Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
2.
Int J Biochem Cell Biol ; 172: 106601, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821314

RESUMO

Abemaciclib (ABM), a cyclin-dependent kinase 4/6 inhibitor, shows pharmacological effects in cell cycle arrest. Epithelial-mesenchymal transition is an important cellular event associated with pathophysiological states such as organ fibrosis and cancer progression. In the present study, we evaluated the contribution of factors associated with cell cycle arrest to ABM-induced epithelial-mesenchymal transition. Treatment with 0.6 µM ABM induced both cell cycle arrest and epithelial-mesenchymal transition-related phenotypic changes. Interestingly, the knockdown of cyclin-dependent kinase 4/6, pharmacological targets of ABM or cyclin D1, which forms complexes with cyclin-dependent kinase 4/6, resulted in cell cycle arrest at the G1-phase and induction of epithelial-mesenchymal transition, indicating that downregulation of cyclin-dependent kinase 4/6-cyclin D1 complexes would mimic ABM. In contrast, knockdown of the Rb protein, which is phosphorylated by cyclin-dependent kinase 4/6, had no effect on the expression level of α-smooth muscle actin, an epithelial-mesenchymal transition marker. Furthermore, ABM-induced epithelial-mesenchymal transition was not affected by Rb knockdown, suggesting that Rb is not involved in the transition process. Our study is the first to suggest that cyclin-dependent kinase 4/6-cyclin D1 complexes, as pharmacological targets of ABM, may contribute to ABM-induced epithelial-mesenchymal transition, followed by clinical disorders such as organ fibrosis and cancer progression. This study suggests that blocking epithelial-mesenchymal transition might be a promising way to prevent negative side effects caused by a medication (ABM) without affecting its ability to treat the disease.


Assuntos
Aminopiridinas , Benzimidazóis , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Transição Epitelial-Mesenquimal , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Benzimidazóis/farmacologia , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Aminopiridinas/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina D1/genética
3.
Cancer Lett ; 593: 216968, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788968

RESUMO

In patients with ER + metastatic breast cancer (mBC), the first-line treatment involves the combination of endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i). However, a significant group of patients experiences disease progression, emphasizing the urgent clinical need to identify novel anti-tumor therapies. We previously generated breast cancer cells resistant to the combination of fulvestrant (ER downregulator) and abemaciclib (CDK4/6 inhibitor) from MCF7 and T47D (MCF7-FAR and T47D-FAR). RNA-seq-based Gene Set Enrichment Analysis (GSEA) revealed hyper-activation of EGFR, HER2, and AKT signaling in both MCF7-FAR and T47D-FAR. Modulating EGFR or ERBB2 expression through loss- and gain-of-function experiments altered tumor sensitivity to fulvestrant and abemaciclib in parental and FAR spheroids, affecting ERK and AKT/S6 pathways. Cetuximab treatment overcame tumor resistance to fulvestrant and abemaciclib in FAR and EGFR-overexpressing breast cancer spheroids and xenografts. Likewise, patient-derived organoids (PDOs) from individuals with ER + mBC, progressing on palbociclib, exhibited up-regulation of EGFR and HER2 pathways. In conclusion, our findings suggest that inhibiting EGFR and HER2 pathways might overcome resistance to ET + CDK4/6i in selected patients with ER + mBC.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Receptor ErbB-2 , Receptores de Estrogênio , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Feminino , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Animais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Receptores de Estrogênio/metabolismo , Camundongos , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Benzimidazóis/farmacologia , Aminopiridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Células MCF-7 , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
NEJM Evid ; 3(5): EVIDoa2300231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38815172

RESUMO

BACKGROUND: In estrogen receptor-positive metastatic breast cancer, ESR1 mutations (ESR1m) are a common mechanism of acquired resistance to aromatase inhibitors (ArIh). However, the impact ESR1 alterations have on CDK4/6 inhibitor (CDK4/6i) sensitivity has not been established. Analyses of CDK4/6i trials suggest that the endocrine therapy partner and specific ESR1 allele may affect susceptibility. We analyzed a real-world data set to investigate CDK4/6i efficacy in ESR1m metastatic breast cancer and associated clinical factors. METHODS: ESR1m were identified by analysis of circulating-tumor deoxyribonucleic acid. The GuardantINFORM database contains genomic information from tumors linked with claims data. Patients who started a CDK4/6i within 30 days of sequencing were categorized as having ESR1m or non-ESR1-mutant (non-ESR1m) breast cancer. Data were analyzed to determine the real-world time-to-next-treatment, defined as the start of a breast cancer treatment to initiation of the subsequent treatment. RESULTS: One hundred forty-five patients with ESR1m and 612 with non-ESR1m metastatic breast cancer were analyzed. ESR1m and non-ESR1m tumors had similar real-world time-to-next-treatment on CDK4/6i regimens (hazard ratio, 1.02; 95% confidence interval, 0.82 to 1.23). Duration on therapy in the first-line and second-line plus treatment settings were comparable regardless of ESR1 status. We stratified treatment duration by concurrent endocrine therapy, and patients with ESR1m had worse outcomes on ArIh but comparable real-world time-to-next-treatment on fulvestrant. CONCLUSIONS: These data suggest ESR1 variants are not associated with pan-CDK4/6i resistance and are consistent with the hypothesis that CDK4/6 blockade combined with a selective estrogen receptor degrader is potentially an effective option for ESR1m metastatic breast cancer.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Receptor alfa de Estrogênio , Mutação , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Receptor alfa de Estrogênio/genética , Pessoa de Meia-Idade , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Idoso , Adulto , Inibidores da Aromatase/uso terapêutico , Piperazinas/uso terapêutico , Metástase Neoplásica , Fulvestranto/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731835

RESUMO

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Assuntos
Leucemia Mieloide Aguda , Biologia de Sistemas , Tretinoína , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Tretinoína/farmacologia , Biologia de Sistemas/métodos , Células HL-60 , Perfilação da Expressão Gênica , Células K562 , Descoberta de Drogas/métodos , Transcriptoma , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Science ; 384(6695): eadi2421, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696576

RESUMO

Cell cycle events are coordinated by cyclin-dependent kinases (CDKs) to ensure robust cell division. CDK4/6 and CDK2 regulate the growth 1 (G1) to synthesis (S) phase transition of the cell cycle by responding to mitogen signaling, promoting E2F transcription and inhibition of the anaphase-promoting complex. We found that this mechanism was still required in G2-arrested cells to prevent cell cycle exit after the S phase. This mechanism revealed a role for CDK4/6 in maintaining the G2 state, challenging the notion that the cell cycle is irreversible and that cells do not require mitogens after passing the restriction point. Exit from G2 occurred during ribotoxic stress and was actively mediated by stress-activated protein kinases. Upon relief of stress, a significant fraction of cells underwent a second round of DNA replication that led to whole-genome doubling.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Endorreduplicação , Pontos de Checagem da Fase G2 do Ciclo Celular , Estresse Fisiológico , Humanos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética , Fase S , Linhagem Celular
7.
J Agric Food Chem ; 72(19): 11094-11110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661523

RESUMO

Research on adipogenesis will help to improve the meat quality of livestock. Long noncoding RNAs (lncRNAs) are involved in mammalian adipogenesis as epigenetic modulators. In this study, we analyzed lncRNA expression during bovine adipogenesis and detected 195 differentially expressed lncRNAs, including lncRNA BlncAD1, which was significantly upregulated in mature bovine adipocytes. Gain- and loss-of-function experiments confirmed that BlncAD1 promoted the proliferation, apoptosis, and differentiation of bovine preadipocytes. RNA pull-down revealed that the nonmuscle myosin 10 (MYH10) is a potential binding protein of BlncAD1. Then, we elucidated that loss of BlncAD1 caused increased ubiquitination of MYH10, which confirmed that BlncAD1 regulates adipogenesis by enhancing the stability of the MYH10 protein. Western blotting was used to demonstrate that BlncAD1 activated the PI3K/Akt signaling pathway. Bioinformatic analysis and dual-luciferase reporter assays indicated that BlncAD1 competitively absorbed miR-27a-5p. The overexpression and interference of miR-27a-5p in bovine preadipocytes displayed that miR-27a-5p inhibited proliferation, apoptosis, and differentiation. Further results suggested that miR-27a-5p targeted the CDK6 gene and that BlncAD1 controlled the proliferation of bovine preadipocytes by modulating the miR-27a-5p/CDK6 axis. This study revealed the complex mechanisms of BlncAD1 underlying bovine adipogenesis for the first time, which would provide useful information for genetics and breeding improvement of Chinese beef cattle.


Assuntos
Adipócitos , Adipogenia , Quinase 6 Dependente de Ciclina , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Animais , Bovinos/genética , Bovinos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipogenia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Adipócitos/metabolismo , Adipócitos/citologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Diferenciação Celular , Proliferação de Células , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Apoptose
8.
Cancer Res ; 84(9): 1426-1442, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588409

RESUMO

Desmoplastic small round cell tumors (DSRCT) are a type of aggressive, pediatric sarcoma characterized by the EWSR1::WT1 fusion oncogene. Targeted therapies for DSRCT have not been developed, and standard multimodal therapy is insufficient, leading to a 5-year survival rate of only 15% to 25%. Here, we depleted EWSR1::WT1 in DSRCT and established its essentiality in vivo. Transcriptomic analysis revealed that EWSR1::WT1 induces unique transcriptional alterations compared with WT1 and other fusion oncoproteins and that EWSR1::WT1 binding directly mediates gene upregulation. The E-KTS isoform of EWSR1::WT1 played a dominant role in transcription, and it bound to the CCND1 promoter and stimulated DSRCT growth through the cyclin D-CDK4/6-RB axis. Treatment with the CDK4/6 inhibitor palbociclib successfully reduced growth in two DSRCT xenograft models. As palbociclib has been approved by the FDA for the treatment of breast cancer, these findings demonstrate the sensitivity of DSRCT to palbociclib and support immediate clinical investigation of palbociclib for treating this aggressive pediatric cancer. SIGNIFICANCE: EWSR1::WT1 is essential for desmoplastic small round cell tumors and upregulates the cyclin D-CDK4/6-RB axis that can be targeted with palbociclib, providing a targeted therapeutic strategy for treating this deadly tumor type.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Tumor Desmoplásico de Pequenas Células Redondas , Proteínas de Fusão Oncogênica , Piperazinas , Piridinas , Proteína EWS de Ligação a RNA , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Camundongos Endogâmicos NOD
9.
PLoS One ; 19(4): e0298947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626179

RESUMO

Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/patologia , RNA Circular/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Nat Commun ; 15(1): 2287, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480701

RESUMO

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Through a genome-wide CRISPR screen, we identify protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout breast cancer cells. Inhibition of PRMT5 blocks the G1-to-S transition in the cell cycle independent of RB, leading to growth arrest in RB1-knockout cells. Proteomics analysis uncovers fused in sarcoma (FUS) as a downstream effector of PRMT5. Inhibition of PRMT5 results in dissociation of FUS from RNA polymerase II, leading to hyperphosphorylation of serine 2 in RNA polymerase II, intron retention, and subsequent downregulation of proteins involved in DNA synthesis. Furthermore, treatment with the PRMT5 inhibitor pemrametostat and a selective ER degrader fulvestrant synergistically inhibits growth of ER+/RB-deficient cell-derived and patient-derived xenografts. These findings highlight dual ER and PRMT5 blockade as a potential therapeutic strategy to overcome resistance to CDK4/6i in ER+/RB-deficient breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , RNA Polimerase II , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
11.
Pathol Res Pract ; 255: 155221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422911

RESUMO

Hematological malignancies such as acute myeloid leukemia (AML) have a low cure rate and a high recurrence rate. Long noncoding RNAs (LNCs) are essential regulators of tumorigenesis and progression. The role of lncRNA LINC00675 in AML has rarely been reported. This study revealed elevated LINC00675 expression in AML that promotes proliferation and inhibits apoptosis. Mechanistically, LINC00675 combines with miR-6809 to promote the expression of CDK6 in vitro and in vivo. Immune-checkpoint genes were expressed more highly in LINC00675-high patients. A high level of LINC00675 expression may make patients more susceptible to palbociclib treatments. In conclusion, our study demonstrated that LINC00675 is an oncogenic lncRNA that enhances the malignancy of AML by upregulating CDK6 expression through miR-6809 sponging, providing a new perspective and feasible target for the diagnosis and treatment of AML.


Assuntos
Quinase 6 Dependente de Ciclina , Leucemia Mieloide Aguda , MicroRNAs , RNA Longo não Codificante , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Quinase 6 Dependente de Ciclina/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo
12.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424044

RESUMO

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Assuntos
Neoplasias da Mama , Proteínas Inibidoras de Quinase Dependente de Ciclina , Humanos , Masculino , Pelve , Regiões Promotoras Genéticas , Próstata , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Inibidores de Proteínas Quinases
13.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38321933

RESUMO

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Metilação de DNA , Fígado , Peixe-Zebra , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , Replicação do DNA/genética , Embrião não Mamífero , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fase S , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ativação Enzimática/genética
15.
Clin Cancer Res ; 30(10): 2008-2010, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38319645

RESUMO

The therapeutic approach to metastatic hormone receptor-positive, human epidermal growth factor-2-negative metastatic breast cancer (HR+/HER2- MBC) has evolved rapidly over recent years. The cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have become first-line targeted agents of choice, in combination with an antiestrogen. Simultaneously, the clinical landscape of therapeutic options has been rapidly shifting, with novel antiestrogens, signal transduction inhibitors, and next-generation CDK inhibitors in various stages of development. Given these dynamic changes, understanding the genomic and molecular landscape of resistance to currently available antiestrogen therapy and CDK4/6 inhibitors represents a major focus of translational breast cancer research globally. See related article by Goetz et al., p. 2233.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Feminino , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
16.
Br J Cancer ; 130(5): 852-860, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212482

RESUMO

BACKGROUND: Cyclin-dependent kinase 6 (CDK6) was proved to be an important regulator in the progression of cell cycle and has been a promising therapeutic target in cancer treatment. However, the clinical significance of CDK6 in muscle-invasive bladder cancer (MIBC) remains obscure. Herein, we attempt to explore the clinical relevance of CDK6 and assess the feasibility of the integrative model to predict immune checkpoint blockade (ICB) response. METHODS: This study enrolled 933 patients with muscle-invasive bladder cancer (MIBC) from Zhongshan Hospital (ZSHS), The Cancer Genome Atlas (TCGA), Chemo, IMvigor210 and UC-GENOME cohorts. Kaplan-Meier survival and Cox regression analyses were performed to assess clinical outcomes based on CDK6 expression. RESULTS: High CDK6 expression conferred poor prognosis and superior response to platinum-based chemotherapy but inferior response to ICB in MIBC. Furthermore, the integrative model named response score based on CDK6, PD-L1 and TMB could better predict the response to ICB and chemotherapy. Patients with higher response scores were characterised by inflamed immune microenvironment and genomic instability. CONCLUSIONS: CDK6 expression was correlated with prognosis and therapy response in MIBC. Integration of CDK6, PD-L1 and TMB could better identify patients who were most likely to benefit from ICB and chemotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias da Bexiga Urinária , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/uso terapêutico , Platina/uso terapêutico , Antígeno B7-H1 , Quinase 6 Dependente de Ciclina/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Músculos/metabolismo , Microambiente Tumoral
17.
Adv Sci (Weinh) ; 11(1): e2305142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983610

RESUMO

IGF2BP2 is a new identified N6-methyladenosine (m6A) reader and associated with poor prognosis in many tumors. However, its role and related mechanism in breast cancer, especially in triple-negative breast cancer (TNBC), remains unclear. In this study, it is found that IGF2BP2 is highly expressed in TNBC due to the lower methylation level in its promoter region. Functional and mechanical studies displayed that IGF2BP2 could promote TNBC proliferation and the G1/S phase transition of the cell cycle via directly regulating CDK6 in an m6A-dependent manner. Surprising, the regulation of protein levels of CDK6 by IGF2BP2 is related to the changes in translation rate during translation initiation, rather than mRNA stability. Moreover, EIF4A1 is found to be recruited by IGF2BP2 to promote the translation output of CDK6, providing new evidence for a regulatory role of IGF2BP2 between m6A methylation and translation. Downregulation of IGF2BP2 in TNBC cell could enhance the sensitivity to abemaciclib, a CDK4/6 inhibitor. To sum up, our study revealed IGF2BP2 could facilitate the translation output of CDK6 via recruiting EIF4A1 and also provided a potential therapeutic target for the diagnosis and treatment of TNBC, as well as a new strategy for broadening the drug indications for CDK4/6 inhibitors.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Ciclo Celular/genética , Regulação para Baixo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Quinase 6 Dependente de Ciclina/genética
18.
Cancer Res ; 84(1): 17-25, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801608

RESUMO

The combination of endocrine therapy and CDK4/6 inhibitors such as palbociclib is an effective and well-tolerated treatment for estrogen receptor-positive (ER+) breast cancer, yet many patients relapse with therapy-resistant disease. Determining the mechanisms underlying endocrine therapy resistance is limited by the lack of ability to fully recapitulate inter- and intratumor heterogeneity in vitro and of availability of tumor samples from women with disease progression or relapse. In this study, multiple cell line models of resistant disease were used for both two-dimensional (2D)- and three-dimensional (3D)-based inhibitor screening. The screens confirmed the previously reported role of pro-proliferative pathways, such as PI3K-AKT-mTOR, in endocrine therapy resistance and additionally identified the transcription-associated cyclin-dependent kinase CDK9 as a common hit in ER+ cell lines and patient-derived organoids modeling endocrine therapy-resistant disease in both the palbociclib-sensitive and palbociclib-resistant settings. The CDK9 inhibitor, AZD4573, currently in clinical trials for hematologic malignancies, acted synergistically with palbociclib in these ER+in vitro 2D and 3D models. In addition, in two independent endocrine- and palbociclib-resistance patient-derived xenografts, treatment with AZD4573 in combination with palbociclib and fulvestrant resulted in tumor regression. Tumor transcriptional profiling identified a set of transcriptional and cell-cycle regulators differentially downregulated only in combination-treated tumors. Together, these findings identify a clinically tractable combination strategy for overcoming resistance to endocrine therapy and CDK4/6 inhibitors in breast cancer and provide insight into the potential mechanism of drug efficacy in targeting treatment-resistant disease. SIGNIFICANCE: Targeting transcription-associated CDK9 synergizes with CDK4/6 inhibitor to drive tumor regression in multiple models of endocrine- and palbociclib-resistant ER+ breast cancer, which could address the challenge of overcoming resistance in patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Receptores de Estrogênio/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quinase 9 Dependente de Ciclina/genética
19.
Funct Integr Genomics ; 23(4): 332, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950078

RESUMO

The roles of cyclin-dependent kinase 6 (CDK6) in various cancers, including small cell lung carcinoma (SCLC), remain unclear. Here, 111,54 multi-center samples were investigated to determine the expression, clinical significance, and underlying mechanisms of CDK6 in 34 cancers. The area under the curve (AUC), Cox regression analysis, and the Kaplan-Meier curves were used to explore the clinical value of CDK6 in cancers. Gene set enrichment analysis and correlation analysis were performed to detect potential CDK6 mechanisms. CDK6 expression was essential in 24 cancer cell types. Abnormal CDK6 expression was observed in 14 cancer types (e.g., downregulated in breast invasive carcinoma; p < 0.05). CDK6 allowed six cancers to be distinguished from their controls (AUC > 0.750). CDK6 expression was a prognosis marker for 13 cancers (e.g., adrenocortical carcinoma; p < 0.05). CDK6 was correlated with several immune-related signaling pathways and the infiltration levels of certain immune cells (e.g., CD8+ T cells; p < 0.05). Downregulated CDK6 mRNA and protein levels were observed in SCLC (p < 0.05, SMD = - 0.90). CDK6 allowed the identification of SCLC status (AUC = 0.91) and predicted a favorable prognosis for SCLC patients (p < 0.05). CDK6 may be a novel biomarker for the prediction and prognosis of several cancers, including SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Neoplasias Pulmonares/patologia
20.
Commun Biol ; 6(1): 1041, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833461

RESUMO

CDK4/6 are important regulators of cell cycle and their inhibitors have been approved as anti-cancer drugs. Here, we report a STING-dependent anti-tumor immune mechanism responsible for tumor suppression by CDK4/6 blockade. Clinical datasets show that in human tissues, CDK4 and CDK6 are over-expressed and their expressions are negatively correlated with patients' overall survival and T cell infiltration. Deletion of Cdk4 or Cdk6 in tumor cells significantly reduce tumor growth. Mechanistically, we find that Cdk4 or Cdk6 deficiency contributes to an increased level of endogenous DNA damage, which triggers the cGAS-STING signaling pathway to activate type I interferon response. Knockout of Sting is sufficient to reverse and partially reverse the anti-tumor effect of Cdk4 and Cdk6 deficiency respectively. Therefore, our findings suggest that CDK4/6 inhibitors may enhance anti-tumor immunity through the STING-dependent type I interferon response.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Interferon Tipo I , Neoplasias , Humanos , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Imunidade , Interferon Tipo I/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...