration, indicating a cold tumor phenotype. CRC patients in the Cluster A group have poorer prognoses and show less therapeutic efficacy towards immunotherapy and chemotherapy. Furthermore, we utilized a total of 36 pairs of tissue samples obtained from patients with CRC, along with two CRC cell lines for validation in vitro. This comprehensive approach further enhances the scientific validity and reliability of the identified subtypes and risk score in their ability to predict prognosis, response to immunotherapy, and response to chemotherapy among CRC patients. CONCLUSION: We first established robust prognostic subtypes based on chemokines and chemokine receptors, which could potentially serve as a novel biomarker for guiding individualized treatment in patients with CRC undergoing immunotherapy and chemotherapy.


Assuntos
Quimiocinas , Neoplasias Colorretais , Imunoterapia , Receptores de Quimiocinas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Prognóstico , Feminino , Masculino , Quimiocinas/metabolismo , Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Idoso , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Células Cultivadas , Quimiocinas/metabolismo , Quimiocinas/genética , Citocinas/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Rep ; 14(1): 7672, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561377

RESUMO

Lipopolysaccharide (LPS) is known to elicit a robust immune response. This study aimed to investigate the impact of LPS on the transcriptome of human nasal epithelial cells (HNEpC). HNEpC were cultured and stimulated with LPS (1 µg/mL) or an equivalent amount of normal culture medium. Subsequently, total RNA was extracted, purified, and sequenced using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, followed by Ingenuity Pathway Analysis (IPA) to identify molecular pathways influenced by LPS exposure on HNEpC. Validation of key genes was performed using quantitative real-time PCR (qRT-PCR). A total of 97 DEGs, comprising 48 up-regulated genes and 49 down-regulated genes, were identified. Results from functional enrichment analysis, PPI, and IPA indicated that DEGs were predominantly enriched in chemokine-related signaling pathways. Subsequent qRT-PCR validation demonstrated significant upregulation of key genes in these pathways in LPS-treated HNEpC compared to control cells. In conclusion, LPS intervention profoundly altered the transcriptome of HNEpC, potentially exacerbating inflammatory responses through the activation of chemokine-related signaling pathways.


Assuntos
Perfilação da Expressão Gênica , Lipopolissacarídeos , Humanos , Perfilação da Expressão Gênica/métodos , Lipopolissacarídeos/farmacologia , Transcriptoma , Transdução de Sinais/genética , Células Epiteliais , Quimiocinas/genética , Biologia Computacional/métodos
5.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
6.
PLoS One ; 19(4): e0293680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652715

RESUMO

Universal and early recognition of pathogens occurs through recognition of evolutionarily conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors and the consequent secretion of cytokines and chemokines. The intrinsic complexity of innate immune signaling and associated signal transduction challenges our ability to obtain physiologically relevant, reproducible and accurate data from experimental systems. One of the reasons for the discrepancy in observed data is the choice of measurement strategy. Immune signaling is regulated by the interplay between pathogen-derived molecules with host cells resulting in cellular expression changes. However, these cellular processes are often studied by the independent assessment of either the transcriptome or the proteome. Correlation between transcription and protein analysis is lacking in a variety of studies. In order to methodically evaluate the correlation between transcription and protein expression profiles associated with innate immune signaling, we measured cytokine and chemokine levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA (mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibility of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5, CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This lack of correlation between transcription and protein expression data may contribute to the discrepancy in the immune profiles reported in various studies. The use of multiomic assessments to achieve a systems-level understanding of immune signaling processes can result in the identification of host biomarker profiles for a variety of infectious diseases and facilitate countermeasure design and development.


Assuntos
Biomarcadores , Células Epiteliais , Lipopolissacarídeos , Pseudomonas aeruginosa , Humanos , Lipopolissacarídeos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Pseudomonas aeruginosa/imunologia , Biomarcadores/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Transcriptoma , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quimiocinas/metabolismo , Quimiocinas/genética
7.
Dev Comp Immunol ; 157: 105182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636700

RESUMO

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.


Assuntos
Antioxidantes , Proteínas de Peixes , Galectinas , Smegmamorpha , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Smegmamorpha/imunologia , Smegmamorpha/genética , Galectinas/metabolismo , Galectinas/genética , Antioxidantes/metabolismo , Doenças dos Peixes/imunologia , Citocinas/metabolismo , Imunidade Inata , Poli I-C/imunologia , Lactococcus/fisiologia , Lipopolissacarídeos/imunologia , Quimiocinas/metabolismo , Quimiocinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Novirhabdovirus/fisiologia , Novirhabdovirus/imunologia , Antivirais/metabolismo
8.
Exp Eye Res ; 241: 109854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453037

RESUMO

Mucosal chemokines have antimicrobial properties and play an important role in mucosal immunity. However, little is known about their expression on the ocular surface. This study aimed to analyze the expression of the mucosal chemokines CCL28, CXCL14 and CXCL17 in corneal and conjunctival epithelial cells under in vitro dry eye (DE) conditions, and in conjunctival samples from healthy subjects and DE patients. Human corneal epithelial cells (HCE) and immortalized human conjunctival epithelial cells (IM-HConEpiC) were incubated under hyperosmolar (400-500 mOsM) or inflammatory (TNF-α 25 ng/mL) conditions for 6 h and 24 h to measure CCL28, CXCL14, and CXCL17 gene expression by RT-PCR and their secretion by immunobead-based analysis (CCL28, CXCL14) and ELISA (CXCL17). Additionally, twenty-seven DE patients and 13 healthy subjects were included in this study. DE-related questionnaires (OSDI, mSIDEQ and NRS) evaluated symptomatology. Ocular surface integrity was assessed using vital staining. Tactile sensitivity was measured with Cochet-Bonnet esthesiometer, and mechanic and thermal (heat and cold) sensitivity using Belmonte's non-contact esthesiometer. Subbasal nerve plexus and dendritic cell density were analyzed by in vivo confocal microscopy. Conjunctival cells from participants were collected by impression cytology to measure mucosal chemokines gene expression by RT-PCR. Our results showed that HCE and IM-HConEpiC cells increased CCL28, CXCL14, and CXCL17 secretion under hyperosmolar conditions. The gene expression of CCL28 was significantly upregulated in conjunctival samples from DE patients. CCL28 expression correlated positively with symptomatology, corneal staining, heat sensitivity threshold, and dendritic cell density. CXCL14 expression correlated positively with age, ocular pain, conjunctival staining, tactile sensitivity, and image reflectivity. CXCL17 expression correlated positively with corneal staining. These results suggest that corneal and conjunctival epithelial cells could be a source of CCL28, CXCL14, and CXCL17 on the ocular surface and that CCL28 might be involved in DE pathogenesis.


Assuntos
Dieldrin/análogos & derivados , Síndromes do Olho Seco , Humanos , Síndromes do Olho Seco/patologia , Quimiocinas/genética , Córnea/patologia , Túnica Conjuntiva/patologia , Quimiocinas CC , Quimiocinas CXC
9.
PLoS One ; 19(3): e0300461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512862

RESUMO

Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Humanos , Feminino , Gravidez , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , RNA Endógeno Competitivo , Placenta/metabolismo , Fator de Crescimento Placentário/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Quimiocinas/genética , RNA Longo não Codificante/genética , Redes Reguladoras de Genes
10.
Adv Sci (Weinh) ; 11(21): e2308447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491873

RESUMO

Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.


Assuntos
RNA Mensageiro , Uridina , Humanos , Uridina/farmacologia , Uridina/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , COVID-19/imunologia , COVID-19/prevenção & controle , Células Cultivadas
11.
Immunol Res ; 72(2): 212-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351242

RESUMO

Acute restraint stress (RS) is routinely used to study the effects of psychological and/or physiological stress. We evaluated the impact of RS on cervical lymph nodes in rats at molecular and cellular levels. Male Sprague-Dawley rats were subjected to stress by immobilization for 30, 60, and 120 min (RS30, RS60, and RS120, respectively) and compared with rats of a no-stress control (C) group. The expression of genes encoding chemokines CXCL1/CXCL2 (Cxcl1 and Cxcl2) and their receptor CXCR2 (Cxcr2) was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and microarray analyses. Immunohistochemistry and in situ hybridization were performed to determine the expression of these proteins and the macrophage biomarker CD68. Microarray analysis revealed that the expression of 514 and 496 genes was upregulated and downregulated, respectively, in the RS30 group. Compared with the C group, the RS30 group exhibited a 23.0-, 13.0-, and 1.6-fold increase in Cxcl1, Cxcl2, and Cxcr2 expression. Gene Ontology analysis revealed the involvement of these three upregulated genes in the cytokine network, inflammation, and leukocyte chemotaxis and migration. RT-qPCR analysis indicated that the mRNA levels of Cxcl1 and Cxcl2 were significantly increased in the RS30 group but were reverted to normal levels in the RS60 and RS120 groups. Cxcr2 mRNA level was significantly increased in the RS30 and RS120 groups compared with that in the C group. RS-induced CXCL1-immunopositive cells corresponded to B/plasma cells, whereas CXCL2-immunopositive cells corresponded to endothelial cells of the high endothelial venules. Stress-induced CXCR2-immunopositive cells corresponded to macrophages. Psychological and/or physiological stress induces an acute stress response and formation of an immunoreactive microenvironment in cervical lymph nodes, with the CXCL1/CXCL2-CXCR2 axis being pivotal in the acute stress response.


Assuntos
Quimiocinas , Células Endoteliais , Ratos , Masculino , Animais , Células Endoteliais/metabolismo , Ratos Sprague-Dawley , Quimiocinas/genética , Quimiocina CXCL2/metabolismo , Macrófagos/metabolismo , RNA Mensageiro/genética , Linfonodos/metabolismo
12.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228369

RESUMO

Chemokine signalling performs key functions in cell migration via chemoattraction, such as attracting leukocytes to the site of infection during host defence. The system consists of a ligand, the chemokine, usually secreted outside the cell, and a chemokine receptor on the surface of a target cell that recognises the ligand. Several noncanonical components interact with the system. These include a variety of molecules that usually share some degree of sequence similarity with canonical components and, in some cases, are known to bind to canonical components and/or to modulate cell migration. Whereas canonical components have been described in vertebrate lineages, the distribution of the noncanonical components is less clear. Uncertainty over the relationships between canonical and noncanonical components hampers our understanding of the evolution of the system. We used phylogenetic methods, including gene-tree to species-tree reconciliation, to untangle the relationships between canonical and noncanonical components, identify gene duplication events, and clarify the origin of the system. We found that unrelated ligand groups independently evolved chemokine-like functions. We found noncanonical ligands outside vertebrates, such as TAFA "chemokines" found in urochordates. In contrast, all receptor groups are vertebrate-specific and all-except ACKR1-originated from a common ancestor in early vertebrates. Both ligand and receptor copy numbers expanded through gene duplication events at the base of jawed vertebrates, with subsequent waves of innovation occurring in bony fish and mammals.


Assuntos
Mamíferos , Vertebrados , Animais , Filogenia , Ligantes , Vertebrados/genética , Mamíferos/genética , Quimiocinas/genética
13.
Mycoses ; 67(1): e13680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214420

RESUMO

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Assuntos
Quimiocinas C , Foliculite , Malassezia , Humanos , Camundongos , Animais , Interferon gama , Interferons , Antígenos de Histocompatibilidade Classe II/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Quimiocinas/genética , Queratinócitos
14.
Sci Rep ; 14(1): 93, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168591

RESUMO

Periodontitis is a chronic inflammatory disease that affects the tissues surrounding the teeth, including the gums and the bones supporting the teeth. Early detection and intervention are crucial for effective management of periodontitis. Our study aims to identify a diagnostic biomarker for periodontitis and explore the pathways associated with the occurrence and development of periodontitis. The expression of gingival tissue from periodontitis and healthy control were downloaded from the Gene Expression Omnibus. The weighted gene co-expression network analysis (WGCNA) were used to analyze module genes associated with periodontitis and DESeq2 were performed to identify differently expressed genes (DEGs) between periodontitis and healthy control. Then the candidate genes were obtained by intersecting the genes from interest modules and DEGs. Functional enrichment analysis was performed using gene ontology and kyoto encyclopedia of gene and genomes, followed by the protein-protein interaction (PPI) network analysis. The hub genes were identified by the cytoCNA plugin in Cytoscape. Finally, immunohistochemical staining of the hub genes was performed to validate the findings. WGCNA analysis found that the expression of the MEblack module was significantly higher in individuals with periodontitis compared to those in the healthy control group. A total of 888 DEGs, including 750 upregulated and 138 downregulated genes, were identified. Finally, 427 candidate genes were identified potentially associated with periodontitis after intersecting the DEGs and the black module genes. Several critical signaling pathways were identified associated with periodontitis by functional enrichment analysis, including cytokine-cytokine receptor interaction, neutrophil extracellular trap formation, Staphylococcus aureus infection, and Interleukin-17 signaling pathway. The PPI network analysis revealed that C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 6 (CXCL6) could play an important role in the process of periodontitis. The gene expression level of CXCL5 and CXCL6 detected using immunohistochemical verified the findings. In conclusion, we found that CXCL5 and CXCL6 are closely associated with the occurrence of periodontitis. Our present pilot study suggests that CXCL5 and CXCL6 have the potential to be used as a diagnostic biomarker of periodontitis.


Assuntos
Redes Reguladoras de Genes , Periodontite , Humanos , Ligantes , Projetos Piloto , Periodontite/diagnóstico , Periodontite/genética , Perfilação da Expressão Gênica , Biomarcadores , Biologia Computacional , Quimiocinas/genética
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167013, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199515

RESUMO

Inflammatory bowel disease (IBD) is an incurable and disabling bowel disease driven by multiple risk factors that severely limit patients' quality of life. We integrated the RNA-sequencing data of 1238 IBD patients, and investigated the pathogenesis of IBD by combining transcriptional element prediction analysis and immune-related analysis. Here, we first determined that KIAA1109 is inhibited in IBD patients. The expression of KIAA1109 and NOD2, the key receptor of NOD-like receptors, showed a negative correlation. The NOD-like receptor signaling pathway is activated and exerts transcriptional regulation on the chemokines CXCL1 and CXCL2 through the activation of the transcription factors NFκB and AP1. Analysis of immune infiltration revealed that the expression of chemokines CXCL1 and CXCL2 may regulate the inflammatory response induced by immune cells. These findings suggest that the KIAA1109-NOD2-NFκB/AP1-CXCL1/CXCL2 regulatory axis is the molecular mechanism of IBD pathogenesis, which will provide a new perspective for the diagnosis, treatment and management of IBD patients.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Qualidade de Vida , Doenças Inflamatórias Intestinais/genética , Marcadores Genéticos , Perfilação da Expressão Gênica , Quimiocinas/genética
16.
J Immunother Cancer ; 12(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212126

RESUMO

BACKGROUND: The C-C motif chemokine receptor 5 (CCR5)/C-C motif chemokine ligand 5 (CCL5) axis plays a major role in colorectal cancer (CRC). We aimed to characterize the molecular features associated with CCR5/CCL5 expression in CRC and to determine whether CCR5/CCL5 levels could impact treatment outcomes. METHODS: 7604 CRCs tested with NextGen Sequencing on DNA and RNA were analyzed. Molecular features were evaluated according to CCR5 and CCL5 tumor gene expression quartiles. The impact on treatment outcomes was assessed in two cohorts, including 6341 real-world patients and 429 patients from the Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial. RESULTS: CCR5/CCL5 expression was higher in right-sided versus left-sided tumors, and positively associated with consensus molecular subtypes 1 and 4. Higher CCR5/CCL5 expression was associated with higher tumor mutational burden, deficiency in mismatch repair and programmed cell death ligand 1 (PD-L1) levels. Additionally, high CCR5/CCL5 were associated with higher immune cell infiltration in the tumor microenvironment (TME) of MMR proficient tumors. Ingenuity pathway analysis revealed upregulation of the programmed cell death protein 1 (PD-1)/PD-L1 cancer immunotherapy pathway, phosphatase and tensin homolog (PTEN) and peroxisome proliferator-activated receptors (PPAR) signaling, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) signaling in cytotoxic T lymphocytes, whereas several inflammation-related pathways were downregulated. Low CCR5/CCL5 expression was associated with increased benefit from cetuximab-FOLFOX treatment in the CALGB/SWOG 80405 trial, where significant treatment interaction was observed with biologic agents and chemotherapy backbone. CONCLUSIONS: Our data show a strong association between CCR5/CCL5 gene expression and distinct molecular features, gene expression profiles, TME cell infiltration, and treatment benefit in CRC. Targeting the CCR5/CCL5 axis may have clinical applications in selected CRC subgroups and may play a key role in developing and deploying strategies to modulate the immune TME for CRC treatment.


Assuntos
Neoplasias Colorretais , Receptores de Quimiocinas , Humanos , Antígeno B7-H1/genética , Ligantes , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocinas/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Expressão Gênica , Microambiente Tumoral , Receptores CCR5/genética , Receptores CCR5/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(3): e2318995121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215184

RESUMO

The joining (J) chain regulates polymerization of multimeric Immunoglobulin(Ig)M and IgA, forming a disulfide bond to the C termini of their Ig heavy chains, and it controls IgM/IgA transport across mucosal epithelia. Like Ig itself and human-like adaptive immunity, J chain emerged in jawed vertebrates (gnathostomes), but its origin has remained mysterious since its discovery over 50 y ago. Here, we show unexpectedly that J chain is a member of the CXCL chemokine family. The J chain gene (JCHAIN) is linked to clustered CXCL chemokine loci in all gnathostomes except actinopterygians that lost JCHAIN. JCHAIN and most CXCL genes have four exons with the same intron phases, including the same cleavage site for the signal peptide/mature protein. The second exon of both genes encodes a CXC motif at the same position, and the lengths of exons 1 to 3 are similar. No other gene in the human secretome shares all of these characteristics. In contrast, intrachain disulfide bonds of the two proteins are completely different, likely due to modifications in J chain to direct Ig polymerization and mucosal transport. Crystal structures of CXCL8 and J chain share a conserved beta-strand core but diverge otherwise due to different intrachain disulfide bonds and extension of the J chain C terminus. Identification of this ancestral affiliation between J chain and CXCL chemokines addresses an age-old problem in immunology.


Assuntos
Imunoglobulina A , Cadeias J de Imunoglobulina , Animais , Humanos , Cadeias J de Imunoglobulina/metabolismo , Éxons , Imunoglobulina A/genética , Dissulfetos , Quimiocinas/genética , Imunoglobulina M
18.
PeerJ ; 12: e16757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223763

RESUMO

The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.


Assuntos
Quimiocinas , Proteínas com Domínio MARVEL , Neoplasias , Humanos , Quimiocinas/genética , Proteínas com Domínio MARVEL/genética , Transdução de Sinais , Neoplasias/genética
19.
Rheumatology (Oxford) ; 63(2): 563-570, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37280058

RESUMO

OBJECTIVES: Autoantibody responses increase years before the onset of inflammatory arthritis (IA) and are stable during transitioning from clinically suspect arthralgia (CSA) to IA. Cytokine and chemokine levels also increase years before IA onset. However, the course in the at-risk stage of CSA during progression to disease or non-progression is unknown. To increase the understanding of processes mediating disease development, we studied the course of cytokine, chemokine and related receptors gene expression in CSA patients during progression to IA and in CSA patients who ultimately did not develop IA. METHODS: Whole-blood RNA expression of 37 inflammatory cytokines, chemokines and related receptors was determined by dual-colour reverse transcription multiplex ligation-dependent probe amplification in paired samples of CSA patients at CSA onset and either at IA development or after 24 months without IA development. ACPA-positive and ACPA-negative CSA patients developing IA were compared at CSA onset and during progression to IA. Generalised estimating equations tested changes over time. A false discovery rate approach was applied. RESULTS: None of the cytokine/chemokine genes significantly changed in expression between CSA onset and IA development. In CSA patients without IA development, G-CSF expression decreased (P = 0.001), whereas CCR6 and TNIP1 expression increased (P < 0.001 and P = 0.002, respectively) over a 2 year period. Expression levels in ACPA-positive and ACPA-negative CSA patients who developed IA were similar. CONCLUSION: Whole-blood gene expression of assessed cytokines, chemokines and related receptors did not change significantly from CSA to IA development. This suggests that changes in expression of these molecules may not be related to the final process of developing chronicity and may have occurred preceding CSA onset. Changes in gene expression in CSA patients without IA development may provide clues for processes related to resolution.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/genética , Citocinas/genética , Quimiocinas/genética , Artralgia/genética , Expressão Gênica
20.
Biochem Biophys Res Commun ; 691: 149335, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38042032

RESUMO

C/EBP homologous protein (CHOP) is a key regulator in ER stress-mediated signaling pathway via PERK-dependent unfolded protein response. It has been known that microRNA-616 (miR-616) is produced from the intron of the human DDIT3 gene encoding CHOP and increased by ER stress. However, the role of miR-616 and its targets are not fully addressed yet. Here we try to identify a novel target of miR-616 in human lung epithelial cells. Microarray analysis showed that CXCL5 is the most downregulated gene by miR-616 overexpression in A549 cells. We also found that CXCL5 mRNA and protein levels were significantly reduced by miR-616 mimic in the presence or absence of TNFα, while anti-miR-616 enhanced CXCL5 expression. In addition, miR-616-3p targeting sequence in 3'UTR of CXCL5 was confirmed by luciferase reporter assay suggesting that miR-616-3p directly binds to 3'UTR of CXCL5 and inhibits CXCL5 expression. Finally, we confirmed that conditioned medium from A549 cells treated with TNFα or Streptococcus pneumoniae lysates increased intra-alveolar neutrophil infiltration in a mouse model of pulmonary inflammation, while this induction was significantly reduced in a conditioned medium from cells transfected with miR-616-3p. These results suggest that miR-616-3p can alleviate CXCL5-induced pulmonary inflammatory response via targeting 3'UTR of CXCL5 gene.


Assuntos
MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/genética , Regiões 3' não Traduzidas/genética , Meios de Cultivo Condicionados , Ligantes , Quimiocinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA