Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.664
Filtrar
1.
Nat Commun ; 15(1): 5985, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013850

RESUMO

The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. A total of 430 participants were recruited for the screening of differentially expressed plasma microRNAs (miRNAs). We found that miR-1204 is significantly increased in both the plasma and aorta of elder patients with AAD and is positively correlated with age. Cell senescence induces the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induces vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop. Furthermore, miR-1204 aggravates angiotensin II-induced AAD formation, and inhibition of miR-1204 attenuates ß-aminopropionitrile monofumarate-induced AAD development in mice. Mechanistically, miR-1204 directly targets myosin light chain kinase (MYLK), leading to the acquisition of a senescence-associated secretory phenotype (SASP) by VSMCs and loss of their contractile phenotype. MYLK overexpression reverses miR-1204-induced VSMC senescence, SASP and contractile phenotypic changes, and the decrease of transforming growth factor-ß signaling pathway. Our findings suggest that aging aggravates AAD via the miR-1204-MYLK signaling axis.


Assuntos
Envelhecimento , Aneurisma Aórtico , Dissecção Aórtica , Senescência Celular , MicroRNAs , Músculo Liso Vascular , Quinase de Cadeia Leve de Miosina , Transdução de Sinais , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Masculino , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Dissecção Aórtica/metabolismo , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Miócitos de Músculo Liso/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Angiotensina II/metabolismo , Proteínas de Ligação ao Cálcio
2.
Arterioscler Thromb Vasc Biol ; 44(8): 1833-1851, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38957986

RESUMO

BACKGROUND: Tight control of cytoplasmic Ca2+ concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cavß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ concentration and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.


Assuntos
Barreira Hematoencefálica , Sinalização do Cálcio , Encefalomielite Autoimune Experimental , Células Endoteliais , Receptores de Inositol 1,4,5-Trifosfato , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinase de Cadeia Leve de Miosina , Animais , Barreira Hematoencefálica/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/genética , Células Endoteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Permeabilidade Capilar , Células Cultivadas , Fosforilação , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Cadeias Leves de Miosina/metabolismo , Camundongos , Cálcio/metabolismo , Feminino , Masculino
3.
Biol Pharm Bull ; 47(7): 1368-1375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085076

RESUMO

We previously reported that the sustained component of contraction induced by depolarizing stimulation by high K+ concentration in rat caudal arterial smooth muscle involves a Ca2+-induced Ca2+ sensitization mechanism whereby Ca2+ entry through voltage-gated Ca2+ channels activates proline-rich tyrosine kinase 2 (Pyk2), leading to activation of RhoA/Rho-associated kinase (ROCK). In the present study, we investigated a potential role for Pyk2-mediated RhoA/ROCK activation in contraction mediated by elevation of cytosolic free Ca2+ concentration ([Ca2+]i) induced by a Ca2+ ionophore, ionomycin, rather than by depolarizing stimulation. Ionomycin (60 µM) induced slow and sustained contraction of rat caudal arterial smooth muscle due to influx of Ca2+. Pre-treatment with a myosin light chain kinase (MLCK) inhibitor, ML-9 (30 µM), inhibited both the early phase (4 min) and the sustained phase (30 min) of ionomycin-induced contraction. On the other hand, a ROCK inhibitor, HA-1077 (3 µM), and Pyk2 inhibitors, sodium salicylate (10 mM) and PF-431396 (3 µM), suppressed only the sustained phase of ionomycin-induced contraction. A calmodulin (CaM) inhibitor, W-7 (150 µM), but not W-5 (150 µM), suppressed the early phase of contraction. Early or sustained increase of ionomycin-induced 20 kDa light chain of myosin (LC20) phosphorylation was inhibited by each inhibitor in a manner similar to the attenuation of contraction. These results indicate that the early phase of ionomycin-induced contraction is mediated by MLCK activation by [Ca2+]i elevation, whereas the sustained phase of ionomycin-induced contraction involves RhoA/ROCK activation and inhibition of myosin light chain phosphatase (MLCP) through CaM-independent Pyk2 activation by [Ca2+]i elevation.


Assuntos
Cálcio , Ionomicina , Contração Muscular , Quinases Associadas a rho , Animais , Ionomicina/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Cálcio/metabolismo , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Músculo Liso Vascular/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Ionóforos de Cálcio/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Calmodulina/metabolismo
4.
Pharmacol Res ; 206: 107276, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944220

RESUMO

The global incidence of cardiac diseases is increasing, imposing a substantial socioeconomic burden on healthcare systems. The pathogenesis of cardiovascular disease is complex and not fully understood, and the physiological function of the heart is inextricably linked to well-regulated cardiac muscle movement. Myosin light chain kinase (MLCK) is essential for myocardial contraction and diastole, cardiac electrophysiological homeostasis, vasoconstriction of vascular nerves and blood pressure regulation. In this sense, MLCK appears to be an attractive therapeutic target for cardiac diseases. MLCK participates in myocardial cell movement and migration through diverse pathways, including regulation of calcium homeostasis, activation of myosin light chain phosphorylation, and stimulation of vascular smooth muscle cell contraction or relaxation. Recently, phosphorylation of myosin light chains has been shown to be closely associated with the activation of myocardial exercise signaling, and MLCK mediates systolic and diastolic functions of the heart through the interaction of myosin thick filaments and actin thin filaments. It works by upholding the integrity of the cytoskeleton, modifying the conformation of the myosin head, and modulating innervation. MLCK governs vasoconstriction and diastolic function and is associated with the activation of adrenergic and sympathetic nervous systems, extracellular transport, endothelial permeability, and the regulation of nitric oxide and angiotensin II. Additionally, MLCK plays a crucial role in the process of cardiac aging. Multiple natural products/phytochemicals and chemical compounds, such as quercetin, cyclosporin, and ML-7 hydrochloride, have been shown to regulate cardiomyocyte MLCK. The MLCK-modifying capacity of these compounds should be considered in designing novel therapeutic agents. This review summarizes the mechanism of action of MLCK in the cardiovascular system and the therapeutic potential of reported chemical compounds in cardiac diseases by modifying MLCK processes.


Assuntos
Quinase de Cadeia Leve de Miosina , Transdução de Sinais , Humanos , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/enzimologia , Fármacos Cardiovasculares/uso terapêutico , Fármacos Cardiovasculares/farmacologia
5.
Cells ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891045

RESUMO

Porcine astrovirus (PAstV) has a potential zoonotic risk, with a high proportion of co-infection occurring with porcine epidemic diarrhea virus (PEDV) and other diarrheal pathogens. Despite its high prevalence, the cellular mechanism of PAstV pathogenesis is ill-defined. Previous proteomics analyses have revealed that the differentially expressed protein NOD-like receptor X1 (NLRX1) located in the mitochondria participates in several important antiviral signaling pathways in PAstV-4 infection, which are closely related to mitophagy. In this study, we confirmed that PAstV-4 infection significantly up-regulated NLRX1 and mitophagy in Caco-2 cells, while the silencing of NLRX1 or the treatment of mitophagy inhibitor 3-MA inhibited PAstV-4 replication. Additionally, PAstV-4 infection triggered the activation of the extracellular regulated protein kinases/ myosin light-chain kinase (ERK/MLCK) pathway, followed by the down-regulation of tight-junction proteins (occludin and ZO-1) as well as MUC-2 expression. The silencing of NLRX1 or the treatment of 3-MA inhibited myosin light-chain (MLC) phosphorylation and up-regulated occludin and ZO-1 proteins. Treatment of the ERK inhibitor PD98059 also inhibited MLC phosphorylation, while MLCK inhibitor ML-7 mitigated the down-regulation of mucosa-related protein expression induced by PAstV-4 infection. Yet, adding PD98059 or ML-7 did not affect NLRX1 expression. In summary, this study preliminarily explains that NLRX1 plays an important role in the disruption of intestinal mucosal function triggered by PAstV-4 infection via the ERK/MLC pathway. It will be helpful for further antiviral drug target screening and disease therapy.


Assuntos
Mucosa Intestinal , Quinase de Cadeia Leve de Miosina , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Mucosa Intestinal/patologia , Células CACO-2 , Humanos , Suínos , Quinase de Cadeia Leve de Miosina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Infecções por Astroviridae/virologia , Mamastrovirus/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Cell Signal ; 120: 111223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729320

RESUMO

BACKGROUND: Control of angiogenesis is widely considered a therapeutic strategy, but reliable control methods are still under development. Phosphorylation of myosin light chain 2 (MLC2), which regulates actin-myosin interaction, is critical to the behavior of vascular endothelial cells (ECs) during angiogenesis. MLC2 is phosphorylated by MLC kinase (MLCK) and dephosphorylated by MLC phosphatase (MLCP) containing a catalytic subunit PP1. We investigated the potential role of MLC2 in the pharmacological control of angiogenesis. METHODS AND RESULTS: We exposed transgenic zebrafish Tg(fli1a:Myr-mCherry)ncv1 embryos to chemical inhibitors and observed vascular development. PP1 inhibition by tautomycetin increased length of intersegmental vessels (ISVs), whereas MLCK inhibition by ML7 decreased it; these effects were not accompanied by structural dysplasia. ROCK inhibition by Y-27632 also decreased vessel length. An in vitro angiogenesis model of human umbilical vein endothelial cells (HUVECs) showed that tautomycetin increased vascular cord formation, whereas ML7 and Y-27632 decreased it. These effects appear to be influenced by regulation of cell morphology rather than cell viability or motility. Actin co-localized with phosphorylated MLC2 (pMLC2) was abundant in vascular-like elongated-shaped ECs, but poor in non-elongated ECs. pMLC2 was associated with tightly arranged actin, but not with loosely arranged actin. Moreover, knockdown of MYL9 gene encoding MLC2 reduced total MLC2 and pMLC2 protein and inhibited angiogenesis in HUVECs. CONCLUSION: The present study found that MLC2 is a pivotal regulator of angiogenesis. MLC2 phosphorylation may be involved in the regulation of of cell morphogenesis and cell elongation. The functionally opposite inhibitors positively or negatively control angiogenesis, probably through the regulating EC morphology. These findings may provide a unique therapeutic target for angiogenesis.


Assuntos
Miosinas Cardíacas , Células Endoteliais da Veia Umbilical Humana , Cadeias Leves de Miosina , Neovascularização Fisiológica , Piridinas , Peixe-Zebra , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Humanos , Animais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Piridinas/farmacologia , Quinase de Cadeia Leve de Miosina/metabolismo , Animais Geneticamente Modificados , Amidas/farmacologia , Quinases Associadas a rho/metabolismo , Azepinas/farmacologia , Actinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Angiogênese , Naftalenos
7.
J Cachexia Sarcopenia Muscle ; 15(3): 1003-1015, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725372

RESUMO

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.


Assuntos
Proteínas Musculares , Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Camundongos Knockout , Multiômica , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Quinase de Cadeia Leve de Miosina , Fosforilação , Proteômica/métodos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Int Immunopharmacol ; 133: 112140, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669952

RESUMO

BACKGROUND: Inflammation-induced intestinal barrier dysfunction is not only a pathological feature of Crohn's disease (CD) but also an important therapeutic target. Sclareol (SCL) is a nontoxic natural plant compound with anti-inflammatory effect, but its role in CD has not been established. METHODS: In vivo studies of mice with TNBS-induced colitis were carried out to evaluate the effects of SCL on CD-like colitis and intestinal barrier function. In vitro, a TNF-α-induced colonic organoid model was established to test the direct effect of SCL on inflammation-induced intestinal barrier injure and inflammatory response. The Nrf2/NF-κB/MLCK signalling was analysed to explore the mechanism of SCL. RESULTS: In vivo, SCL largely alleviated the colitis in TNBS mice, as evidenced by improvements in the weight loss, colitis symptoms, endoscopic score, macroscopic histological score, and histological inflammation score. Moreover, SCL significantly improved intestinal barrier dysfunction, manifested as reduced intestinal permeability and decreased intestinal bacterial translocation in TNBS mice. Importantly, SCL antagonised the intestinal mucosal inflammation while protecting tight junctions in TNBS mice. In vitro, SCL largely depressed pro-inflammatory cytokines levels and improved intestinal epithelial permeability in a TNF-α-induced colonic organoid model. In the context of CD, the protective effects of SCL against inflammation and intestinal barrier damage are at least partially results from the Nrf2 signalling activation and the NF-κB/MLCK signalling inhibition. CONCLUSIONS: SCL improved intestinal barrier dysfunction and alleviated CD-like colitis, possibly through modulation of Nrf2/NF-κB/MLCK signalling. In view of SCL's safety profile, there is hope that it will be useful in the clinic.


Assuntos
Colite , Doença de Crohn , Mucosa Intestinal , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Ácido Trinitrobenzenossulfônico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Humanos , Masculino , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Quinase de Cadeia Leve de Miosina/metabolismo , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Colo/patologia , Colo/efeitos dos fármacos , Diterpenos/uso terapêutico , Diterpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Aging (Albany NY) ; 16(7): 6135-6146, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546384

RESUMO

Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Proteína da Zônula de Oclusão-1 , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/tratamento farmacológico , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Camundongos , Masculino , Humanos , Quinase de Cadeia Leve de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Infarto da Artéria Cerebral Média/metabolismo
10.
Insect Mol Biol ; 33(4): 338-349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38411321

RESUMO

Myosin light chain kinase (MLCK) is a dedicated kinase of myosin regulatory light chain (RLC), playing an essential role in the regulation of muscle contraction and cell motility. Much of the knowledge about MLCK comes from the study of vertebrate MLCK, and little is known about insect MLCK. Here, we identified the single MLCK gene in the locust Locusta migratoria, which spans over 1400 kb, includes 62 exons and accounts for at least five transcripts. We found that the five distinct transcripts of the locust MLCK gene are expressed in a tissue-specific manner, including three muscle-specific isoforms and two generic isoforms. To characterise the kinase activity of locust MLCK, we recombinantly expressed LmMLCK-G, the smallest locust MLCK isoform, in insect Sf9 cells. We demonstrated that LmMLCK-G is a Ca2+/calmodulin-dependent kinase that specifically phosphorylates serine 50 of locust muscle myosin RLC (LmRLC). Additionally, we found that almost all LmRLC molecules in the flight muscle and the hindleg muscles of adult locusts are phosphorylated.


Assuntos
Proteínas de Insetos , Locusta migratoria , Quinase de Cadeia Leve de Miosina , Animais , Locusta migratoria/genética , Locusta migratoria/enzimologia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Células Sf9 , Filogenia , Músculos/metabolismo
11.
Food Res Int ; 178: 113938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309866

RESUMO

Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1ß and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.


Assuntos
Quinase de Cadeia Leve de Miosina , NF-kappa B , Humanos , Animais , Abelhas , NF-kappa B/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Células CACO-2 , Fermentação , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Pólen
12.
Cell Mol Life Sci ; 81(1): 17, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196046

RESUMO

Mesenchymal stem cells (MSCs) hold immense potential as multipotent stem cells and serve as a primary source of adipocytes. The process of MSC adipogenesis plays a crucial role in maintaining systemic metabolic homeostasis and has garnered significant attention in tissue bioengineering. N6-methyladenosine (m6A), the most prevalent RNA modification, is known to regulate cell fate and disease. However, the precise involvement of m6A readers in MSC adipogenesis remains unclear. In this study, we investigated the impact of IGF2BP3, a prominent m6A reader, on MSC adipogenesis. Our findings revealed a decrease in IGF2BP3 expression during the natural adipogenic differentiation of MSCs. Furthermore, IGF2BP3 was found to repress MSC adipogenesis by augmenting the levels of MYLK, a calcium/calmodulin-dependent kinase. Mechanistically, IGF2BP3 interacted with MYLK mRNA in an m6A-dependent manner, extending its half-life and subsequently inhibiting the phosphorylation of the ERK1/2 pathway, thereby impeding the adipogenic differentiation of MSCs. Additionally, we successfully achieved the overexpression of IGF2BP3 through intraperitoneal injection of adeno-associated virus serotype Rec2, which specifically targeted adipose tissue. This intervention resulted in reduced body weight and improved insulin resistance in high-fat diet mice. Overall, our study provides novel insights into the role of IGF2BP3 in MSC adipogenesis, shedding light on adipocyte-related disorders and presenting potential targets for related biomedical applications.


Assuntos
Adipogenia , Resistência à Insulina , Quinase de Cadeia Leve de Miosina , Proteínas de Ligação a RNA , Animais , Camundongos , Adipogenia/genética , Peso Corporal , Diferenciação Celular , Obesidade/genética , Quinase de Cadeia Leve de Miosina/genética , Proteínas de Ligação a RNA/genética
13.
J Biol Chem ; 300(2): 105652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224947

RESUMO

The physiological importance of cardiac myosin regulatory light chain (RLC) phosphorylation by its dedicated cardiac myosin light chain kinase has been established in both humans and mice. Constitutive RLC-phosphorylation, regulated by the balanced activities of cardiac myosin light chain kinase and myosin light chain phosphatase (MLCP), is fundamental to the biochemical and physiological properties of myofilaments. However, limited information is available on cardiac MLCP. In this study, we hypothesized that the striated muscle-specific MLCP regulatory subunit, MYPT2, targets the phosphatase catalytic subunit to cardiac myosin, contributing to the maintenance of cardiac function in vivo through the regulation of RLC-phosphorylation. To test this hypothesis, we generated a floxed-PPP1R12B mouse model crossed with a cardiac-specific Mer-Cre-Mer to conditionally ablate MYPT2 in adult cardiomyocytes. Immunofluorescence microscopy using the gene-ablated tissue as a control confirmed the localization of MYPT2 to regions where it overlaps with a subset of RLC. Biochemical analysis revealed an increase in RLC-phosphorylation in vivo. The loss of MYPT2 demonstrated significant protection against pressure overload-induced hypertrophy, as evidenced by heart weight, qPCR of hypertrophy-associated genes, measurements of myocyte diameters, and expression of ß-MHC protein. Furthermore, mantATP chase assays revealed an increased ratio of myosin heads distributed to the interfilament space in MYPT2-ablated heart muscle fibers, confirming that RLC-phosphorylation regulated by MLCP, enhances cardiac performance in vivo. Our findings establish MYPT2 as the regulatory subunit of cardiac MLCP, distinct from the ubiquitously expressed canonical smooth muscle MLCP. Targeting MYPT2 to increase cardiac RLC-phosphorylation in vivo may improve baseline cardiac performance, thereby attenuating pathological hypertrophy.


Assuntos
Miócitos Cardíacos , Quinase de Cadeia Leve de Miosina , Animais , Humanos , Camundongos , Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL
14.
J Biol Chem ; 300(2): 105643, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199574

RESUMO

Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.


Assuntos
Actinas , Actomiosina , Humanos , Actinas/metabolismo , Actomiosina/metabolismo , Citocinese , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Fator de Necrose Tumoral alfa/metabolismo
15.
Biomed Pharmacother ; 171: 116126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219386

RESUMO

The main cause of inflammatory bowel disease (IBD) is abnormal intestinal permeability due to the disruption of the tight junction of the intestinal barrier through a pathogen-mediated inflammatory mechanism and an imbalance of the gut microbiota. This study aimed to evaluate whether 2-ketoglutaric acid alleviated permeability dysfunction with tight junction localization, activated the transforming growth factor beta-activated kinase 1 (TAK1) inflammation pathway, and regulated the homeostasis of the intestinal microbiome in vitro and in vivo IBD model. Our findings revealed that 2-ketoglutaric acid significantly suppressed abnormal intestinal permeability, delocalization of tight junction proteins from the intestinal cell, expression of inflammatory cytokines, such as TNF-α, both in vitro and in vivo. 2-Ketoglutaric acid was found to directly bind to TAK1 and inhibit the TNF receptor-associated factor 6 (TRAF6)-TAK1 interaction, which is related to the activation of nuclear factor kappa B (NF-κB) pathways, thereby regulating the expression of mitogen-activated protein kinase. Dietary 2-ketoglutaric acid also alleviated gut microbiota dysbiosis and IBD symptoms, as demonstrated by improvements in the intestine length and the abundance of Ligilactobacillus, Coriobacteriaceae_UCG_002, and Ruminococcaceae_unclassified in mice with colitis. This study indicated that 2-ketoglutaric acid binds to TAK1 for activity inhibition which is related to the NF-κB pathway and alleviates abnormal permeability by regulating tight junction localization and gut microbiome homeostasis. Therefore, 2-ketoglutaric acid is an effective nutraceutical agent and prebiotic for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , NF-kappa B/metabolismo , Ácidos Cetoglutáricos/farmacologia , Mucosa Intestinal , Prebióticos , Quinase de Cadeia Leve de Miosina/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colite/metabolismo , Sulfato de Dextrana/farmacologia , Junções Íntimas , Camundongos Endogâmicos C57BL
16.
Am J Med Genet A ; 194(3): e63458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921548

RESUMO

Pathogenic variants in several genes involved in the function or regulation of smooth muscle cells (SMC) are known to predispose to congenital heart disease and thoracic aortic aneurysm and dissection (TAAD). Variants in MYLK are primarily known to predispose to TAAD, but a growing body of evidence points toward MYLK also playing an essential role in the regulation of SMC contraction outside the aorta. In this case report, we present a patient with co-occurrence of persistent ductus arteriosus (PDA) and thoracic aortic dissection. Genetic analyses revealed a novel splice acceptor variant (c.3986-1G > A) in MYLK, which segregated with disease in the family. RNA-analyses on fibroblasts showed that the variant induced skipping of exon 24, which resulted in an in-frame deletion of 101 amino acids. These findings suggest that MYLK-associated disease could include a broader phenotypic spectrum than isolated TAAD, including PDA and obstructive pulmonary disease. Genetic analyses could be considered in families with TAAD and PDA or obstructive pulmonary disease.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose/análogos & derivados , Permeabilidade do Canal Arterial , Canal Arterial , Pneumopatias Obstrutivas , Humanos , Masculino , Canal Arterial/diagnóstico por imagem , Canal Arterial/metabolismo , Canal Arterial/patologia , Linhagem , Dissecção Aórtica/genética , Permeabilidade do Canal Arterial/genética , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Proteínas de Ligação ao Cálcio/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
17.
Biomed Pharmacother ; 170: 115986, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056232

RESUMO

Infections like COVID-19 are the primary cause of death around the world because they can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis. Inflammatory cells serve as crucial protective barriers in these diseases. However, excessive accumulation of inflammatory cells is also one of the major causes of organ damage. The non-muscular myosin light chain kinase (nmMLCK) plays crucial of cytoskeletal components involved in endothelial cell-matrix and cell-cell adhesion, integrity, and permeability. Our previous investigations found that ML-7, a specific inhibitor of MLCK, promoted neutrophil apoptosis through various signaling pathways. In this study, we found that knockout of MLCK significantly promote apoptosis of neutrophils and macrophages in the BALF of the LPS-induced ALI, meanwhile it had no effect on the apoptosis of neutrophils in the circulatory system. RNA-sequencing revealed that the effect of MLCK knockout in inducing apoptosis of inflammatory cells was mediated through lysosomes. Administering ML-7 into the lungs significantly promoted neutrophil apoptosis, accelerating their clearance. In the LPS- or CLP-induced sepsis models, ML-7 administration significantly improves the apoptosis of inflammatory cells, especially neutrophils, at the infection site but had no impact on neutrophils in the circulatory system. ML-7 also significantly improved the survival rate of mice with LPS- or CLP-induced sepsis. Taken together, we found that MLCK plays a crucial role in the survival of inflammatory cells at the infection site. Inhibiting MLCK significantly induces apoptosis of inflammatory cells at the infection site, promoting inflammation resolution, with no impact of the circulatory system.


Assuntos
Lesão Pulmonar Aguda , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Apoptose , Lipopolissacarídeos/efeitos adversos , Pulmão , Quinase de Cadeia Leve de Miosina/metabolismo
18.
Kaohsiung J Med Sci ; 40(1): 11-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950620

RESUMO

Long noncoding RNA MYLK antisense RNA 1 (MYLK-AS1) is the crux in multiple diseases. Therefore, the purpose of this study was to investigate the possible mechanism of MYLK-AS1. A total of 62 colon cancer (CC) specimens and paired adjacent normal tissues were collected, and the expression of MYLK-AS1, microRNA (miR)-101-5p/cell division cycle 42 (CDC42) was detected. CC cell lines were transfected with MYLK-AS1, miR-101-5p, CDC42-related plasmids, and the biological functions and markers of epithelial-mesenchymal transition (EMT) were analyzed. The binding relationship between MYLK-AS1, miR-101-5p, and CDC42 was evaluated. In CC tissues and cell lines, MYLK-AS1 and CDC42 were highly expressed, and miR-101-5p was lowly expressed. Inhibition of MYLK-AS1 or upregulation of miR-101-5p can inhibit CC cell growth and EMT. miR-101-5p inhibited CDC42/N-wasp axis activation in CC cells by targeting CDC42. Knockdown of CDC42 or upregulation of miR-101-5p partially reversed the effects caused by upregulation of MYLK-AS1. MYLK-AS1, which is significantly upregulated in CC, may be a molecular sponge for miR-101-5p, and MYLK-AS1 promotes the activation of the CDC42/N-wasp axis in CC cells by targeting CDC42 through miR-101-5p, which in turn promotes tumor development. MYLK-AS1 may be a potential biomarker and target for CC therapy.


Assuntos
Neoplasias do Colo , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias do Colo/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação ao Cálcio/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
19.
Microvasc Res ; 152: 104643, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38081409

RESUMO

OBJECTIVE: This research was dedicated to investigating the impact of the SNHG12/microRNA (miR)-15b-5p/MYLK axis on the modulation of vascular smooth muscle cell (VSMC) phenotype and the formation of intracranial aneurysm (IA). METHODS: SNHG12, miR-15b-5p and MYLK expression in IA tissue samples from IA patients were tested by RT-qPCR and western blot. Human aortic vascular smooth muscle cells (VSMCs) were cultivated with H2O2 to mimic IA-like conditions in vitro, and the cell proliferation and apoptosis were measured by MTT assay and Annexin V/PI staining. IA mouse models were established by induction with systemic hypertension combined with elastase injection. The blood pressure in the tail artery of mice in each group was assessed and the pathological changes in arterial tissues were observed by HE staining and TUNEL staining. The expression of TNF-α and IL-1ß, MCP-1, iNOS, caspase-3, and caspase-9 in the arterial tissues were tested by RT-qPCR and ELISA. The relationship among SNHG12, miR-15b-5p and MYLK was verified by bioinformatics, RIP, RNA pull-down, and luciferase reporter assays. RESULTS: The expression levels of MYLK and SNHG12 were down-regulated and that of miR-15b-5p was up-regulated in IA tissues and H2O2-treated human aortic VSMCs. Overexpressed MYLK or SNHG12 mitigated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction, and overexpression of miR-15b-5p exacerbated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction. Overexpression of miR-15b-5p reversed the H2O2-treated VSMC phenotypic changes caused by SNHG12 up-regulation, and overexpression of MYLK reversed the H2O2-treated VSMC phenotypic changes caused by up-regulation of miR-15b-5p. Overexpression of SNHG12 reduced blood pressure and ameliorated arterial histopathological damage and VSMC apoptosis in IA mice. The mechanical analysis uncovered that SNHG12 acted as an endogenous RNA that competed with miR-15b-5p, thus modulating the suppression of its endogenous target, MYLK. CONCLUSION: Decreased expression of SNHG12 in IA may contribute to the increasing VSMC apoptosis via increasing miR-15b-5p expression and subsequently decreasing MYLK expression. These findings provide potential new strategies for the clinical treatment of IA.


Assuntos
Aneurisma Intracraniano , MicroRNAs , Animais , Humanos , Camundongos , Apoptose , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Peróxido de Hidrogênio/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina , Fenótipo , RNA não Traduzido/genética
20.
Basic Res Cardiol ; 119(1): 151-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145999

RESUMO

A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Camundongos , Animais , Gravidez , Feminino , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...