Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.265
Filtrar
2.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253786

RESUMO

Prostate cancer progression is driven by androgen receptor (AR) activity, which is a target for therapeutic approaches. Enzalutamide is an AR inhibitor that prolongs the survival of patients with advanced prostate cancer. However, resistance mechanisms arise and impair its efficacy. One of these mechanisms is the expression of AR-V7, a constitutively active AR splice variant. The Mediator complex is a multisubunit protein that modulates gene expression on a genome-wide scale. MED12 and cyclin-dependent kinase (CDK)8, or its paralog CDK19, are components of the kinase module that regulates the proliferation of prostate cancer cells. In this study, we investigated how MED12 and CDK8/19 influence cancer-driven processes in prostate cancer cell lines, focusing on AR activity and the enzalutamide response. We inhibited MED12 expression and CDK8/19 activity in LNCaP (AR+, enzalutamide-sensitive), 22Rv1 (AR-V7+, enzalutamide-resistant), and PC3 (AR-, enzalutamide-insensitive) cells. Both MED12 and CDK8/19 inhibition reduced cell proliferation in all cell lines, and MED12 inhibition reduced proliferation in the respective 3D spheroids. MED12 knockdown significantly inhibited c-Myc protein expression and signaling pathways. In 22Rv1 cells, it consistently inhibited the AR response, prostate-specific antigen (PSA) secretion, AR target genes, and AR-V7 expression. Combined with enzalutamide, MED12 inhibition additively decreased the AR activity in both LNCaP and 22Rv1 cells. CDK8/19 inhibition significantly decreased PSA secretion in LNCaP and 22Rv1 cells and, when combined with enzalutamide, additively reduced proliferation in 22Rv1 cells. Our study revealed that MED12 and CDK8/19 regulate AR activity and that their inhibition may modulate response to enzalutamide in prostate cancer.


Assuntos
Benzamidas , Proliferação de Células , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Complexo Mediador , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Receptores Androgênicos , Feniltioidantoína/farmacologia , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/genética , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Nat Commun ; 15(1): 6597, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097586

RESUMO

Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Fosforilação , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Ciclina H/metabolismo , Ciclina H/química , Ciclina H/genética , Cristalografia por Raios X , RNA Polimerase II/metabolismo , RNA Polimerase II/química , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , Modelos Moleculares , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Domínios Proteicos , Proteínas de Ciclo Celular
4.
Nat Commun ; 15(1): 7100, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155303

RESUMO

The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.


Assuntos
Quinases Ciclina-Dependentes , Replicação do DNA , Transcrição Gênica , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Quebras de DNA de Cadeia Dupla , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Dano ao DNA
5.
PLoS Comput Biol ; 20(8): e1012048, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093881

RESUMO

Budding yeast, Saccharomyces cerevisiae, is widely used as a model organism to study the genetics underlying eukaryotic cellular processes and growth critical to cancer development, such as cell division and cell cycle progression. The budding yeast cell cycle is also one of the best-studied dynamical systems owing to its thoroughly resolved genetics. However, the dynamics underlying the crucial cell cycle decision point called the START transition, at which the cell commits to a new round of DNA replication and cell division, are under-studied. The START machinery involves a central cyclin-dependent kinase; cyclins responsible for starting the transition, bud formation, and initiating DNA synthesis; and their transcriptional regulators. However, evidence has shown that the mechanism is more complicated than a simple irreversible transition switch. Activating a key transcription regulator SBF requires the phosphorylation of its inhibitor, Whi5, or an SBF/MBF monomeric component, Swi6, but not necessarily both. Also, the timing and mechanism of the inhibitor Whi5's nuclear export, while important, are not critical for the timing and execution of START. Therefore, there is a need for a consolidated model for the budding yeast START transition, reconciling regulatory and spatial dynamics. We built a detailed mathematical model (START-BYCC) for the START transition in the budding yeast cell cycle based on established molecular interactions and experimental phenotypes. START-BYCC recapitulates the underlying dynamics and correctly emulates key phenotypic traits of ~150 known START mutants, including regulation of size control, localization of inhibitor/transcription factor complexes, and the nutritional effects on size control. Such a detailed mechanistic understanding of the underlying dynamics gets us closer towards deconvoluting the aberrant cellular development in cancer.


Assuntos
Ciclo Celular , Modelos Biológicos , Saccharomyces cerevisiae , Ciclo Celular/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Replicação do DNA , Biologia Computacional , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Fosforilação , Proteínas Repressoras
6.
Planta ; 260(4): 78, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172243

RESUMO

MAIN CONCLUSION: Excess of KRP4 in the developing kernels in rice causes poor filling of the grains possibly through inhibition of CDKA;2 and CDKB;1 activity mediated by its interaction with CDKF;3. The potential yield of the rice varieties producing compact and heavy panicles bearing numerous spikelets is compromised because a high percentage of spikelets remain poorly filled, reportedly because of a high expression of KRPs that causes suppression of endosperm cell proliferation. To test the stated negative relationship between KRP expression and grain filling, Orysa;KRP4 was overexpressed under the control of seed-specific glutelin promoter in IR-64 rice variety that shows good grain filling. The transgenic lines showed more than 15-fold increase in expression of KRP4 in the spikelets concomitant with nearly 50% reduction in grain filling compared with the wild type without producing any significant changes on the other yield-related parameters like panicle length and the spikelets numbers that were respectively 30.23 ± 0.89 cm and 229.25 ± 33.72 per panicle in the wild type, suggesting a highly organ-targeted effect of the genetic transformation. Yeast two-hybrid test revealed CDKF;3 as the interacting partner of KRP4, and CDKF;3 was found to interact with CDKA;2, CDKB;1 and CDKD;1. Significant decrease in grain filling in the transgenic lines compared with the wild type due to overexpression of KRP4 could be because of suppression of the activity of CDKB;1 and CDKA;2 by inhibition of their phosphorylation directly by CDKF;3, or mediated through inhibition of phosphorylation of CDKD;1 by CDKF;3. The study thus indicated that suppression of expression of KRP(s) by genetic manipulation of their promoters could be an important way of improving the yield of the rice varieties bearing compact and heavy panicles.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Plantas Geneticamente Modificadas , Sementes , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regiões Promotoras Genéticas/genética , Técnicas do Sistema de Duplo-Híbrido , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética
7.
Genes (Basel) ; 15(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202439

RESUMO

Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The trans-activator protein Tax of HTLV-1 plays crucial roles in leukemogenesis by promoting proliferation of virus-infected cells through activation of growth-promoting genes. However, critical target genes are yet to be elucidated. We show here that Tax activates the gene coding for cyclin-dependent kinase 7 (CDK7), the essential component of both CDK-activating kinase (CAK) and general transcription factor TFIIH. CAK and TFIIH play essential roles in cell cycle progression and transcription by activating CDKs and facilitating transcriptional initiation, respectively. Tax induced CDK7 gene expression not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs) along with increased protein expression. Tax stimulated phosphorylation of CDK2 and RNA polymerase II at sites reported to be mediated by CDK7. Tax activated the CDK7 promoter through the NF-κB pathway, which mainly mediates cell growth promotion by Tax. Knockdown of CDK7 expression reduced Tax-mediated induction of target gene expression and cell cycle progression. These results suggest that the CDK7 gene is a crucial target of Tax-mediated trans-activation to promote cell proliferation by activating CDKs and transcription.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Produtos do Gene tax , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Ativação Transcricional , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Fosforilação
8.
Life Sci ; 353: 122914, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004275

RESUMO

AIMS: Colorectal cancer (CRC) remains a major global health issue, with metastatic cases presenting poor prognosis despite advances in chemotherapy and targeted therapy. Irinotecan, a key drug for advanced CRC treatment, faces challenges owing to the development of resistance. This study aimed to understand the mechanisms underlying irinotecan resistance in colorectal cancer. MAIN METHODS: We created a cell line resistant to irinotecan using HT29 cells. These resistant cells were utilized to investigate the role of the CDK7-MDK axis. We employed bulk RNA sequencing, conducted in vivo experiments with mice, and analyzed patient tissues to examine the effects of the CDK7-MDK axis on the cellular response to irinotecan. KEY FINDINGS: Our findings revealed that HT29 cells resistant to irinotecan, a crucial colorectal cancer medication, exhibited significant phenotypic and molecular alterations compared to their parental counterparts, including elevated stem cell characteristics and increased levels of cytokines and drug resistance proteins. Notably, CDK7 expression was substantially higher in these resistant cells, and targeting CDK7 effectively decreased their survival and tumor growth, enhancing irinotecan sensitivity. RNA-seq analysis indicated that suppression of CDK7 in irinotecan-resistant HT29 cells significantly reduced Midkine (MDK) expression. Decreased CDK7 and MDK levels, achieved through siRNA and the CDK7 inhibitor THZ1, enhanced the sensitivity of resistant HT29 cells to irinotecan. SIGNIFICANCE: Our study sheds light on how CDK7 and MDK influence irinotecan resistance in colorectal and highlights the potential of MDK-targeted therapies. We hypothesized that irinotecan sensitivity and overall treatment efficacy would improve by inhibiting MDK. This finding encourages a careful yet proactive investigation of MDK as a therapeutic target to enhance outcomes in colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Irinotecano , Irinotecano/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Células HT29 , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Proliferação de Células/efeitos dos fármacos
9.
Exp Biol Med (Maywood) ; 249: 10106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993199

RESUMO

Cyclin-dependent kinase-like 3 (CDKL3) has been identified as an oncogene in certain types of tumors. Nonetheless, its function in hepatocellular carcinoma (HCC) is poorly understood. In this study, we conducted a comprehensive analysis of CDKL3 based on data from the HCC cohort of The Cancer Genome Atlas (TCGA). Our analysis included gene expression, diagnosis, prognosis, functional enrichment, tumor microenvironment and metabolic characteristics, tumor burden, mRNA expression-based stemness, alternative splicing, and prediction of therapy response. Additionally, we performed a cell counting kit-8 assay, TdT-mediated dUTP nick-end Labeling staining, migration assay, wound healing assay, colony formation assay, and nude mouse experiments to confirm the functional relevance of CDKL3 in HCC. Our findings showed that CDKL3 was significantly upregulated in HCC patients compared to controls. Various bioinformatic analyses suggested that CDKL3 could serve as a potential marker for HCC diagnosis and prognosis. Furthermore, CDKL3 was found to be involved in various mechanisms linked to the development of HCC, including copy number variation, tumor burden, genomic heterogeneity, cancer stemness, and alternative splicing of CDKL3. Notably, CDKL3 was also closely correlated with tumor immune cell infiltration and the expression of immune checkpoint markers. Additionally, CDKL3 was shown to independently function as a risk predictor for overall survival in HCC patients by multivariate Cox regression analysis. Furthermore, the knockdown of CDKL3 significantly inhibited cell proliferation in vitro and in vivo, indicating its role as an oncogene in HCC. Taken together, our findings suggest that CDKL3 shows promise as a biomarker for the detection and treatment outcome prediction of HCC patients.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Animais , Camundongos , Camundongos Nus , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino , Proliferação de Células/genética
10.
J Clin Invest ; 134(16)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963708

RESUMO

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.


Assuntos
Quinase 4 Dependente de Ciclina , Humanos , Animais , Camundongos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Ciclo Celular
11.
Am J Physiol Renal Physiol ; 327(3): F426-F434, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991010

RESUMO

The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.


Assuntos
Injúria Renal Aguda , Quinases Ciclina-Dependentes , Fatores de Transcrição SOXC , Transdução de Sinais , Animais , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rabdomiólise/metabolismo , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
12.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
13.
JCO Precis Oncol ; 8: e2300639, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838276

RESUMO

PURPOSE: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied. MATERIALS AND METHODS: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing. RESULTS: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted-P < .05) and displayed a prevalence of >0.5%. The most common rearrangements within BCBMs involves cyclin-dependent kinase 12 (CDK12; 3.53%) as compared with the local BC (0.86%; adjusted-P = 7.1 × 10-8) and Non-CNS M specimens (0.68%; adjusted-P = 3.7 × 10-10). CDK12 rearrangements had a significantly higher frequency within human epidermal growth factor receptor 2 (HER2)-positive BCBMs (14.59%) compared with HER2-positive BCs (7.80%; P = 4.6 × 10-3) and HER2-positive Non-CNS M (7.87%; P = 4.8 × 10-3). CONCLUSION: The most common structural rearrangements involve CDK12 with the higher prevalence in HER2-positive BCBMs. These data support more detailed investigation of the role and importance of CDK12 rearrangements in BCBMs.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Quinases Ciclina-Dependentes , Rearranjo Gênico , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Receptor ErbB-2/genética , Quinases Ciclina-Dependentes/genética , Pessoa de Meia-Idade , Adulto , Idoso
14.
BMB Rep ; 57(7): 336-341, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38919013

RESUMO

Lung cancer is one of the most significant malignancies, with both high morbidity and mortality. CDK10 is closely related to cancer progression and metastasis. However, its role in lung cancer radioresistance demands further clarification. In this study, we demonstrated that CDK10 was downregulated in lung cancer tissues, and CDK10 expression level was associated with the clinical prognosis in lung cancer patients. We also found that silencing CDK10 promoted lung cancer cell proliferation, migration, and radioresistance. We further verified that silencing CDK10 facilitated the activation of JNK/c-Jun signaling, and c-Jun depletion could reverse the effects of CDK10 knockdown in lung cancer cells. Our findings revealed that CDK10 plays an important role in cell growth and radioresistance by inhibiting JNK/c-Jun signaling pathway in lung cancer. Therefore, CDK10 might be a promising therapeutic target in lung cancer. [BMB Reports 2024; 57(7): 336-341].


Assuntos
Proliferação de Células , Quinases Ciclina-Dependentes , Progressão da Doença , Regulação para Baixo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/genética , Regulação para Baixo/genética , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Tolerância a Radiação/genética , Movimento Celular/genética , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Prognóstico
15.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843329

RESUMO

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Neoplasias Pancreáticas , Fosfoproteínas , Proteoma , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células HEK293
16.
Structure ; 32(8): 1040-1048.e3, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870939

RESUMO

Cyclin dependent kinase 7 (CDK7) is an important therapeutic kinase best known for its dual role in cell cycle regulation and gene transcription. Here, we describe the application of protein engineering to generate constructs leading to high resolution crystal structures of human CDK7 in both active and inactive conformations. The active state of the kinase was crystallized by incorporation of an additional surface residue mutation (W132R) onto the double phosphomimetic mutant background (S164D and T170E) that yielded the inactive kinase structure. A novel back-soaking approach was developed to determine crystal structures of several clinical and pre-clinical inhibitors of this kinase, demonstrating the potential utility of the crystal system for structure-based drug design (SBDD). The crystal structures help to rationalize the mode of inhibition and the ligand selectivity profiles versus key anti-targets. The protein engineering approach described here illustrates a generally applicable strategy for structural enablement of challenging molecular targets.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Desenho de Fármacos , Modelos Moleculares , Engenharia de Proteínas , Inibidores de Proteínas Quinases , Humanos , Engenharia de Proteínas/métodos , Cristalografia por Raios X , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ligação Proteica , Sítios de Ligação
17.
Pathol Res Pract ; 258: 155333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723325

RESUMO

Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that do not code for proteins but play critical roles in gene regulation. One such role involves the modulation of cell cycle progression and proliferation through interactions with cyclin-dependent kinases (CDKs), key regulators of cell division. Dysregulation of CDK activity is a hallmark of cancer, contributing to uncontrolled cell growth and tumor formation. These lncRNA-CDK interactions are part of a complex network of molecular mechanisms underlying cancer pathogenesis, involving various signaling pathways and regulatory circuits. Understanding the interplay between lncRNAs, CDKs, and cancer biology holds promise for developing novel therapeutic strategies targeting these molecular targets for more effective cancer treatment. Furthermore, targeting CDKs, key cell cycle progression and proliferation regulators, offers another avenue for disrupting cancer pathways and overcoming drug resistance. This can open new possibilities for individualized treatment plans and focused therapeutic interventions.


Assuntos
Quinases Ciclina-Dependentes , Progressão da Doença , Neoplasias , RNA Longo não Codificante , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/enzimologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Transdução de Sinais/genética , Proliferação de Células/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia
18.
Poult Sci ; 103(7): 103833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810563

RESUMO

The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-ß signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-ß production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-ß production and play a facilitative role in IBDV replication.


Assuntos
Proteínas Aviárias , Galinhas , Quinases Ciclina-Dependentes , Replicação Viral , Animais , Galinhas/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/genética , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Imunidade Inata
19.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821049

RESUMO

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Regiões Promotoras Genéticas , RNA Polimerase II , Iniciação da Transcrição Genética , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Complexo Mediador/metabolismo , Complexo Mediador/genética , Células HeLa , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Células HEK293
20.
Clin Transl Med ; 14(5): e1678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736108

RESUMO

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Assuntos
Quinases Ciclina-Dependentes , Ferroptose , Neoplasias de Próstata Resistentes à Castração , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Progressão da Doença , Ferroptose/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Oxidiazóis/farmacologia , Piperidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...