Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.094
Filtrar
1.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38994637

RESUMO

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Mioblastos , RNA Circular , Animais , Desenvolvimento Muscular/fisiologia , Camundongos , Mioblastos/metabolismo , Mioblastos/citologia , RNA Circular/genética , RNA Circular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Masculino , Linhagem Celular
2.
Funct Integr Genomics ; 24(4): 122, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980439

RESUMO

Renal cell carcinoma (RCC) is a malignant tumor originating from the epithelial cells of the renal tubules. The clear cell RCC subtype is closely linked to a poor prognosis due to its rapid progression. Circular RNA (circRNA) is a novel class of regulatory RNA molecules that play a role in the development of ccRCC, although their functions have not been fully elucidated. In this study, we identified a significant downregulation of circ-IP6K2 in ccRCC tissues based on data from the GSE100186 dataset. The decreased expression of circ-IP6K2 correlated with the progression of TNM stage and histological grade, and was also associated with decreased overall survival rates in ccRCC patients. Moreover, our findings revealed that circ-IP6K2 expression suppressed proliferation, migration, and invasion capabilities in vitro, and inhibited xenograft growth in vivo. Mechanistically, circ-IP6K2 acted as a sponge for miR-1292-5p in ccRCC cells, which in turn targeted the 3'UTR of CAMK2N1, leading to a decrease in its expression. CAMK2N1 was identified as a tumor suppressor that negatively regulated the ß-catenin/c-Myc oncogenic signaling pathway. Additionally, we confirmed a positive correlation between the expression of circ-IP6K2 and CAMK2N1 in ccRCC. Circ-IP6K2 functions to impede the progression of ccRCC by modulating the miR-1292-5p/CAMK2N1 axis. These findings shed new light on the molecular mechanisms driving ccRCC progression and suggest potential therapeutic targets for the treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Circular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Transdução de Sinais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino , Camundongos Nus , Movimento Celular , Progressão da Doença
3.
Curr Gene Ther ; 24(5): 395-409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005062

RESUMO

Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , RNA Circular , RNA Circular/genética , Humanos , Fibrose Pulmonar/genética , Biomarcadores , Animais , MicroRNAs/genética , Pulmão/patologia , Pulmão/metabolismo
4.
Autoimmunity ; 57(1): 2361749, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39007896

RESUMO

BACKGROUND: Dysregulated circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. OBJECTIVE: We aimed to explore the effect of hsa_circ_0044719 (circTRIM25) on the ferroptosis of chondrocytes. METHODS: Chondrocytes were treated with interleukin (IL)-1ß to generate cell model. Cellular behaviours were measured using cell counting kit-8, enzyme-linked immunosorbent assay, relevant kits, propidium iodide staining, and immunofluorescence assay. Quantitative real-time polymerase chain reaction was performed to examine the expression of circTRIM25, miR-138-5p, and cAMP responsive element binding protein 1 (CREB1), and their interactions were assessed using luciferase reporter analysis and RNA pull-down assay. RESULTS: CircTRIM25 was upregulated in OA tissues and IL-1ß-stimulated chondrocytes. Knockdown of circTRIM25 facilitated the viability and suppressed ferroptosis and inflammation of IL-1ß-induced cells. CircTRIM25 served as a sponge of miR-138-5p, which directly targets CREB1. Downregulation of miR-138-5p abrogated the effect induced by knockdown of circTRIM25. Furthermore, enforced CREB1 reversed the miR-138-5p induced effect. Moreover, knockdown of circTRIM25 attenuated cartilage injury in vivo. CONCLUSION: Silencing of circTRIM25 inhibited ferroptosis of chondrocytes via the miR-138-5p/CREB axis and thus attenuated OA progression.


Assuntos
Condrócitos , Condrogênese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , MicroRNAs , Osteoartrite , RNA Circular , MicroRNAs/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Circular/genética , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese/genética , Masculino , Camundongos , Animais , Interleucina-1beta/metabolismo , Transdução de Sinais , Feminino , Regulação da Expressão Gênica , Inativação Gênica
5.
BMC Cancer ; 24(1): 827, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992592

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS: In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS: Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION: Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Quimiocinas CC , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Circular , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , Animais , Camundongos , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos Nus , MicroRNAs/genética , Proliferação de Células/genética , Masculino
6.
Mol Cancer ; 23(1): 143, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992675

RESUMO

BACKGROUND: Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS: A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS: In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS: Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM , Neoplasias Hepáticas , NF-kappa B , RNA Circular , Proteínas de Ligação a RNA , Transdução de Sinais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , NF-kappa B/metabolismo , Camundongos , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Progressão da Doença , Apoptose/genética , Prognóstico , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Masculino , Feminino , Camundongos Nus
7.
Int J Biol Sci ; 20(9): 3570-3589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993556

RESUMO

Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Circular , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Feminino , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos
8.
Theranostics ; 14(10): 4058-4075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994030

RESUMO

Background: Knowledge about the pathogenesis of depression and treatments for this disease are lacking. Epigenetics-related circRNAs are likely involved in the mechanism of depression and have great potential as treatment targets, but their mechanism of action is still unclear. Methods: Circular RNA UBE2K (circ-UBE2K) was screened from peripheral blood of patients with major depressive disorder (MDD) and brain of depression model mice through high-throughput sequencing. Microinjection of circ-UBE2K overexpression lentivirus and adeno-associated virus for interfering with microglial circ-UBE2K into the mouse hippocampus was used to observe the role of circ-UBE2K in MDD. Sucrose preference, forced swim, tail suspension and open filed tests were performed to evaluate the depressive-like behaviors of mice. Immunofluorescence and Western blotting analysis of the effects of circ-UBE2K on microglial activation and immune inflammation. Pull-down-mass spectrometry assay, RNA immunoprecipitation (RIP) test and fluorescence in situ hybridization (FISH) were used to identify downstream targets of circ-UBE2K/ HNRNPU (heterogeneous nuclear ribonucleoprotein U) axis. Results: In this study, through high-throughput sequencing and large-scale screening, we found that circ-UBE2K levels were significantly elevated both in the peripheral blood of patients with MDD and in the brains of depression model mice. Functionally, circ-UBE2K-overexpressing mice exhibited worsened depression-like symptoms, elevated brain inflammatory factor levels, and abnormal microglial activation. Knocking down circ-UBE2K mitigated these changes. Mechanistically, we found that circ-UBE2K binds to heterogeneous nuclear ribonucleoprotein U (HNRNPU) to form a complex that upregulates the expression of the parental gene ubiquitin conjugating enzyme E2 K (UBE2K), leading to abnormal microglial activation and neuroinflammation and promoting the occurrence and development of depression. Conclusions: The findings of the present study revealed that the expression of circUBE2K, which combines with HNRNPU to form the circUBE2K/HNRNPU complex, is increased in microglia after external stress, thus regulating the expression of the parental gene UBE2K and mediating the abnormal activation of microglia to induce neuroinflammation, promoting the development of MDD. These results indicate that circ-UBE2K plays a newly discovered role in the pathogenesis of depression.


Assuntos
Transtorno Depressivo Maior , Modelos Animais de Doenças , Microglia , RNA Circular , Enzimas de Conjugação de Ubiquitina , Animais , RNA Circular/genética , RNA Circular/metabolismo , Microglia/metabolismo , Humanos , Camundongos , Masculino , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Depressão/genética , Depressão/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Pessoa de Meia-Idade
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 872-880, 2024 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-38946376

RESUMO

With the advance of research, non-coding RNA has been found to surpass the traditional definition to directly code functional proteins by coding sequence elements and binding with ribosomes. Among the non-coding RNAs, the function of circRNA encoded proteins has been most extensively studied. This study has used "circRNA", "encoded", and "translation" as the key words to search the PubMed and Web of Science databases. The retrieved literature was screened and traced, with the translation mechanism, related research methods, and correlation with diseases of circRNA reviewed. CircRNA can translate proteins through a non-cap-dependent pathway. Multiple molecular techniques, in particular mass spectrometry analysis, have important value in identifying unique peptide segments of circRNA encoded proteins for confirming their existence. The proteins encoded by the circRNA are involved in the pathogenesis of diseases of the digestive, neurological, urinary systems and the breast, and have the potential to serve as novel targets for disease diagnosis and treatment. This article has provided a comprehensive review for the basic theory, experimental methods, and disease-related research in the field of circRNA translation, which may provide clues for the identification of new diagnostic and therapeutic targets.


Assuntos
RNA Circular , RNA Circular/genética , Humanos , RNA/genética , Proteínas/genética , Animais , Biossíntese de Proteínas , Doença/genética
11.
Ren Fail ; 46(2): 2371059, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946402

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS: Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS: The expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS: Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.


Assuntos
Biologia Computacional , Glomerulonefrite , Células Mesangiais , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Animais , Camundongos , Células Mesangiais/metabolismo , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Análise de Sequência de RNA , Redes Reguladoras de Genes , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Mapas de Interação de Proteínas/genética , Doença Crônica , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica , Modelos Animais de Doenças
12.
Neoplasma ; 71(3): 279-288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38958715

RESUMO

Osteosarcoma (OS) is a common primary bone tumor in children and adolescents. Circular RNA (circRNA)-IARS acts as an oncogene in multiple human tumors. However, the circ-IARS function in OS is unclear. This research aimed to elucidate the roles and mechanisms of circ-IARS in OS. In this study, circ-IARS expressions were raised in OS tissues and cells. circ-IARS expressions were closely related to clinical stage and distant metastasis. Furthermore, overall survival rates were reduced in OS patients with high circ-IARS levels. Also, silencing circ-IARS weakened OS cell proliferation and invasion, yet enhanced cell ferroptosis. Mechanistically, circ-IARS targeted miR-188-5p to regulate RAB14 expressions in OS cells. Moreover, circ-IARS knockdown repressed OS cell proliferation, invasion, and induced ferroptosis, yet these impacts were abolished by co-transfection with anti-miR-188-5p or pcDNA-RAB14. Meanwhile, interference with circ-IARS reduced OS cell proliferation, and decreased RAB14 (a member of the RAS oncogene family), GPX4, and xCT (crucial ferroptosis regulators) expressions in vivo. In conclusion, circ-IARS facilitated OS progression via miR-188-5p/RAB14.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Ferroptose , MicroRNAs , Osteossarcoma , RNA Circular , Proteínas rab de Ligação ao GTP , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , MicroRNAs/genética , RNA Circular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Ferroptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Masculino , Linhagem Celular Tumoral , Feminino , Progressão da Doença , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica
13.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956466

RESUMO

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Assuntos
Autofagia , Movimento Celular , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core , Proteína Semelhante a ELAV 1 , MicroRNAs , RNA Circular , Proteína FUS de Ligação a RNA , Neoplasias Gástricas , Quinases Ativadas por p21 , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Proliferação de Células/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Animais , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Invasividade Neoplásica , Camundongos Endogâmicos BALB C
14.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984951

RESUMO

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Circular , Receptor IGF Tipo 1 , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Humanos , Células-Tronco/metabolismo , Masculino , Regulação da Expressão Gênica , Cicatrização/genética , Hipóxia Celular/genética , Transdução de Sinais , Regulação para Cima/genética , Neovascularização Fisiológica/genética
15.
J Exp Clin Cancer Res ; 43(1): 191, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987793

RESUMO

BACKGROUND: The potential involvement of circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification in the progression of Wilms tumor (WT) has not been fully elucidated. This study investigates the regulatory mechanisms and clinical significance of m6A-modified circMARK2 and its role in WT progression. METHODS: We identified dysregulated circRNAs through deep sequencing and validated their expression by qRT-PCR in WT tissues. The biological functions of circMARK2 were assessed using clone formation, transwell migration, and orthotopic animal models. To dissect the underlying mechanisms, we employed RNA immunoprecipitation, RNA pull-down, dual-luciferase reporter assays, Western blotting, and immunofluorescence and immunohistochemical staining. RESULTS: CircMARK2, upregulated in WT tissues, was found to be m6A-modified and promoted cytoplasmic export. It facilitated WT progression by stabilizing LIN28B mRNA through the circMARK2/IGF2BP2 interaction. In vitro and in vivo studies demonstrated that circMARK2 enhances the malignant behavior of WT cells. Clinically, higher circMARK2 levels in tumor tissues of WT patients were linked to increased tumor aggressiveness and reduced survival rates. CONCLUSIONS: Our study provides the first comprehensive evidence that m6A-modified circMARK2 contributes to WT progression by enhancing LIN28B mRNA stability, promoting cellular aggressiveness. CircMARK2 emerges as a potential biomarker for prognosis and a promising target for therapeutic intervention in WT, underscoring the clinical relevance of m6A modification in pediatric renal cancer.


Assuntos
Adenosina , Progressão da Doença , RNA Circular , Proteínas de Ligação a RNA , Tumor de Wilms , Tumor de Wilms/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/patologia , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , Camundongos , Animais , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Citoplasma/metabolismo , Linhagem Celular Tumoral , Prognóstico
16.
Clin Transl Med ; 14(7): e1759, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997803

RESUMO

BACKGROUND: CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS: Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS: We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCß. CONCLUSIONS: We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) ß in preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Proteoma , RNA Circular , Humanos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Feminino , RNA Circular/genética , RNA Circular/metabolismo , Placenta/metabolismo , Proteoma/metabolismo , Proteoma/genética
17.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000149

RESUMO

Gestational diabetes mellitus (GDM) is an intolerance of carbohydrate of any degree, which appears for the first time or is diagnosed during pregnancy. The objective of this study is to assess the differences in circular RNA (circRNA) in a Polish pregnant population with and without GDM. A total of 62 pregnant women, 34 with GDM and 28 controls, were enrolled in the study. Total RNAs were extracted from plasma and reverse transcription to complementary DNA (cDNA) was performed. A panel covering 271 amplicons, targeting both linear and circular as well as negative control gene transcripts, was used. Next-generation sequencing was used to evaluate the circRNA quantity. Data analysis was performed using the Coverage Analysis plugin in the Torrent Suite Software (Torrent Suite 5.12.3). A two-step normalization was performed by dividing each transcript read count by the total number of reads generated for the sample, followed by dividing the quantity of each transcript by ß-actin gene expression. Both circular and linear forms of RNAs were independently evaluated. A total of 57 transcripts were dysregulated between pregnant women with GDM and controls. Most of the targets (n = 25) were downregulated (cut-off ratio below 0.5), and one target showed a trend toward strong upregulation (ratio 1.45). A total of 39 targets were positively correlated with fasting plasma glucose (FPG), but none of the tested targets were correlated with insulin, CRP or HOMA-IR levels. Among the pregnant women with gestational diabetes, the relative quantity of hsa_circ_0002268 (PHACTR1) was approximately 120% higher than among healthy pregnant women: 0.046 [0.022-0.096] vs. 0.021 [0.007-0.047], respectively, (p = 0.0029). Elevated levels of hsa_circ_0002268 (PHACTR1) might be specific to the Polish population of pregnant women with GDM, making it useful as a potential molecular biomarker in the management of GDM in Poland.


Assuntos
Diabetes Gestacional , RNA Circular , Humanos , Feminino , Diabetes Gestacional/genética , Gravidez , RNA Circular/genética , Polônia , Adulto , Estudos de Casos e Controles , Biomarcadores/sangue , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Glicemia
18.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000605

RESUMO

Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.


Assuntos
Neoplasias , RNA não Traduzido , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Divisão Celular/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , RNA Circular/metabolismo , Genoma Mitocondrial , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
19.
J Mol Neurosci ; 74(3): 64, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981928

RESUMO

Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Circular , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Feminino , Idoso , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo
20.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969812

RESUMO

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Resistência a Herbicidas , Herbicidas , RNA Circular , RNA de Plantas , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , RNA Circular/genética , Herbicidas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , RNA de Plantas/genética , Resistência a Herbicidas/genética , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...