Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.535
Filtrar
1.
BMC Ecol Evol ; 24(1): 92, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965481

RESUMO

The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits. Our results show that root length, root mean diameter, and root area decline when drought is of severe or extreme intensity, whereas severe drought increases root tissue density. These patterns are most pronounced in trees compared to other plant functional groups. Moreover, the long duration of severe drought decreases root length in grasses and root mean diameter in legumes. The decline in root length and root diameter due to severe drought in trees was independent of drought duration. Our results suggest that morphological root traits respond strongly to increasing intensity of drought, which further depends on drought duration and may vary among plant functional groups. Our meta-analysis highlights the need for future studies to consider the interactive effects of drought intensity and drought duration for a better understanding of variable plant responses to drought.


Assuntos
Secas , Raízes de Plantas , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento
2.
Plant Physiol Biochem ; 213: 108827, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875779

RESUMO

Salvia miltiorrhiza is a widely utilized medicinal herb in China. Its roots serve as crucial raw materials for multiple drugs. The root morphology is essential for the quality of this herb, but little is known about the molecular mechanism underlying the root development in S. miltiorrhiza. Previous study reveals that the polar auxin transport is critical for lateral root development in S. miltiorrhiza. Whether the auxin efflux carriers PIN-FORMEDs (PINs) are involved in this process is worthy investigation. In this study, we identified nine SmPIN genes in S. miltiorrhiza, and their chromosome localization, physico-chemical properties, and phylogenetic relationship were analyzed. SmPINs were unevenly distributed across four chromosomes, and a variety of hormone responsive elements were detected in their promoter regions. The SmPIN proteins were divided into three branches according to the phylogenetic relationship. SmPINs with close evolutionary distance showed similar conserved motif features. The nine SmPINs showed distinct tissue-specific expression patterns and most of them were auxin-inducible genes. We generated SmPIN3 overexpression S. miltiorrhiza seedlings to investigate the function of SmPIN3 in the root development in this species. The results demonstrated that SmPIN3 regulated the root morphogenesis of S. miltiorrhiza by simultaneously affecting the lateral root development and the root anatomical structure. The root morphology, patterns of root xylem and phloem as well as the expressions of genes in the auxin signaling pathway all altered in the SmPIN3 overexpression lines. Our findings provide new insights for elucidating the regulatory roles of SmPINs in the auxin-mediated root development in S. miltiorrhiza.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Raízes de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Genes de Plantas
3.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877425

RESUMO

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Assuntos
Estudo de Associação Genômica Ampla , Fósforo , Raízes de Plantas , Locos de Características Quantitativas , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Solo/química , Fenótipo
4.
Ecotoxicol Environ Saf ; 280: 116591, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875819

RESUMO

Selenium (Se), as a vital stress ameliorant, possesses a beneficial effect on mediating detrimental effects of environmental threats. However, the mechanisms of Se in mitigating the deleterious effects of drought are still poorly understood. Gentiana macrophylla Pall. is a well-known Chinese medicinal herb, and its root, as the main medicinal site, has significant therapeutic effects. The purpose of this experiment was to investigate the functions of Se on the seedling growth and physiobiochemical characteristics in G. macrophylla subjected to drought stress. The changes in microstructure and chloroplast ultrastructure of G. macrophylla leaves under drought exposure were characterized by scanning electron microscopy (SEM), scanning electron microscopes and energy dispersive X-Ray spectroscope (SEM-EDX), and transmission electron microscopy (TEM), respectively. Results revealed that drought stress induced a notable increase in oxidative toxicity in G. macrophylla, as evidenced by elevated levels of hydrogen peroxide (H2O2), lipid peroxidation (MDA), enhanced antioxidative response, decreased plant photosynthetic function, and inhibited plant growth. Chloroplasts integrity with damaged membranes and excess osmiophilic granule were observed in the drought-stressed plants. Se supplementation notably recovered the stomatal morphology, anatomical structure damage, and chloroplast ultrastructure of G. macrophylla leaves caused by drought exposure. Exogenous Se application markedly enhanced SPAD, photosynthetic stomatal exchange parameters, and photosystem II activity. Se supplementation significantly promoted the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), while reducing levels of MDA, superoxide anion (O2-.) and H2O2, and improving membrane integrity. Furthermore, the ameliorative effects of Se were also suggested by increased contents of osmotic substances (soluble sugar and proline), boosted content of gentiopicroside and loganinic acid in roots, and alleviated the inhibition in plant growth and biomass. Fourier transform infrared (FTIR) analysis of Se-treated G. macrophylla roots under drought stress demonstrated that Se-stimulated metabolites including O-H, C-H, N-H, C-N, and CO functional groups, were involved in resisting drought stress. Correlation analysis indicated an obvious negative correlation between growth parameters and MDA, O2-. and H2O2 content, while a positive correlation with photosynthetic gas exchange parameters. Principal component analysis (PCA) results explained the total variance into two principal components contributing the maximum (93.50 %) among the drought exposure with or without Se due to the various experiment indexes. In conclusion, Se exerts beneficial properties on drought-induced detrimental effects in G. macrophylla by relieving oxidative stress, improving photosynthesis indexes, PSII activity, regulating anatomical changes, altering levels of gentiopicroside and loganinic acid, and promoting growth of drought-stressed G. macrophylla.


Assuntos
Secas , Gentiana , Fotossíntese , Folhas de Planta , Selênio , Gentiana/efeitos dos fármacos , Gentiana/fisiologia , Gentiana/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Antioxidantes/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia
5.
Oecologia ; 205(1): 121-133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698245

RESUMO

Fine roots are multifunctional organs that may change function with ageing or root branching events from primarily absorptive to resource transport and storage functions. It is not well understood, how fine root branching patterns and related root functional differentiation along the longitudinal root axis change with soil chemical and physical conditions. We examined the variation in fine root branching patterns (the relative frequency of 1st to 4th root orders) and root morphological and chemical traits of European beech trees with soil depth (topsoil vs. subsoil) and soil chemistry (five sites with acid to neutral/alkaline bedrock). Bedrock type and related soil chemistry had an only minor influence on branching patterns: base-poor, infertile sites showed no higher fine root branching than base-rich sites. The contribution of 1st-order root segments to total fine root length decreased at all sites from about 60% in the topsoil (including organic layer) to 45% in the lower subsoil. This change was associated with a decrease in specific root area and root N content and an increase in mean root diameter with soil depth, while root tissue density did not change consistently. We conclude that soil depth (which acts through soil physical and chemical drivers) influences the fine root branching patterns of beech much more than soil chemical variation across soil types. To examine whether changes in root function are indeed triggered by branching events or result from root ageing and diameter growth, spatially explicit root physiological and anatomical studies across root orders are needed.


Assuntos
Fagus , Raízes de Plantas , Solo , Raízes de Plantas/anatomia & histologia , Fagus/anatomia & histologia , Fenótipo
6.
Curr Opin Plant Biol ; 80: 102544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759482

RESUMO

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.


Assuntos
Tubérculos , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/anatomia & histologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/anatomia & histologia
7.
Physiol Plant ; 176(3): e14315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693794

RESUMO

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Assuntos
Brassica napus , Nitrogênio , Fenótipo , Raízes de Plantas , Locos de Características Quantitativas , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Locos de Características Quantitativas/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/anatomia & histologia , Brassica napus/metabolismo , Genótipo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Biomassa , Nitratos/metabolismo , Mapeamento Cromossômico , Variação Genética
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731906

RESUMO

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Assuntos
Mapeamento Cromossômico , Glycine max , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/genética , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Mapeamento Cromossômico/métodos , Fenótipo , Cromossomos de Plantas/genética , Ligação Genética , Genótipo
9.
Planta ; 259(6): 145, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709313

RESUMO

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Assuntos
Genótipo , Hordeum , Raízes de Plantas , Plântula , Solo , Hordeum/genética , Hordeum/fisiologia , Hordeum/crescimento & desenvolvimento , Hordeum/anatomia & histologia , Solo/química , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/anatomia & histologia , Fenótipo , Concentração de Íons de Hidrogênio , Melhoramento Vegetal , Etiópia , Variação Genética , Análise de Componente Principal , Ácidos/metabolismo
10.
Physiol Plant ; 176(3): e14336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783514

RESUMO

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Assuntos
Fenótipo , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Genes de Plantas/genética , Biomassa
11.
Ann Bot ; 134(1): 179-190, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642143

RESUMO

BACKGROUND AND AIMS: Plants have adapted to acquire phosphorus (P) primarily through advantageous root morphologies, responsive physiological pathways and associations with mycorrhizal fungi. Yet, to date, little information exists on how variation in arbuscular mycorrhizal (AM) colonization is coordinated with root morphological and physiological traits to enhance P acquisition. METHODS: Thirteen root functional traits associated with P acquisition were characterized at full bloom stage in pot cultures under low soil P availability conditions for 13 soybean genotypes contrasting in AM colonization. KEY RESULTS: Significant variation in root functional traits was observed in response to low P stress among the 13 tested soybean genotypes contrasting in AM colonization. Genotypes with low AM colonization exhibited greater root proliferation but with less advantageous root physiological characteristics for P acquisition. In contrast, genotypes with high AM colonization exhibited less root growth but higher phosphatase activities and carboxylate content in the rhizosheath. Root dry weights, and contents of carbon and P were positively correlated with root morphological traits of different root orders and whole root systems, and were negatively correlated with AM colonization of fine roots and whole root systems, as well as rhizosheath phosphatase activities and carboxylate contents. These results taken in combination with a significant positive correlation between plant P content and root morphological traits indicate that root morphological traits play a primary role in soybean P acquisition. CONCLUSIONS: The results suggest that efficient P acquisition involves tradeoffs among carbon allocation to root proliferation, mycorrhizal symbiosis or P-mobilizing exudation. Complementarity and complexity in the selection of P acquisition strategies was notable among soybean genotypes contrasting in AM colonization, which is closely related to plant C budgeting.


Assuntos
Genótipo , Glycine max , Micorrizas , Fósforo , Raízes de Plantas , Glycine max/microbiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Glycine max/anatomia & histologia , Micorrizas/fisiologia , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Solo/química , Carbono/metabolismo
12.
Planta ; 259(6): 131, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652171

RESUMO

MAIN CONCLUSION: The anatomical structures of Carex moorcroftii roots showing stronger plasticity during drought had a lower coefficient of variation in cell size in the same habitats, while those showing weaker plasticity had a higher coefficient of variation. The complementary relationship between these factors comprises the adaptation mechanism of the C. moorcroftii root to drought. To explore the effects of habitat drought on root anatomy of hygrophytic plants, this study focused on roots of C. moorcroftii. Five sample plots were set up along a soil moisture gradient in the Western Sichuan Plateau to collect experimental materials. Paraffin sectioning was used to obtain root anatomy, and one-way ANOVA, correlation analysis, linear regression analysis, and RDA ranking were applied to analyze the relationship between root anatomy and soil water content. The results showed that the root transverse section area, thickness of epidermal cells, exodermis and Casparian strips, and area of aerenchyma were significantly and positively correlated with soil moisture content (P < 0.01). The diameter of the vascular cylinder and the number and total area of vessels were significantly and negatively correlated with the soil moisture content (P < 0.01). The plasticity of the anatomical structures was strong for the diameter and area of the vascular cylinder and thickness of the Casparian strip and epidermis, while it was weak for vessel diameter and area. In addition, there was an asymmetrical relationship between the functional adaptation of root anatomical structure in different soil moisture and the variation degree of root anatomical structure in the same soil moisture. Therefore, the roots of C. moorcroftii can shorten the water transport distance from the epidermis to the vascular cylinder, increase the area of the vascular cylinder and the number of vessels, and establish a complementary relationship between the functional adaptation of root anatomical structure in different habitats and the variation degree of root anatomical structure in the same habitat to adapt to habitat drought. This study provides a scientific basis for understanding the response of plateau wetland plants to habitat changes and their ecological adaptation strategies. More scientific experimental methods should be adopted to further study the mutual coordination mechanisms of different anatomical structures during root adaptation to habitat drought for hygrophytic plants.


Assuntos
Carex (Planta) , Secas , Ecossistema , Raízes de Plantas , Solo , Água , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , China , Carex (Planta)/fisiologia , Carex (Planta)/anatomia & histologia , Água/fisiologia , Água/metabolismo , Adaptação Fisiológica
13.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676919

RESUMO

Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.


Assuntos
Cádmio , Pinus , Plântula , Xilema , Cádmio/metabolismo , Xilema/metabolismo , Xilema/fisiologia , Pinus/fisiologia , Pinus/anatomia & histologia , Pinus/metabolismo , Pinus/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/anatomia & histologia , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estresse Fisiológico , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos
14.
Microsc Res Tech ; 87(8): 1889-1903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38556928

RESUMO

This article describes detailed and novel data on the anatomy and histochemistry of leaves, stems, and roots of Camonea umbellata (L.) A.R.Simões & Staples in different environments for the identification of characters with taxonomical value and of ecological importance, with provision of light and scanning electron microscopy images. To analyze the characters, we collected samples of the vegetative organs of three individuals in each of three populations, which were in a grazing area, an urban environment, and a biological reserve. The main diagnostic anatomical markers for the identification of C. umbellata include amphistomatic leaves, tetracytic and brachyparatetracytic stomata, peltate trichomes, long simple trichomes, epidermis with striated cuticle ornamentation, mesophyll with acute borders, presence of druses, secretory channels, angular collenchyma, fibrous pericycle in the stem, intraxylary phloem in the vegetative organs, oil bodies throughout the midrib, petiole, stem and root, and epicuticular waxes of the crust and coiled rodlet types. Since the characters above did not show variation in the environments evaluated, we consider these characters taxonomically useful for the identification of C. umbellata. RESEARCH HIGHLIGHTS: The anatomy of the aerial vegetative organs of Camonnea umbellata retains common Convolvulaceae characters. The sinuosity of the epidermal cell walls and the density of trichomes in the epidermis of the petiole were visually variable characters among the analyzed individuals. Amphistomatic leaves, tetracytic and brachyparatetracytic stomata, peltate trichomes, epidermis with striated cuticle ornamentation, dorsiventral mesophyll with border acute, presence of druses, secretory structures, angular collenchyma, fibrous pericycle in the stem, intraxillary phloem, presence of oil bodies in all organs, and epicuticular waxes of the crust type and coiled rods were considered important anatomical markers for the recognition and correct identification of Camonea umbellata.


Assuntos
Microscopia Eletrônica de Varredura , Microscopia , Folhas de Planta , Raízes de Plantas , Caules de Planta , Tricomas , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Caules de Planta/anatomia & histologia , Caules de Planta/ultraestrutura , Tricomas/ultraestrutura , Tricomas/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/ultraestrutura , Estômatos de Plantas/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Epiderme Vegetal/ultraestrutura , Epiderme Vegetal/anatomia & histologia
15.
Sci Total Environ ; 926: 171691, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485024

RESUMO

This study explores the complex interplay between vegetation and soil stability on slopes to enhance soil-bioengineering and slope stabilization techniques. We assess the multifaceted role of vegetation in soil stabilization, examining processes such as canopy interception, stemflow, and the effects of hydrological and mechanical changes induced by root systems and above-ground plant structures. Key underlying mechanisms and their effects on stability are reported, along with the evaluation of significant plant indicators from historical research. Our review revealed that plant coverage and root architecture are critical in reducing soil erosion, with plant roots increasing soil cohesion and reducing soil detachability. Above-ground vegetation provides a protective layer that decreases the kinetic energy of raindrops and allows for higher infiltration. The importance of species-specific root traits is emphasized as pragmatic determinants of erosion prevention. Additionally, the effects of root reinforcement on shallow landslides are dissected to highlight their dualistic nature. While root-soil interactions typically increase soil shear strength and enhance slope stability, it is crucial to discriminate among vegetation types such as trees, shrubs, and grasses due to their distinct root morphology, tensile strength, root area ratio, and depth. These differences critically affect their impact on slope stability, where, for instance, robust shrub roots may fortify soil to greater depths, whereas grass roots contribute significantly to topsoil shear strength. Grasses and herbaceous plants effectively controlled surface erosion, whereas shrubs mainly controlled shallow landslides. Therefore, it is vital to conduct a study that combines shrubs with grasses or herbaceous plants. Both above-ground and below-ground plant indicators, including root and shoot indicators, were crucial for improving slope stability. To accurately evaluate the impact of plant species on slope stability reinforcement, it is necessary to study the combination of hydro-mechanical coupling with both ground plant indicators under specific conditions.


Assuntos
Plantas , Árvores , Solo/química , Raízes de Plantas/anatomia & histologia , Resistência ao Cisalhamento
16.
Plant Cell Environ ; 47(7): 2351-2361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38516728

RESUMO

Plants are able to naturally graft or inosculate their trunks, branches and roots together, this mechanism is used by humans to graft together different genotypes for a range of purposes. Grafts are considered successful if functional vascular connections between the two genotypes occur. Various techniques can evaluate xylem connections across the graft interface. However, these methods are generally unable to assess the heterogeneity and three-dimensional (3D) structure of xylem vessel connections. Here we present the use of X-ray micro-computed tomography to characterize the 3D morphology of grafts of grapevine. We show that xylem vessels form between the two plants of natural root and human-made stem grafts. The main novelty of this methodology is that we were able to visualize the 3D network of functional xylem vessels connecting the scion and rootstock in human-made stem grafts thanks to the addition of a contrast agent to the roots and improved image analysis pipelines. In addition, we reveal the presence of extensive diagonal xylem connections between the main axial xylem vessels in 2-year old grapevine stems. In conclusion, we present a method that has the potential to provide new insights into the structure and function of xylem vessels in large tissue samples.


Assuntos
Fenótipo , Caules de Planta , Vitis , Microtomografia por Raio-X , Xilema , Xilema/anatomia & histologia , Xilema/fisiologia , Microtomografia por Raio-X/métodos , Caules de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Imageamento Tridimensional/métodos
17.
Microsc Res Tech ; 87(8): 1693-1703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38500347

RESUMO

Larvae of the beetle subfamily Rutelinae are poorly described in the literature. Notably, the morphology of the larvae of Callistethus plagiicollis Fairmaire has not previously been analyzed. Here, we report for the first time that these larvae feed on the tubers and roots of Gastrodia elata Blume, an important traditional Chinese herbal medicine, which causes a reduction in the yield and economic value of G. elata. We employed scanning electron microscopy and light microscopy to investigate the morphology and occurrence regularity of egg, larvae, pupae, and adult specimens of C. plagiicollis collected from the G. elata planting base in Guizhou Province, China, with a focus on the ultrastructure of mature larvae. The results revealed one generation of C. plagiicollis per year in the study area and three instar stages of larvae. Mature larvae were identified by the following characteristics: raster without palidia with a large number of hamate setae, antennal apex containing seven sensilla basiconica, larval haptomerum containing eight sensilla styloconica and four enlarged heli, and seven longitudinally arranged stridulatory teeth on the stipes of the maxilla. The combination of scanning electron and light microscopy effectively revealed the difference between membranous and sclerotized structures, ensuring accurate identification of C. plagiicollis larvae. By determining the feeding characteristics and occurrence regularity of C. plagiicollis, this study has implications for improved pest management in G. elata crops. RESEARCH HIGHLIGHTS: We identified C. plagiicollis as a new pest of G. elata, a traditional Chinese medicine Scanning electron and light microscopy were combined to analyze the morphology of the mature larvae of C. plagiicollis for the first time We determined the feeding characteristics and occurrence regularity of C. plagiicollis, which can be used to develop effective pest management strategies.


Assuntos
Besouros , Larva , Microscopia Eletrônica de Varredura , Animais , Larva/anatomia & histologia , Larva/ultraestrutura , Besouros/anatomia & histologia , Besouros/ultraestrutura , China , Pupa/ultraestrutura , Pupa/anatomia & histologia , Microscopia , Raízes de Plantas/parasitologia , Raízes de Plantas/ultraestrutura , Raízes de Plantas/anatomia & histologia
18.
J Exp Bot ; 75(10): 2951-2964, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426564

RESUMO

Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.


Assuntos
Raízes de Plantas , Árvores , Xilema , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Árvores/fisiologia , Árvores/anatomia & histologia , Xilema/fisiologia , Xilema/anatomia & histologia , Água/metabolismo , Água/fisiologia , Clima Tropical , China
19.
Trends Plant Sci ; 29(7): 814-822, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402016

RESUMO

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.


Assuntos
Grão Comestível , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Solo/química , Nitrogênio/metabolismo
20.
Plant J ; 118(3): 696-716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193347

RESUMO

The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.


Assuntos
Cucumis sativus , Aprendizado Profundo , Raízes de Plantas , Plântula , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Produtos Agrícolas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...