Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.461
Filtrar
1.
Nat Commun ; 15(1): 5909, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003282

RESUMO

Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , DNA/metabolismo , DNA/genética , RNA/metabolismo , RNA/genética , Clivagem do DNA , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Edição de Genes/métodos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Francisella/genética
2.
Nat Commun ; 15(1): 5664, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969660

RESUMO

Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation.


Assuntos
Proteínas de Ligação ao GTP , Mitocôndrias , Ribossomos Mitocondriais , Fosforilação Oxidativa , Humanos , Ribossomos Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Células HEK293 , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Células HeLa
3.
RNA ; 30(7): 770-778, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570183

RESUMO

30S subunits become inactive upon exposure to low Mg2+ concentration, because of a reversible conformational change that entails nucleotides (nt) in the neck helix (h28) and 3' tail of 16S rRNA. This active-to-inactive transition involves partial unwinding of h28 and repairing of nt 921-923 with nt 1532-1534, which requires flipping of the 3' tail by ∼180°. Growing evidence suggests that immature 30S particles adopt the inactive conformation in the cell, and transition to the active state occurs at a late stage of maturation. Here, we target nucleotides that form the alternative helix (hALT) of the inactive state. Using an orthogonal ribosome system, we find that disruption of hALT decreases translation activity in the cell modestly, by approximately twofold, without compromising ribosome fidelity. Ribosomes carrying substitutions at positions 1532-1533 support the growth of Escherichia coli strain Δ7 prrn (which carries a single rRNA operon), albeit at rates 10%-20% slower than wild-type ribosomes. These mutant Δ7 prrn strains accumulate free 30S particles and precursor 17S rRNA, indicative of biogenesis defects. Analysis of purified control and mutant subunits suggests that hALT stabilizes the inactive state by 1.2 kcal/mol with little-to-no impact on the active state or the transition state of conversion.


Assuntos
Escherichia coli , Conformação de Ácido Nucleico , RNA Ribossômico 16S , Subunidades Ribossômicas Menores de Bactérias , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/genética , Biossíntese de Proteínas , Magnésio/metabolismo
4.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569543

RESUMO

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Assuntos
Bactérias , Doenças Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bactérias/metabolismo , Doenças Cardiovasculares/metabolismo , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Fezes/química , Estudos Longitudinais , Metaboloma , Metabolômica , RNA Ribossômico 16S/metabolismo
5.
Nat Commun ; 15(1): 3004, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589361

RESUMO

The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.


Assuntos
Microbioma Gastrointestinal , Lactente , Masculino , Adulto , Feminino , Humanos , Criança , Idoso , Recém-Nascido , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Multiômica , Metaboloma , Fezes/microbiologia , Mães
6.
J Transl Med ; 22(1): 369, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637862

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS: Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS: The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS: Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Fator de Transcrição STAT3 , Humanos , Camundongos , Animais , Colite Ulcerativa/terapia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Modelos Animais de Doenças , Inflamação , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colo , Proteína Forkhead Box O3/metabolismo
7.
Microbiome ; 12(1): 74, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622632

RESUMO

BACKGROUND: The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. METHODS: Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. RESULTS: Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. CONCLUSIONS: Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.


Assuntos
Microbiota , Animais , Cavalos/genética , Mucosa Intestinal/metabolismo , Metaboloma , Fezes/microbiologia , Anti-Inflamatórios não Esteroides/metabolismo , Inflamação/metabolismo , Fenilbutazona/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
8.
Eur J Med Res ; 29(1): 240, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641655

RESUMO

BACKGROUND: Immunological liver injury (ILI) is a common liver disease associated with the microbiota-gut-liver axis. Jian Gan powder (JGP) exhibits both protective and therapeutic effects on hepatitis virus-induced ILI in the clinic. However, the underlying mechanisms remain elusive. The aim of this study is to investigate the hepatoprotective effects and associated mechanisms of JGP in the context of gut microbiota, utilizing a mouse model of ILI. METHODS: The mouse model was established employing Bacillus Calmette-Guérin (BCG) plus lipopolysaccharide (LPS). Following treatment with JGP (7.5, 15, or 30 g/kg), serum, liver, and fresh fecal samples were analyzed. 16S rRNA gene sequencing and untargeted metabolomics profiling were performed to assess the role of JGP on the gut microbiota and its metabolites. RESULTS: JGP treatment markedly reduced serum IFN-γ, IL-6, IL-22, and hepatic p-STAT3 (phosphorylated transducer and activator of transcription-3) expression. In contrast, JGP increased the percentage of proliferating cell nuclear antigen-positive liver cells in treated mice. Fecal 16S rRNA gene sequencing revealed that JGP treatment restored the levels of Alloprevotella, Burkholderia-Caballeronia-Paraburkholderia, Muribaculum, Streptococcus, and Stenotrophomonas. Additionally, metabolomics analysis of fecal samples showed that JGP restored the levels of allylestrenol, eplerenone, phosphatidylethanolamine (PE) (P-20:0/0:0), sphingomyelin (SM) d27:1, soyasapogenol C, chrysin, and soyasaponin I. CONCLUSIONS: JGP intervention improves ILI by restoring gut microbiota and modifying its metabolic profiles. These results provide a novel insight into the mechanism of JGP in treating ILI and the scientific basis to support its clinical application.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/genética , Pós/metabolismo , Pós/farmacologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Fígado/metabolismo , Metaboloma
9.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599770

RESUMO

Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.


Assuntos
RNA de Transferência , Ribossomos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Microscopia Crioeletrônica , Ribossomos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Valina/análise , Valina/metabolismo
10.
J Transl Med ; 22(1): 222, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429821

RESUMO

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Humanos , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Colonoscopia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo
11.
Sci Rep ; 14(1): 6064, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480864

RESUMO

Rumen microbes are crucial in the anaerobic fermentation of plant polysaccharides to produce volatile fatty acids. However, limited information exists about the specific microbial species and strains in the rumen that affect carcass traits, and it is unclear whether there is a relationship between rumen metabolic functions and these traits. This study investigated the relationship between the rumen microbiome and carcass traits in beef cattle using 16S rRNA amplicon and shotgun sequencing. Metagenomic sequencing was used to compare the rumen microbiome between high-carcass weight (HW) and low-carcass weight (LW) cattle, and high-marbling (HM) and low-marbling (LM) cattle. Prokaryotic communities in the rumen of HW vs. LW and HM vs. LM were separated using 16S rRNA amplicon sequencing. Notably, shotgun metagenomic sequencing revealed that HW cattle had more methane-producing bacteria and ciliate protozoa, suggesting higher methane emissions. Additionally, variations were observed in the abundances of certain glycoside hydrolases and polysaccharide lyases involved in the ruminal degradation of plant polysaccharides between HW and LW. From our metagenome dataset, 807 non-redundant metagenome-assembled genomes (MAGs) of medium to high quality were obtained. Among these, 309 and 113 MAGs were associated with carcass weight and marbling, respectively.


Assuntos
Microbiota , Rúmen , Bovinos , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rúmen/microbiologia , Microbiota/genética , Fermentação , Polissacarídeos/metabolismo , Metano/metabolismo , Dieta/veterinária , Ração Animal
12.
Sci Rep ; 14(1): 5716, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459150

RESUMO

Arsenic (As) is a significant contaminant whose unrestrained entrance into different ecosystems has created global concern. At the cellular level, As forms unsteady intermediates with genetic materials and perturbs different metabolic processes and proper folding of proteins. This study was the first in this region to explore, isolate, screen systematically, and intensively characterize potent As-tolerant bacterial strains from natural environments near Raiganj town of Uttar Dinajpur, West Bengal. In this study, two potent Gram-negative bacterial strains with high tolerance to the poisonous form of As, i.e., As(III) and As(V), were obtained. Both the isolates were identified using biochemical tests and 16S rRNA gene sequencing. These bacteria oxidized toxic As(III) into less poisonous As(V) and depicted tolerance towards other heavy metals. Comparative metabolic profiling of the isolates in control and As-exposed conditions through Fourier-transform infrared spectroscopy showed metabolic adjustments to cope with As toxicity. The metal removal efficiency of the isolates at different pH showed that one of the isolates, KG1D, could remove As efficiently irrespective of changes in the media pH. In contrast, the efficiency of metal removal by PF14 was largely pH-dependent. The cell mass of both the isolates was also found to favourably adsorb As(III). Whole genome sequence analysis of the isolates depicted the presence of the arsRBC genes of the arsenic operon conferring resistance to As. Owing to their As(III) oxidizing potential, high As bioaccumulation, and tolerance to other heavy metals, these bacteria could be used to bioremediate and reclaim As-contaminated sites.


Assuntos
Arsênio , Metais Pesados , Arsênio/metabolismo , Bioacumulação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ecossistema , Bactérias , Metais Pesados/análise , Biodegradação Ambiental , Genômica
13.
Eur J Med Res ; 29(1): 183, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500195

RESUMO

BACKGROUND: Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS: Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-ß, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS: Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-ß and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION: KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Nefropatias , Obstrução Ureteral , Ratos , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ratos Sprague-Dawley , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Rim/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fibrose , Fator de Crescimento Transformador beta1
14.
Biomed Pharmacother ; 173: 116405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484559

RESUMO

BACKGROUND: Tangshen formula (TSF) has an ameliorative effect on hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD), but the role played by the gut microbiota in this process is unknown. METHOD: We conducted three batches of experiments to explore the role played by the gut microbiota: TSF administration, antibiotic treatment, and fecal microbial transplantation. NAFLD mice were induced with a high-fat diet to investigate the ameliorative effects of TSF on NAFLD features and intestinal barrier function. 16S rRNA sequencing and serum untargeted metabolomics were performed to further investigate the modulatory effects of TSF on the gut microbiota and metabolic dysregulation in the body. RESULTS: TSF ameliorated insulin resistance, hypercholesterolemia, lipid metabolism disorders, inflammation, and impairment of intestinal barrier function. 16S rRNA sequencing analysis revealed that TSF regulated the composition of the gut microbiota and increased the abundance of beneficial bacteria. Antibiotic treatment and fecal microbiota transplantation confirmed the importance of the gut microbiota in the treatment of NAFLD with TSF. Subsequently, untargeted metabolomics identified 172 differential metabolites due to the treatment of TSF. Functional predictions suggest that metabolisms of choline, glycerophospholipid, linoleic acid, alpha-linolenic acid, and arachidonic acid are the key metabolic pathways by which TSF ameliorates NAFLD and this may be influenced by the gut microbiota. CONCLUSION: TSF treats the NAFLD phenotype by remodeling the gut microbiota and improving metabolic profile, suggesting that TSF is a functional gut microbial and metabolic modulator for the treatment of NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fígado , Dieta Hiperlipídica/efeitos adversos , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL
15.
Chemosphere ; 355: 141806, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548087

RESUMO

Environmental challenges arising from organic pollutants pose a significant problem for modern societies. Efficient microbial resources for the degradation of these pollutants are highly valuable. In this study, the bacterial community structure of sludge samples from Taozi Lake (polluted by urban sewage) was studied using 16S rRNA sequencing. The bacterial phyla Proteobacteria, Bacteroidetes, and Chloroflexi, which are potentially important in organic matter degradation by previous studies, were identified as the predominant phyla in our samples, with relative abundances of 48.5%, 8.3%, and 6.6%, respectively. Additionally, the FAPROTAX and co-occurrence network analysis suggested that the core microbial populations in the samples may be closely associated with organic matter metabolism. Subsequently, sludge samples from Taozi Lake were subjected to enrichment cultivation to isolate organic pollutant-degrading microorganisms. The strain Sphingobacterium sp. GEMB-CSS-01, tolerant to sulfanilamide, was successfully isolated. Subsequent investigations demonstrated that Sphingobacterium sp. GEMB-CSS-01 efficiently degraded the endocrine-disrupting compound 17ß-Estradiol (E2). It achieved degradation efficiencies of 80.0% and 53.5% for E2 concentrations of 10 mg/L and 20 mg/L, respectively, within 10 days. Notably, despite a reduction in degradation efficiency, Sphingobacterium sp. GEMB-CSS-01 retained its ability to degrade E2 even in the presence of sulfanilamide concentrations ranging from 50 to 200 mg/L. The findings of this research identify potential microbial resources for environmental bioremediation, and concurrently provide valuable information about the microbial community structure and patterns within Taozi Lake.


Assuntos
Poluentes Ambientais , Sphingobacterium , Esgotos/microbiologia , Sphingobacterium/genética , Sphingobacterium/metabolismo , Lagos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Estradiol/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Sulfanilamidas
16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531780

RESUMO

Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.


Assuntos
Bivalves , Pectinidae , Animais , Simbiose , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias , Genômica , Bivalves/microbiologia , Pectinidae/genética , Genoma Bacteriano , Filogenia
17.
J Ethnopharmacol ; 328: 117956, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY: This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS: 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1ß, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iß, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS: GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1ß, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1ß. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS: GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Th17 , Ocludina/metabolismo , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos CBA , Colite/tratamento farmacológico , Citocinas/metabolismo , Trinitrobenzenos/metabolismo , Trinitrobenzenos/farmacologia , Trinitrobenzenos/uso terapêutico , Anti-Inflamatórios/farmacologia , Peso Corporal , Caspases/metabolismo , Modelos Animais de Doenças , Colo
18.
Nutrition ; 122: 112371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430843

RESUMO

OBJECTIVE: To deepen the understanding of the influence of diet on weight gain and metabolic disturbances, we examined associations between diet-related inflammation and body composition and fecal bacteria abundances in participants of the Nutritionists' Health Study. METHODS: Early-life, dietary and clinical data were obtained from 114 women aged ≤45 years. A validated food frequency questionnaire was used to calculate the energy-adjusted dietary inflammatory index (E-DII). Participants' data were compared by E-DII quartiles using ANOVA or Kruskal-Wallis. Associations of DXA-determined body composition with the E-DII were tested by multiple linear regression using DAG-oriented adjustments. Fecal microbiota was analyzed targeting the V4 region of the 16S rRNA gene. Spearman correlation coefficients were used to test linear associations; differential abundance of genera across the E-DII quartiles was assessed by pair-wise comparisons. RESULTS: E-DII score was associated with total fat (b=1.80, p<0.001), FMI (b=0.08, p<0.001) and visceral fat (b=1.19, p=0.02), independently of maternal BMI, birth type and breastfeeding. E-DII score was directly correlated to HOMA-IR (r=0.30; p=0.004), C-reactive protein (r=0.29; p=0.003) and to the abundance of Actinomyces, and inversely correlated to the abundance of Eubacterium.xylanophilum.group. Actinomyces were significantly more abundant in the highest (most proinflammatory) E-DII quartile. CONCLUSIONS: Association of E-DII with markers of insulin resistance, inflammation, body adiposity and certain gut bacteria are consistent with beneficial effects of anti-inflammatory diet on body composition and metabolic profile. Bacterial markers, such as Actinomyces, could be involved in the association between the dietary inflammation with visceral adiposity. Studies designed to explore how a pro-inflammatory diet affects both central fat deposition and gut microbiota are needed.


Assuntos
Adiposidade , Microbioma Gastrointestinal , Humanos , Feminino , RNA Ribossômico 16S/metabolismo , Dieta , Inflamação/metabolismo , Obesidade Abdominal/complicações , Bactérias/metabolismo
19.
Aquat Toxicol ; 270: 106903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503037

RESUMO

Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.


Assuntos
Microbiota , Poluentes Químicos da Água , Animais , Astacoidea/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Metaboloma , Bacteroidetes/genética , Homeostase , Intestinos , Concentração de Íons de Hidrogênio
20.
J Ethnopharmacol ; 328: 118091, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521427

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tianma-Gouteng granules (TGG) is a traditional Chinese medicine (TCM) compound that was first recorded by modern medical practitioner Hu Guangci in "New Meaning of the Treatment of Miscellaneous Diseases in Traditional Chinese Medicine". It is widely used to treat hypertensive vertigo, headache and insomnia. AIM OF STUDY: To investigate the antihypertensive effect of TGG and explore its mechanism. MATERIALS AND METHODS: Spontaneously hypertensive rats (SHR) were prepared a model of the ascendant hyperactivity of liver yang syndrome (AHLYS), blood pressure and general state of rats were recorded. A series of experiments were performed by enzyme-linked immunosorbent assay (ELISA), ultra high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), 16S rRNA sequencing, real-time fluorescence quantitative PCR (RT-qPCR), and enzymatic colorimetry. RESULTS: TGG can effectively lower blood pressure and improve related symptoms. TGG significantly reduced the levels of IL-1ß, IL-6, TNF-α, Renin and AngII. A total of 17 differential metabolites were found in plasma, with the two most potent metabolic pathways being glycerophospholipid metabolism and primary bile acid biosynthesis. After TGG intervention, 7 metabolite levels decreased and 10 metabolite levels increased. TGG significantly increased the relative abundance of Desulfovibio, Lachnoclostridium, Turicibacter, and decreased the relative abundance of Alluobaculum and Monoglobu. TGG also downregulated Farnesoid X Receptor (FXR) and Fibroblast Growth Factor 15 (FGF15) levels in the liver and ileum, upregulated Cholesterol 7α-hydroxylase (CYP7A1) levels, and regulated total bile acid (TBA) levels. CONCLUSION: TGG can regulate bile acid metabolism through liver-gut axis, interfere with related intestinal flora and plasma metabolites, decrease blood pressure, and positively influence the pathologic process of SHR with AHLYS. When translating animal microbiota findings to humans, validation studies are essential to confirm reliability and applicability, particularly through empirical human research.


Assuntos
Ácidos e Sais Biliares , Colesterol 7-alfa-Hidroxilase , Ratos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Pressão Sanguínea , Colesterol 7-alfa-Hidroxilase/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , RNA Ribossômico 16S/metabolismo , Reprodutibilidade dos Testes , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...