Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.054
Filtrar
1.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982358

RESUMO

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Assuntos
Alternaria , Endófitos , Doenças das Plantas , Folhas de Planta , Solanum tuberosum , Talaromyces , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/isolamento & purificação , Endófitos/genética , Folhas de Planta/microbiologia , Hifas/crescimento & desenvolvimento , Antibiose , Quitinases/metabolismo , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos
2.
Environ Sci Pollut Res Int ; 31(32): 45217-45233, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958861

RESUMO

In accordance with the framework of the Circular Blue Bioeconomy in the Mediterranean region, the objective of this study was to evaluate the biotransformation of blue swimming crab (Portunus segnis) residues obtained from the port of Sfax by an extracellular chitinase produced by Nocardiopsis halophila strain TN-X8 isolated from Chott El Jerid (Tozeur, Tunisia). From the analysis of multiple extremophilic Actinomycetota, it was determined that strain TN-X8 exclusively utilized 60 g/L of raw blue swimming crab as its carbon and energy source, achieving a chitinase activity of approximately 950 U/mL following a 6-day incubation period at 40 °C. Pure chitinase, designated as ChiA-Nh30, was obtained after heat treatment, followed by ammonium sulfate fractionation and Sephacryl® S-200 column chromatography. The maximum ChiA-Nh30 activity was observed at pH 3 and 75 °C. Interestingly, compared with cyclohexamidine, ChiA-Nh30 showed a good antifungal effect against four pathogenic fungi. Furthermore, when using colloidal chitin as substrate, ChiA-Nh30 demonstrated a higher degree of catalytic efficiency than the commercially available Chitodextrinase®. In addition, ChiA-Nh30 could be immobilized by applying encapsulation and encapsulation-adsorption techniques. The kaolin and charcoal used acted as excellent binders, resulting in improved ChiA-Nh30 stability. For the immobilized ChiA-Nh30, the yield of N-acetyl-D-glucosamine monomers released from 20% (w/v) blue swimming crab residues increased by 3.1 (kaolin) and 2.65 (charcoal) times, respectively.


Assuntos
Braquiúros , Quitinases , Quitinases/metabolismo , Animais
3.
J Agric Food Chem ; 72(28): 15613-15623, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38978453

RESUMO

Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of ß-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.


Assuntos
Aspergillus oryzae , Quitina , Quitinases , Proteínas Fúngicas , Oligossacarídeos , Talaromyces , Quitina/metabolismo , Quitina/química , Quitinases/metabolismo , Quitinases/genética , Quitinases/química , Talaromyces/enzimologia , Talaromyces/genética , Talaromyces/química , Talaromyces/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/química , Hidrólise , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Biocatálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
4.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030474

RESUMO

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Assuntos
Antifúngicos , Candida auris , Quitinases , Testes de Sensibilidade Microbiana , Nanopartículas , Quitinases/farmacologia , Quitinases/metabolismo , Quitinases/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas/química , Candida auris/efeitos dos fármacos , Candida auris/genética , Enzimas Imobilizadas/química , Talaromyces/efeitos dos fármacos , Talaromyces/química , Talaromyces/enzimologia , Farmacorresistência Fúngica Múltipla , Hidrólise , Quitina/química , Quitina/farmacologia
5.
Sci Rep ; 14(1): 15704, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977706

RESUMO

Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat, and identified by 16S rRNA gene sequencing as Halomonas pacifica, H. stenophila, H. salifodinae, H. binhaiensis, Oceanobacillus oncorhynchi, and Bacillus paralicheniformis were investigated for their potentiality to produce extremozymes and compatible solute. The isolates showed the production of halophilic protease, cellulase, and chitinase enzymes ranging from 6.90 to 35.38, 0.004-0.042, and 0.097-0.550 U ml-1, respectively. The production of ectoine-compatible solute ranged from 0.01 to 3.17 mg l-1. Furthermore, the investigation of the ectoine-compatible solute production at the molecular level by PCR showed the presence of the ectoine synthase gene responsible for its biosynthesis in the isolates. Besides, it also showed the presence of glycine betaine biosynthetic gene betaine aldehyde dehydrogenase in the isolates. The compatible solute production by these isolates may be linked to their ability to produce extremozymes under saline conditions, which could protect them from salt-induced denaturation, potentially enhancing their stability and activity. This correlation warrants further investigation.


Assuntos
RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , RNA Ribossômico 16S/genética , Diamino Aminoácidos/biossíntese , Diamino Aminoácidos/metabolismo , Índia , Produtos Agrícolas/microbiologia , Celulase/metabolismo , Celulase/genética , Celulase/biossíntese , Quitinases/metabolismo , Quitinases/genética , Tolerância ao Sal/genética , Filogenia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bacillus/genética , Bacillus/metabolismo , Bacillus/isolamento & purificação
6.
Curr Microbiol ; 81(7): 217, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852107

RESUMO

The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.


Assuntos
Quitinases , Fermentação , Peptídeo Hidrolases , Quitinases/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Lipase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo , Fungos/metabolismo , Controle Biológico de Vetores/métodos , Beauveria/enzimologia , Beauveria/metabolismo , Estabilidade Enzimática
7.
Mar Drugs ; 22(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921598

RESUMO

To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.


Assuntos
Quitina , Quitinases , Micromonospora , Quitinases/metabolismo , Quitinases/química , Quitinases/isolamento & purificação , Quitinases/genética , Quitina/análogos & derivados , Quitina/metabolismo , Quitina/química , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Micromonospora/enzimologia , Micromonospora/genética , Hidrólise , Escherichia coli/genética , Quitosana/química , Estabilidade Enzimática
8.
Insect Biochem Mol Biol ; 171: 104150, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871132

RESUMO

Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, TuCht1 (group II), TuCht4 (group I) and TuCht10 (group IV) were identified, and their roles during molting process were investigated. TuCht1 was mainly expressed in the deutonymphal stage, while TuCht4 was mainly expressed in the nymphal stage and the highest expression level of TuCht10 was observed in the larvae. Feeding RNAi assays have shown that group I TuCht4 and group Ⅳ TuCht10 are involved in mite molting. Suppression of TuCht4 or TuCht10 resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes TuCht4 and TuCht10 are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.


Assuntos
Quitinases , Muda , Tetranychidae , Animais , Muda/genética , Quitinases/genética , Quitinases/metabolismo , Tetranychidae/genética , Tetranychidae/crescimento & desenvolvimento , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo
9.
Elife ; 122024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884443

RESUMO

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.


Assuntos
Quitina , Quitinases , Simulação de Dinâmica Molecular , Quitinases/metabolismo , Quitinases/química , Animais , Concentração de Íons de Hidrogênio , Camundongos , Quitina/metabolismo , Quitina/química , Conformação Proteica , Cristalografia por Raios X , Ligação Proteica , Ligantes , Cinética , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Modelos Moleculares
10.
Front Cell Infect Microbiol ; 14: 1359888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828265

RESUMO

Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.


Assuntos
Quitinases , Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Animais , Humanos , Camundongos , Quitinases/metabolismo , Quitinases/genética , Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/enzimologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
11.
Mol Biol Rep ; 51(1): 731, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869677

RESUMO

BACKGROUND: Chitinase (Chi) is a pathogenesis-related protein, also reported to play an important role in plant responses to abiotic stress. However, its role in response to abiotic stress in barley is still unclear. RESULTS: In this study, a total of 61 Chi gene family members were identified from the whole genome of wild barley EC_S1. Phylogenetic analysis suggested that these family genes were divided into five groups. Among these genes, four pairs of collinearity genes were discovered. Besides, abundant cis-regulatory elements, including drought response element and abscisic acid response element were identified in the promoter regions of HvChi gene family members. The expression profiles revealed that most HvChi family members were significantly up-regulated under drought stress, which was also validated by RT-qPCR measurements. To further explore the role of Chi under drought stress, HvChi22 was overexpressed in Arabidopsis. Compared to wild-type plants, overexpression of HvChi22 enhanced drought tolerance by increasing the activity of oxidative protective enzymes, which caused less MDA accumulation. CONCLUSION: Our study improved the understanding of the Chi gene family under drought stress in barley, and provided a theoretical basis for crop improvement strategies to address the challenges posed by changing environmental conditions.


Assuntos
Quitinases , Secas , Regulação da Expressão Gênica de Plantas , Hordeum , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Hordeum/genética , Quitinases/genética , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Plantas Geneticamente Modificadas/genética , Perfilação da Expressão Gênica/métodos , Resistência à Seca
12.
Arch Microbiol ; 206(7): 311, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900220

RESUMO

In this study, the pathogenicity of local Beauveria bassiana strains was elucidated using molecular and metabolomics methodologies. Molecular verification of the B. bassiana-specific chitinase gene was achieved via phylogenetic analysis of the Bbchit1 region. Subsequent metabolomic analyses employing UPLC-Q-TOF-MS revealed a different number of non-volatile metabolite profiles among the six B. bassiana strains. Bb6 produced the most non-volatile compounds (17) out of a total of 18, followed by Bb15 (16) and Bb12 (15). Similarly, Bb5, Bb8, and Bb21, three non-virulent B. bassiana strains, produced 13, 14, and 14 metabolites, respectively. But unique secondary metabolites like bassianolide and beauvericin, pivotal for virulence and mite management, were exclusively found in the virulent strains (Bb6, Bb12, and Bb15) of B. bassiana. The distinctive non-volatile metabolomic profiles of these strains underscore their pathogenicity against Tetranychus truncatus, suggesting their promise in bio-control applications.


Assuntos
Beauveria , Metabolômica , Filogenia , Tetranychidae , Beauveria/genética , Beauveria/patogenicidade , Beauveria/metabolismo , Animais , Tetranychidae/microbiologia , Tetranychidae/genética , Virulência , Quitinases/metabolismo , Quitinases/genética , Metaboloma , Metabolismo Secundário
13.
Carbohydr Res ; 541: 109170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830279

RESUMO

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Assuntos
Antifúngicos , Bacillus , Quitina , Quitinases , Quitinases/metabolismo , Quitinases/isolamento & purificação , Quitinases/química , Quitinases/farmacologia , Quitina/química , Quitina/metabolismo , Quitina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Bacillus/enzimologia , Fusarium/enzimologia , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Temperatura
14.
Plant Sci ; 346: 112161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879177

RESUMO

Paper mulberry (Broussonetia papyrifera) is a fast-growing tree known for its tolerance to diverse biotic and abiotic stresses. To explore genes combating Verticillium wilt, a devasting and formidable disease damage to cotton and many economically significant crops, we purified an antifungal protein, named BpAFP, from the latex of paper mulberry. Based on peptide fingerprint, we cloned the full cDNA sequence of BpAFP and revealed that BpAFP belongs to Class I chitinases, sharing 74 % identity with B. papyrifera leaf chitinase, PMAPII. We further introduced BpAFP into Arabidopsis, tobacco, and cotton. Transgenic plants exhibited significant resistance to Verticillium wilt. Importantly, BpAFP also demonstrated insecticidal activity against herbivorous pests, Plutella xylostella, and Prodenia litura, when feeding the larvae with transgenic leaves. Our finding unveils a dual role of BpAFP in conferring resistance to both plant diseases and lepidopterous pests.


Assuntos
Quitinases , Látex , Mariposas , Doenças das Plantas , Plantas Geneticamente Modificadas , Verticillium , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Quitinases/metabolismo , Quitinases/genética , Animais , Mariposas/fisiologia , Verticillium/fisiologia , Látex/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Filogenia , Arabidopsis/genética , Arabidopsis/microbiologia
15.
Front Biosci (Elite Ed) ; 16(2): 15, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38939914

RESUMO

BACKGROUND: Fall armyworm (Spodoptera frugiperda) is a highly destructive maize pest that significantly threatens agricultural productivity. Existing control methods, such as chemical insecticides and entomopathogens, lack effectiveness, necessitating alternative approaches. METHODS: Gut-associated bacteria were isolated from the gut samples of fall armyworm and screened based on their chitinase and protease-producing ability before characterization through 16S rRNA gene sequence analysis. The efficient chitinase-producing Bacillus licheniformis FGE4 and Enterobacter cloacae FGE18 were chosen to test the biocontrol efficacy. As their respective cell suspensions and extracted crude chitinase enzyme, these two isolates were applied topically on the larvae, supplemented with their feed, and analyzed for their quantitative food use efficiency and survivability. RESULTS: Twenty-one high chitinase and protease-producing bacterial isolates were chosen. Five genera were identified by 16S rRNA gene sequencing: Enterobacter, Enterococcus, Bacillus, Pantoea, and Kocuria. In the biocontrol efficacy test, the consumption index and relative growth rate were lowered in larvae treated with Enterobacter cloacae FGE18 by topical application and feed supplementation. Similarly, topical treatment of Bacillus licheniformis FGE4 to larvae decreased consumption index, relative growth rate, conversion efficiency of ingested food, and digested food values. CONCLUSION: The presence of gut bacteria with high chitinase activity negatively affects insect health. Utilizing gut-derived bacterial isolates with specific insecticidal traits offers a promising avenue to control fall armyworms. This research suggests a potential strategy for future pest management.


Assuntos
Quitinases , Spodoptera , Animais , Spodoptera/microbiologia , Quitinases/metabolismo , Quitinases/genética , RNA Ribossômico 16S/genética , Bactérias/enzimologia , Bacillus licheniformis/genética , Bacillus licheniformis/enzimologia , Enterobacter cloacae/genética , Enterobacter cloacae/enzimologia , Larva/microbiologia , Controle Biológico de Vetores/métodos , Trato Gastrointestinal/microbiologia
16.
Microb Cell Fact ; 23(1): 126, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698402

RESUMO

BACKGROUND: Hydrocarbon pollution stemming from petrochemical activities is a significant global environmental concern. Bioremediation, employing microbial chitinase-based bioproducts to detoxify or remove contaminants, presents an intriguing solution for addressing hydrocarbon pollution. Chitooligosaccharides, a product of chitin degradation by chitinase enzymes, emerge as key components in this process. Utilizing chitinaceous wastes as a cost-effective substrate, microbial chitinase can be harnessed to produce Chitooligosaccharides. This investigation explores two strategies to enhance chitinase productivity, firstly, statistical optimization by the Plackett Burman design approach to  evaluating the influence of individual physical and chemical parameters on chitinase production, Followed by  response surface methodology (RSM) which delvs  into the interactions among these factors to optimize chitinase production. Second, to further boost chitinase production, we employed heterologous expression of the chitinase-encoding gene in E. coli BL21(DE3) using a suitable vector. Enhancing chitinase activity not only boosts productivity but also augments the production of Chitooligosaccharides, which are found to be used as emulsifiers. RESULTS: In this study, we focused on optimizing the production of chitinase A from S. marcescens using the Plackett Burman design and response surface methods. This approach led to achieving a maximum activity of 78.65 U/mL. Subsequently, we cloned and expressed the gene responsible for chitinase A in E. coli BL21(DE3). The gene sequence, named SmChiA, spans 1692 base pairs, encoding 563 amino acids with a molecular weight of approximately 58 kDa. This sequence has been deposited in the NCBI GenBank under the accession number "OR643436". The purified recombinant chitinase exhibited a remarkable activity of 228.085 U/mL, with optimal conditions at a pH of 5.5 and a temperature of 65 °C. This activity was 2.9 times higher than that of the optimized enzyme. We then employed the recombinant chitinase A to effectively hydrolyze shrimp waste, yielding chitooligosaccharides (COS) at a rate of 33% of the substrate. The structure of the COS was confirmed through NMR and mass spectrometry analyses. Moreover, the COS demonstrated its utility by forming stable emulsions with various hydrocarbons. Its emulsification index remained stable across a wide range of salinity, pH, and temperature conditions. We further observed that the COS facilitated the recovery of motor oil, burned motor oil, and aniline from polluted sand. Gravimetric assessment of residual hydrocarbons showed a correlation with FTIR analyses, indicating the efficacy of COS in remediation efforts. CONCLUSIONS: The recombinant chitinase holds significant promise for the biological conversion of chitinaceous wastes into chitooligosaccharides (COS), which proved its potential in bioremediation efforts targeting hydrocarbon-contaminated sand.


Assuntos
Biodegradação Ambiental , Quitinases , Quitosana , Oligossacarídeos , Proteínas Recombinantes , Quitinases/metabolismo , Quitinases/genética , Oligossacarídeos/metabolismo , Animais , Quitosana/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Quitina/metabolismo , Hidrocarbonetos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Crustáceos/metabolismo , Emulsificantes/metabolismo , Emulsificantes/química
17.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790016

RESUMO

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Assuntos
Quitinases , Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Quitinases/genética , Quitinases/metabolismo , Resistência à Doença/genética , Fusarium/genética , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Irã (Geográfico) , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
18.
Curr Microbiol ; 81(7): 199, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822161

RESUMO

The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.


Assuntos
Acaricidas , Filogenia , Serratia , Animais , Serratia/genética , Acaricidas/farmacologia , Genoma Bacteriano , Controle Biológico de Vetores , Quitinases/genética , Quitinases/metabolismo , México
19.
Z Naturforsch C J Biosci ; 79(5-6): 125-136, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38760917

RESUMO

Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.


Assuntos
Quitina , Quitinases , Quitina/metabolismo , Quitina/química , Animais , Quitinases/metabolismo , Quitinases/química , Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/química , Controle Biológico de Vetores/métodos , Insetos/metabolismo , Fungos/metabolismo , Praguicidas/química , Praguicidas/metabolismo
20.
J Basic Microbiol ; 64(7): e2400112, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38770635

RESUMO

Dermatophytosis is a cutaneous infection that is able to degrade the keratinized tissues of the animal/human body, like skin, nails, and hair, causing chronic or subacute infection with the contact of some specific fungal strains. Trichophyton mentagrophytes are the most potential fungal pathogen causing dermatophytoses. The present study focuses on computationally based in silico antifungal activity of selected phytocompounds of Leucas aspera (Willd.) Link. against dermatophytic fungus, T. mentagrophytes. Validation and screening of derived phytocompounds is performed using Lipinski rule of five and toxicity test through Protox-II. Five target genes involved in dermatophytosis, induced by T. mentagrophytes are retrieved from the UniProt Database, and the corresponding proteins such as glucan 1,3-beta-glucosidase ARB_02797, Probable class II chitinase ARB_00204, squalene monooxygenase, actin, and ubiquitin are selected for in silico study. Three-dimensional structures of the target protein were computationally determined and validated through modeling tools and techniques due to the lack of validated protein structures in the database. Then, these proteins are used for in silico molecular docking through the AutoDock Vina tool to find out the promising phytocompounds. This study could be utilized in designing more effective drugs against T. mentagrophytes. Based on this work, a plant-based natural alternative can be added to the treatment of dermatophytosis rather than synthetic supplements.


Assuntos
Antifúngicos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Antifúngicos/farmacologia , Antifúngicos/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Arthrodermataceae/efeitos dos fármacos , Tinha/microbiologia , Tinha/tratamento farmacológico , Esqualeno Mono-Oxigenase/antagonistas & inibidores , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/química , Humanos , Simulação por Computador , Quitinases/metabolismo , Quitinases/antagonistas & inibidores , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Biologia Computacional , Actinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...