Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.410
Filtrar
1.
Commun Biol ; 7(1): 1086, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232115

RESUMO

Cell-free DNA (cfDNA) has emerged as a pivotal player in precision medicine, revolutionizing the diagnostic and therapeutic landscape. While its clinical applications have significantly increased in recent years, current cfDNA assays have limited ability to identify the active transcriptional programs that govern complex disease phenotypes and capture the heterogeneity of the disease. To address these limitations, we have developed a non-invasive platform to enrich and examine the active chromatin fragments (cfDNAac) in peripheral blood. The deconvolution of the cfDNAac signal from traditional nucleosomal chromatin fragments (cfDNAnuc) yields a catalog of features linking these circulating chromatin signals in blood to specific regulatory elements across the genome, including enhancers, promoters, and highly transcribed genes, mirroring the epigenetic data from the ENCODE project. Notably, these cfDNAac counts correlate strongly with RNA polymerase II activity and exhibit distinct expression patterns for known circadian genes. Additionally, cfDNAac signals across gene bodies and promoters show strong correlations with whole blood gene expression levels defined by GTEx. This study illustrates the utility of cfDNAac analysis for investigating epigenomics and gene expression, underscoring its potential for a wide range of clinical applications in precision medicine.


Assuntos
Ácidos Nucleicos Livres , Cromatina , Cromatina/genética , Cromatina/metabolismo , Humanos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Regiões Promotoras Genéticas , Epigênese Genética , Epigenômica/métodos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Nucleossomos/metabolismo , Nucleossomos/genética
2.
Proc Natl Acad Sci U S A ; 121(37): e2406854121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231208

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by cognitive decline and learning/memory impairment associated with neuronal cell loss. Estrogen-related receptor α (ERRα) and ERRγ, which are highly expressed in the brain, have emerged as potential AD regulators, with unelucidated underlying mechanisms. Here, we identified genome-wide binding sites for ERRα and ERRγ in human neuronal cells. They commonly target a subset of genes associated with neurodegenerative diseases, including AD. Notably, Dickkopf-1 (DKK1), a Wnt signaling pathway antagonist, was transcriptionally repressed by both ERRα and ERRγ in human neuronal cells and brain. ERRα and ERRγ repress RNA polymerase II (RNAP II) accessibility at the DKK1 promoter by modulating a specific active histone modification, histone H3 lysine acetylation (H3K9ac), with the potential contribution of their corepressor. This transcriptional repression maintains Wnt signaling activity, preventing tau phosphorylation and promoting a healthy neuronal state in the context of AD.


Assuntos
Doença de Alzheimer , Receptor ERRalfa Relacionado ao Estrogênio , Peptídeos e Proteínas de Sinalização Intercelular , Receptores de Estrogênio , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neurônios/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Via de Sinalização Wnt/genética
3.
Sci Adv ; 10(36): eadq0350, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241064

RESUMO

RNA polymerase II relies on a repetitive sequence domain (YSPTSPS) within its largest subunit to orchestrate transcription. While phosphorylation on serine-2/serine-5 of the carboxyl-terminal heptad repeats is well established, threonine-4's role remains enigmatic. Paradoxically, threonine-4 phosphorylation was only detected after transcription end sites despite functionally implicated in pausing, elongation, termination, and messenger RNA processing. Our investigation revealed that threonine-4 phosphorylation detection was obstructed by flanking serine-5 phosphorylation at the onset of transcription, which can be removed selectively. Subsequent proteomic analyses identified many proteins recruited to transcription via threonine-4 phosphorylation, which previously were attributed to serine-2. Loss of threonine-4 phosphorylation greatly reduces serine-2 phosphorylation, revealing a cross-talk between the two marks. Last, the function analysis of the threonine-4 phosphorylation highlighted its role in alternative 3'-end processing within pro-proliferative genes. Our findings unveil the true genomic location of this evolutionarily conserved phosphorylation mark and prompt a reassessment of functional assignments of the carboxyl-terminal domain.


Assuntos
RNA Polimerase II , Treonina , Transcrição Gênica , Fosforilação , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Treonina/metabolismo , Humanos , Processamento de Terminações 3' de RNA , Serina/metabolismo , Proteômica/métodos
4.
Nat Commun ; 15(1): 7985, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266551

RESUMO

The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. With CTD driving condensate formation on gene loci, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulators, forms distinct condensates from unphosphorylated CTD. Functional studies demonstrate CTD variants with diverse condensation properties exhibit differences in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths influence the assembly of RNA processing machinery and alternative splicing outcomes, which in turn affects cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.


Assuntos
Processamento Alternativo , RNA Polimerase II , Saccharomyces cerevisiae , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
5.
ACS Synth Biol ; 13(9): 3041-3045, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39198266

RESUMO

The ability to control gene expression is pivotal in genetic engineering and synthetic biology. However, in most nonmodel and pest insect species, empirical evidence for predictable modulation of gene expression levels is lacking. This knowledge gap is critical for genetic control systems, particularly in mosquitoes, where transgenic methods offer novel routes for pest control. Commonly, the choice of RNA polymerase II promoter (Pol II) is the primary method for controlling gene expression, but the options are limited. To address this, we developed a systematic approach to characterize modifications in translation initiation sequences (TIS) and 3' untranslated regions (UTR) of transgenes, enabling the creation of a toolbox for gene expression modulation in mosquitoes and potentially other insects. The approach demonstrated highly predictable gene expression changes across various cell lines and 5' regulatory sequences, representing a significant advancement in mosquito synthetic biology gene expression tools.


Assuntos
Regiões Promotoras Genéticas , Biologia Sintética , Transgenes , Animais , Biologia Sintética/métodos , Regiões Promotoras Genéticas/genética , Regiões 3' não Traduzidas/genética , Culicidae/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Insetos/genética , Animais Geneticamente Modificados , Iniciação Traducional da Cadeia Peptídica/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Linhagem Celular
6.
Mol Cell ; 84(17): 3209-3222.e5, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191261

RESUMO

RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.


Assuntos
Cromatina , Drosophila melanogaster , Nucleossomos , Transcrição Gênica , Animais , Nucleossomos/metabolismo , Nucleossomos/genética , Cromatina/metabolismo , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimologia , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Montagem e Desmontagem da Cromatina , RNA Polimerase III/metabolismo , RNA Polimerase III/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética
7.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125980

RESUMO

RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant ß-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the ß-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.


Assuntos
RNA Polimerase II , Transcrição Gênica , Globinas beta , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Globinas beta/genética , Globinas beta/metabolismo , DNA/metabolismo , DNA/genética , Regiões Promotoras Genéticas , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , RNA/genética , RNA/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular
8.
Biophys Chem ; 314: 107302, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39180852

RESUMO

Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.


Assuntos
Domínio Catalítico , RNA Polimerase II , RNA Polimerase I , RNA Polimerase I/metabolismo , RNA Polimerase I/química , RNA Polimerase II/metabolismo , RNA Polimerase II/química , Nucleotídeos/metabolismo , Nucleotídeos/química , Cinética , Termodinâmica
9.
Proc Natl Acad Sci U S A ; 121(36): e2318527121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190355

RESUMO

Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.


Assuntos
Domínio Catalítico , Magnésio , Simulação de Dinâmica Molecular , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Magnésio/metabolismo , Magnésio/química , Lasers , Conformação Proteica , Elétrons , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação
10.
BMC Res Notes ; 17(1): 219, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103906

RESUMO

OBJECTIVE: In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination. RESULTS: We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene's 3' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.


Assuntos
Nucleossomos , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucleossomos/metabolismo , Nucleossomos/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Alelos , Sequência de Bases , Regulação Fúngica da Expressão Gênica , Transcrição Gênica
11.
Nat Commun ; 15(1): 7100, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155303

RESUMO

The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.


Assuntos
Quinases Ciclina-Dependentes , Replicação do DNA , Transcrição Gênica , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Quebras de DNA de Cadeia Dupla , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Dano ao DNA
12.
Nat Commun ; 15(1): 7089, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154022

RESUMO

Transcription-blocking lesions (TBLs) stall elongating RNA polymerase II (Pol II), which then initiates transcription-coupled repair (TCR) to remove TBLs and allow transcription recovery. In the absence of TCR, eviction of lesion-stalled Pol II is required for alternative pathways to address the damage, but the mechanism is unclear. Using Protein-Associated DNA Damage Sequencing (PADD-seq), this study reveals that the p97-proteasome pathway can evict lesion-stalled Pol II independently of repair. Both TCR and repair-independent eviction require CSA and ubiquitination. However, p97 is dispensable for TCR and Pol II eviction in TCR-proficient cells, highlighting repair's prioritization over repair-independent eviction. Moreover, ubiquitination of RPB1-K1268 is important for both pathways, with USP7's deubiquitinase activity promoting TCR without abolishing repair-independent Pol II release. In summary, this study elucidates the fate of lesion-stalled Pol II, and may shed light on the molecular basis of genetic diseases caused by the defects of TCR genes.


Assuntos
Dano ao DNA , Reparo do DNA , RNA Polimerase II , Transcrição Gênica , Ubiquitinação , RNA Polimerase II/metabolismo , Humanos , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Reparo por Excisão
13.
Nat Commun ; 15(1): 6597, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097586

RESUMO

Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Fosforilação , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Ciclina H/metabolismo , Ciclina H/química , Ciclina H/genética , Cristalografia por Raios X , RNA Polimerase II/metabolismo , RNA Polimerase II/química , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , Modelos Moleculares , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Domínios Proteicos , Proteínas de Ciclo Celular
14.
Mol Cell ; 84(17): 3192-3208.e11, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173639

RESUMO

Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.


Assuntos
DNA Topoisomerases Tipo I , RNA Polimerase II , Proteínas de Ligação a RNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Ligação Proteica , DNA/metabolismo , DNA/genética , Transcrição Gênica , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , RNA/genética , Linhagem Celular Tumoral , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/genética , Células HCT116 , Conformação de Ácido Nucleico
15.
Nat Commun ; 15(1): 6751, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117705

RESUMO

Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Fatores de Transcrição , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Ligação Proteica , Proliferação de Células/efeitos dos fármacos , RNA Polimerase II/metabolismo , Células HEK293 , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores
16.
Mol Cell ; 84(15): 2799-2801, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121840
17.
Mol Cell ; 84(15): 2856-2869.e9, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121843

RESUMO

RNA polymerase II (RNA Pol II)-mediated transcription is a critical, highly regulated process aided by protein complexes at distinct steps. Here, to investigate RNA Pol II and transcription-factor-binding and dissociation dynamics, we generated endogenous photoactivatable-GFP (PA-GFP) and HaloTag knockins using CRISPR-Cas9, allowing us to track a population of molecules at the induced Hsp70 loci in Drosophila melanogaster polytene chromosomes. We found that early in the heat-shock response, little RNA Pol II and DRB sensitivity-inducing factor (DSIF) are reused for iterative rounds of transcription. Surprisingly, although PAF1 and Spt6 are found throughout the gene body by chromatin immunoprecipitation (ChIP) assays, they show markedly different binding behaviors. Additionally, we found that PAF1 and Spt6 are only recruited after positive transcription elongation factor (P-TEFb)-mediated phosphorylation and RNA Pol II promoter-proximal pause escape. Finally, we observed that PAF1 may be expendable for transcription of highly expressed genes where nucleosome density is low. Thus, our live-cell imaging data provide key constraints to mechanistic models of transcription regulation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , RNA Polimerase II , Transcrição Gênica , Fatores de Elongação da Transcrição , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Regiões Promotoras Genéticas , Sistemas CRISPR-Cas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Regulação da Expressão Gênica , Fosforilação , Ligação Proteica , Resposta ao Choque Térmico/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Nucleossomos/genética
18.
Mol Cell ; 84(16): 3005-3007, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178836

RESUMO

Complementary studies by Zhao et al.1 and Chen et al.2 reveal how an intrinsically disordered region in MED13 controls mutually exclusive binding of RNA Polymerase II and CDK8 kinase module to Mediator, switching Mediator and transcription activation on and off.


Assuntos
Quinase 8 Dependente de Ciclina , Complexo Mediador , RNA Polimerase II , Complexo Mediador/metabolismo , Complexo Mediador/genética , Complexo Mediador/química , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , Ativação Transcricional
19.
Elife ; 132024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177021

RESUMO

MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.


Assuntos
Cromatina , Proteína Proto-Oncogênica N-Myc , Regiões Promotoras Genéticas , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Humanos , Cromatina/metabolismo , Ligação Proteica , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFII/genética , Transcrição Gênica , Linhagem Celular Tumoral
20.
Genes Cells ; 29(9): 769-781, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972377

RESUMO

The Lys mutation of the canonical histone H3.1 Glu97 residue (H3E97K) is found in cancer cells. Previous biochemical analyses revealed that the nucleosome containing the H3E97K mutation is extremely unstable as compared to the wild-type nucleosome. However, the mechanism by which the H3E97K mutation causes nucleosome instability has not been clarified yet. In the present study, the cryo-electron microscopy structure of the nucleosome containing the H3E97K mutation revealed that the entry/exit DNA regions of the H3E97K nucleosome are disordered, probably by detachment of the nucleosomal DNA from the H3 N-terminal regions. This may change the intra-molecular amino acid interactions with the replaced H3 Lys97 residue, inducing structural distortion around the mutated position in the nucleosome. Consistent with the nucleosomal DNA end flexibility and the nucleosome instability, the H3E97K mutation exhibited reduced binding of linker histone H1 to the nucleosome, defective activation of PRC2 (the essential methyltransferase for facultative heterochromatin formation) with a poly-nucleosome, and enhanced nucleosome transcription by RNA polymerase II.


Assuntos
Microscopia Crioeletrônica , Histonas , Mutação , Neoplasias , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/genética , Histonas/metabolismo , Histonas/genética , Microscopia Crioeletrônica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , DNA/metabolismo , DNA/genética , DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...