Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.160
Filtrar
2.
Elife ; 132024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259595

RESUMO

Carnivores play key roles in maintaining ecosystem structure and function as well as ecological processes. Understanding how sympatric species coexist in natural ecosystems is a central research topic in community ecology and biodiversity conservation. In this study, we explored intra- and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores (wolf Canis lupus, snow leopard Panthera uncia, Eurasian lynx Lynx lynx) and mesocarnivores (Pallas's cat Otocolobus manul, red fox Vulpes vulpes, Tibetan fox Vulpes ferrilata) in Qilian Mountain National Park, China, using camera trapping data and DNA metabarcoding sequencing data. Our study showed that apex carnivore species had more overlap temporally (coefficients of interspecific overlap ranging from 0.661 to 0.900) or trophically (Pianka's index ranging from 0.458 to 0.892), mesocarnivore species had high dietary overlap with each other (Pianka's index ranging from 0.945 to 0.997), and apex carnivore and mesocarnivore species had high temporal overlap (coefficients of interspecific overlap ranging from 0.497 to 0.855). Large dietary overlap was observed between wolf and snow leopard (Pianka's index = 0.892) and Pallas's cat and Tibetan fox (Pianka's index = 0.997), suggesting the potential for increased resource competition for these species pairs. We concluded that spatial niche partitioning is likely to key driver in facilitating the coexistence of apex carnivore species, while spatial and temporal niche partitioning likely facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. Our findings consider partitioning across temporal, spatial, and dietary dimensions while examining diverse coexistence patterns of carnivore species in Qilian Mountain National Park, China. These findings will contribute substantially to current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.


Assuntos
Ecossistema , Raposas , Animais , China , Raposas/fisiologia , Parques Recreativos , Gatos , Lobos/fisiologia , Carnívoros/fisiologia , Dieta , Lynx/fisiologia , Análise Espaço-Temporal , Panthera/fisiologia , Biodiversidade
3.
Vet Parasitol Reg Stud Reports ; 54: 101086, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237230

RESUMO

Trichinella infections have been eliminated from pork where pigs are raised in biosecure facilities, but wildlife infections persist. Trichinella murrelli is the primary zoonotic species in wild carnivores in the United States, having been identified in several species of omnivores and carnivores. Here, we document its occurrence in seven of 21 (33.3%) red foxes (Vulpes vulpes) from six counties in Pennsylvania. Encysted Trichinella larvae were detected in muscle squashes (<5 g samples) of all seven foxes, and in histological sections of the tongue and limb muscle of three. Larvae from muscle squashes were pooled and tested in a multiplex PCR capable of differentiating all Trichinella species native to the USA; all samples contained only T. murrelli. This is the first identification of T. murrelli in red foxes from Pennsylvania, and the first such survey performed in the last three decades. Results indicate that Trichinella remains endemic in Pennsylvania wildlife and a threat to the health of those who consume wild game.


Assuntos
Raposas , Trichinella , Triquinelose , Animais , Raposas/parasitologia , Triquinelose/veterinária , Triquinelose/parasitologia , Triquinelose/epidemiologia , Pennsylvania/epidemiologia , Trichinella/isolamento & purificação , Trichinella/classificação , Feminino , Animais Selvagens/parasitologia , Masculino , Larva/classificação
4.
Sci Rep ; 14(1): 17868, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090258

RESUMO

Extreme ecosystem modification by humans has caused drastic reductions in populations and ranges of top mammalian predators, while simultaneously allowing synanthropic mesopredator species to expand. These conditions often result in inflated local densities of highly adaptable mesopredators that disrupt trophic dynamics and place unsustainable predation pressure on native prey populations. Colonization of a dominant predator may lead to top-down control of mesopredators and restore trophic balance. Coyotes are a novel colonizer of some coastal barrier islands of eastern North America, offering an opportunity to test how the addition of an apex predator impacts an established guild of mesopredators. To assess their trophic impact, we conducted 75,576 camera trapping hours over an 18-month study period, capturing > 1.5 million images across 108 coastal camera sites. Using two-species occupancy and habitat use models, we found sizeable effects of coyote habitat use on that of red foxes and free-ranging domestic cats, suggesting that coyotes function as apex predators in barrier island ecosystems. In fact, the only factor that determined the spatial pattern of highly ubiquitous red foxes was the sympatric habitat use of the largest carnivore in the food web-coyotes. That 'novel' apex predators can become established in coastal food webs illustrates the highly dynamic nature of conservation challenges for habitats and species at the edge of the sea.


Assuntos
Coiotes , Ecossistema , Cadeia Alimentar , Raposas , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Coiotes/fisiologia , Raposas/fisiologia , Mamíferos/fisiologia , Gatos , América do Norte
5.
Vet Med Sci ; 10(5): e1554, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39115453

RESUMO

BACKGROUND/OBJECTIVE: The cestode Echinococcus granulosus causes cystic echinococcosis, a zoonotic parasitic infection that constitutes a significant public health risk. This parasite has been documented to have potential reservoirs and carriers among wild canids, namely wolves, foxes and jackals. This study aimed to determine the prevalence and molecular characteristics of E. granulosus sensu lato species/genotypes among wild canids in three northern, northeastern and north-western Iran regions. METHODS: From 2019 to 2022, 93 wild canid carcasses (69 jackals), (22 foxes) and (2 wolves) were collected that were killed in car accidents or illnesses. Analyses of morphology and morphometry were performed to verify the presence of E. granulosus. To determine E. granulosus s.l. species/genotypes, polymerase chain reaction (PCR)-RFLP (ITS1) was performed utilizing the Bsh1236I (BstUI) restriction enzyme. COX1, NADH1 and ITS1 gene sequencing were also performed to confirm the PCR-RFLP results. RESULTS: During this study, 93 wild canids were examined, and 3.2% (95% CI: 0%-7%) of the 93 were infected with Echinococcus. The north-western region of Iran showed two out of 30 jackals (6.6%) infected with adult Echinococcus compared to one out of 35 jackals (2.8%) in the northern region. DNA from Echinococcus was detected in these individuals by PCR. Based on PCR-RFLP analysis of the ITS1 gene and sequencing of COX1, NADH1 and ITS1 gene, E. granulosus sensu stricto genotype was confirmed in the jackals that had been infected. CONCLUSION: Evidence shows that E. granulosus occurs in jackals in Iran, with the E. granulosus s.s. genotype being the most common. This parasite has been identified as a zoonotic parasite with a genotype that can be transmitted to livestock and humans. Establishing effective control measures to prevent the spread of echinococcosis and ensure public health is crucial.


Assuntos
Equinococose , Echinococcus granulosus , Genótipo , Animais , Echinococcus granulosus/genética , Irã (Geográfico)/epidemiologia , Equinococose/veterinária , Equinococose/epidemiologia , Equinococose/parasitologia , Chacais/parasitologia , Raposas/parasitologia , Lobos/parasitologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Polimorfismo de Fragmento de Restrição
6.
Res Vet Sci ; 179: 105381, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213743

RESUMO

Trichinella spp. are cosmopolitan parasites that infect a wide range of hosts, with wildlife being the main reservoir of these zoonotic nematodes, especially red foxes (Vulpes vulpes) and wolves (Canis lupus) due to their apex position in the food chain in most European countries. The aim of this study is to investigate the prevalence of Trichinella spp. in these wild canids and their epidemiological role in the Campania region (southern Italy). From 2017 to 2023, the carcasses of red foxes (n = 352) and wolves (n = 41) were collected as part of a health surveillance plan. Muscle samples were analysed individually by artificial digestion and four (1.1%) red foxes and nine (21.9%) wolves tested positive for Trichinella britovi. All Trichinella isolates were identified as T. britovi by multiplex PCR. Statistically significant differences in prevalence were found by province (p-value = 0.05) for red foxes and sampling years (p-value = 0.01) for wolves. The prevalence was lower in red foxes than in wolves, probably due to the longer life expectancy of wolves compared to red foxes and the role of wolves as apex predators compared to red foxes as meso-carnivores. The results obtained confirm the important role that these wild canids play in the circulation of the parasite.


Assuntos
Raposas , Trichinella , Triquinelose , Lobos , Animais , Raposas/parasitologia , Lobos/parasitologia , Itália/epidemiologia , Trichinella/isolamento & purificação , Triquinelose/epidemiologia , Triquinelose/veterinária , Triquinelose/parasitologia , Prevalência , Animais Selvagens/parasitologia
7.
Sci Rep ; 14(1): 20110, 2024 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209892

RESUMO

We tested if the personality of captive-raised western ringtail possums (Pseudocheirus occidentalis), and the impact of other variables would influence their survival after release using radiotelemetry. We hypothesised a greater survival for individuals: (i) bold; (ii) habituated in advance to food collected from the release area; (iii) juveniles instead of adults, because more easily tolerated by wild individuals, and (iv) released in new dreys (nests) as they would not have the strong odour of old dreys and would be less attractive to foxes. After 3 months of radio tracking, out of 143 possums released, 79 died: 51 (64.6%) were preyed upon by European red foxes (Vulpes vulpes). Bold or female individuals had higher survival rates than shy or male individuals (survival rate bold: 53%, shy: 41%, p = 0.046, hazard ratio = 0.352, 95% CI HR [0.126, 0.979]; survival rate females: 44%, males: 35%, p = 0.007, hazard ratio = 2.811, 95% CI HR [1.322, 5.976]). Shooting was a more effective fox control strategy to improve survival compared to baiting (p = 0.019, hazard ratio = 0.167, 95% CI HR [0.038, 0.742]). Our results demonstrate that the control of introduced predators is critical for the success of reintroductions of this critically endangered species.


Assuntos
Raposas , Animais , Feminino , Masculino , Raposas/fisiologia , Personalidade/fisiologia , Comportamento Animal , Comportamento Predatório , Taxa de Sobrevida , Espécies em Perigo de Extinção
8.
Acta Trop ; 258: 107337, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098751

RESUMO

Angiostrongylus vasorum is a metastrongylid parasite infecting wild canids and domestic dogs. Its patchy distribution, high pathogenicity and taxonomical classification makes the evolutionary history of A. vasorum intriguing and important to study. First larval stages of A. vasorum were recovered from feces of two grey foxes, Urocyon cinereoargenteus, from Costa Rica. Sequencing and phylogenetic and haplotypic analyses of the ITS2, 18S and cytochrome oxidase subunit 1 (cox1) fragments were performed. Then p- and Nei´s genetic distance, nucleotide substitution rates and species delimitation analyses were conducted with cox1 data of the specimens collected herein and other Angiostrongylus spp. Cophylogenetic congruence and coevolutionary events of Angiostrongylus spp. and their hosts were evaluated using patristic and phenetic distances and maximum parsimony reconciliations. Specimens from Costa Rica clustered in a separate branch from European and Brazilian A. vasorum sequences in the phylogenetic and haplotype network analyses using the ITS2 and cox1 data. In addition, cox1 p-distance of the sequences derived from Costa Rica were up to 8.6 % different to the ones from Europe and Brazil, a finding mirrored in Nei´s genetic distance PCoA. Species delimitation analysis supported a separate group with the sequences from Costa Rica, suggesting that these worms may represent cryptic variants of A. vasorum, a new undescribed taxon or Angiocaulus raillieti, a synonym species of A. vasorum described in Brazil. Moreover, nucleotide substitution rates in A. vasorum were up to six times higher than in the congener Angiostrongylus cantonensis. This finding and the long time elapsed since the last common ancestor between both species may explain the larger diversity in A. vasorum. Finally, cophylogenetic congruence was observed between Angiostrongylus spp. and their hosts, with cospeciation events occurring at deeper taxonomic branching of host order. Altogether, our data suggest that the diversity of the genus Angiostrongylus is larger than expected, since additional species may be circulating in wild canids from the Americas.


Assuntos
Angiostrongylus , Filogenia , Animais , Angiostrongylus/genética , Angiostrongylus/classificação , Angiostrongylus/isolamento & purificação , Costa Rica , Variação Genética , Infecções por Strongylida/parasitologia , Infecções por Strongylida/veterinária , Infecções por Strongylida/epidemiologia , Análise de Sequência de DNA , Fezes/parasitologia , Raposas/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , DNA de Helmintos/genética , Haplótipos , DNA Espaçador Ribossômico/genética , América , Cães
9.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000398

RESUMO

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Assuntos
Imuno-Histoquímica , Órgão Vomeronasal , Animais , Órgão Vomeronasal/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Raposas/genética , Raposas/metabolismo , Camundongos , Lobos/genética , Lobos/metabolismo , Cães , Canidae/genética
10.
PLoS One ; 19(7): e0306600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008475

RESUMO

Echinococcus spp. is an emerging zoonotic parasite of high concern. In Canada, an increase in the number of human and animal cases diagnosed has been reported, but information regarding the parasite's distribution in wildlife reservoir remains limited. A cross-sectional study was conducted to estimate the prevalence of wild canids infected with Echinococcus spp. and Echinococcus multilocularis in areas surrounding populated zones in Québec (Canada); to investigate the presence of areas at higher risk of infection; to evaluate potential risk factors of the infection; and as a secondary objective, to compare coproscopy and RT-PCR diagnostic tests for Taenia spp. and Echinococcus identification. From October 2020 to March 2021, fecal samples were collected from 423 coyotes (Canis latrans) and 284 red foxes (Vulpes vulpes) trapped in 12 administrative regions. Real-time PCR for molecular detection of genus Echinococcus spp. and species-specific Echinococcus multilocularis were performed. A total of 38 positive cases of Echinococcus spp., of which 25 were identified as E. multilocularis, were detected. Two high-risk areas of infection were identified. The prevalence of Echinococcus spp. was 22.7% (95% CI 11.5-37.8%) in the Montérégie centered high-risk area, 26.5% (95% CI 12.9-44.4%) in the Bas-St-Laurent high-risk area, and 3.0% (95%CI 1.8-4.7%) outside those areas. For E. multilocularis, a prevalence of 20.5% (95% CI 9.8-35.3%) was estimated in the high-risk area centered in Montérégie compared to 2.4% (95% CI 1.4-3.9%) outside. Logistic regression did not show any association of infection status with species, sex, or geolocation of capture (p > 0.05). This study shows the circulation of Echinococcus in a wildlife cycle in 9/12 administrative regions of Québec.


Assuntos
Animais Selvagens , Equinococose , Echinococcus , Raposas , Animais , Quebeque/epidemiologia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/parasitologia , Prevalência , Animais Selvagens/parasitologia , Echinococcus/genética , Echinococcus/isolamento & purificação , Estudos Transversais , Raposas/parasitologia , Echinococcus multilocularis/isolamento & purificação , Echinococcus multilocularis/genética , Fezes/parasitologia , Canidae/parasitologia , Coiotes/parasitologia
11.
Parasitol Int ; 102: 102913, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38885786

RESUMO

Thelazia callipaeda (Nematoda: Spirurida: Thelaziidae) parasitizes the eyes of dogs, cats, humans, and various wild mammals, and is transmitted by drosophilid flies. In Japan, T. callipaeda is considered an emerging parasite that has expanded its endemic region northward. However, reports of its detection in mammals other than domestic animals and humans are scarce. This study reports the detection of T. callipaeda in Japanese red fox (Vulpes vulpes japonica), masked palm civet (Paguma larvata), Japanese badger (Meles anakuma), Japanese black bear (Ursus thibetanus japonicus), raccoon (Procyon lotor), Japanese raccoon dog (Nyctereutes viverrinus), domestic dog (Canis lupus familiaris), domestic cat (Felis silvestris catus), and human. Of these, the Japanese red fox, masked palm civet, Japanese badger, and Japanese black bear have been reported as novel host records. Sequence analysis of the cytochrome c oxidase subunit I gene of T. callipaeda revealed two unique lineages specific to Japan, with no regional or host species differences. These results suggest a wide host range for T. callipaeda, highlighting the significant role of wildlife as a reservoir for this parasite in Japan.


Assuntos
Especificidade de Hospedeiro , Mustelidae , Infecções por Spirurida , Thelazioidea , Ursidae , Animais , Thelazioidea/isolamento & purificação , Thelazioidea/classificação , Thelazioidea/genética , Japão , Infecções por Spirurida/veterinária , Infecções por Spirurida/parasitologia , Infecções por Spirurida/epidemiologia , Humanos , Cães , Mustelidae/parasitologia , Ursidae/parasitologia , Gatos , Zoonoses/parasitologia , Raposas/parasitologia , Viverridae/parasitologia , Guaxinins/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/análise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Animais Selvagens/parasitologia
12.
J Environ Manage ; 365: 121554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905791

RESUMO

Vertebrate scavengers provide essential ecosystem services such as accelerating carrion decomposition by consuming carcasses, exposing tissues to microbial and invertebrate decomposers, and recycling nutrients back into the ecosystem. Some scavengers do not consume carcasses on site but rather scatter their remains in the surroundings, which might have important implications for nutrient transport, forensic investigations and the spread of diseases such as African Swine Fever. However, only a few studies have investigated and measured the scatter distances. Using wild boar (Sus scrofa) carcasses and limbs, we monitored scavenging behavior and measured scatter distances of mammals. We placed 20 carcasses (up to 25 kg) and 21 separate limbs equipped with very high frequency (VHF) transmitters and monitored scavenger activity using camera traps in a mountainous region in southeast Germany. Except for one carcass, all other carcasses and limbs were scattered. We measured 72 scatter distances (of 89 scattering events; mean = 232 m, maximum = 1250 m), of which 75% were dispersed up to 407 m. Scavengers moved scattered pieces into denser vegetation compared to the half-open vegetation at provisioning sites. Red foxes (Vulpes vulpes) were the most common scavenger species, contributing to 72 scattering events (58 measured scatter distances). Our results provide evidence of scatter distances farther than previously assumed and have far-reaching implications for disease management or forensic investigations, as the broader surroundings of carcasses must be included in search efforts to remove infectious material or relevant body parts for forensic analysis.


Assuntos
Sus scrofa , Animais , Suínos , Ecossistema , Febre Suína Africana , Alemanha , Raposas
13.
Virol Sin ; 39(4): 609-618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866203

RESUMO

Foxes are susceptible to SARS-CoV-2 in laboratory settings, and there have also been reports of natural infections of both SARS-CoV and SARS-CoV-2 in foxes. In this study, we assessed the binding capacities of fox ACE2 to important sarbecoviruses, including SARS-CoV, SARS-CoV-2, and animal-origin SARS-CoV-2 related viruses. Our findings demonstrated that fox ACE2 exhibits broad binding capabilities to receptor-binding domains (RBDs) of sarbecoviruses. We further determined the cryo-EM structures of fox ACE2 complexed with RBDs of SARS-CoV, SARS-CoV-2 prototype (PT), and Omicron BF.7. Through structural analysis, we identified that the K417 mutation can weaken the ability of SARS-CoV-2 sub-variants to bind to fox ACE2, thereby reducing the susceptibility of foxes to SARS-CoV-2 sub-variants. In addition, the Y498 residue in the SARS-CoV RBD plays a crucial role in forming a vital cation-π interaction with K353 in the fox ACE2 receptor. This interaction is the primary determinant for the higher affinity of the SARS-CoV RBD compared to that of the SARS-CoV-2 PT RBD. These results indicate that foxes serve as potential hosts for numerous sarbecoviruses, highlighting the critical importance of surveillance efforts.


Assuntos
Enzima de Conversão de Angiotensina 2 , Raposas , Ligação Proteica , SARS-CoV-2 , Animais , Raposas/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Microscopia Crioeletrônica , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Domínios Proteicos , Modelos Moleculares , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Sítios de Ligação , Mutação , Humanos
15.
PLoS Negl Trop Dis ; 18(6): e0012168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870100

RESUMO

BACKGROUND: Tacheng tick virus 2 (TcTV-2) is an emerging tick-borne virus belonging to the genus Uukuvirus in the family Phenuiviridae. Initially isolated in 2019 from a patient in Xinjiang Uygur Autonomous Region (XUAR), northwestern China, who developed fever and headache after a tick bite, TcTV-2 was concurrently molecularly detected in hard ticks across various countries, including China, Kazakhstan, Romania, and Turkey. This study conducted a retrospective epidemiological investigation of TcTV-2 infection. METHODOLOGY: In this retrospective cohort study, we collected samples from 47 tick-bitten patients, 984 herdsmen, 7 Asian badgers, 13 red foxes, and 168 Hyalomma asiaticum tick egg batches. Patients' samples were primarily analyzed by using high-throughput sequencing, targeting the V3-V4 region of the bacterial 16S rRNA gene and viral cDNA libraries. Typical tick-borne pathogens were further confirmed using RT-PCR and detected in Asian badgers, red foxes and Hy. asiaticum tick egg batches. We also conducted enzyme-linked immunosorbent assay (ELISA) to detected specific IgM and IgG antibodies against TcTV-2 in herdsmen. Phylogenetic analysis was performed to genetically characterize TcTV-2 detected in this study. PRINCIPAL FINDINGS: TcTV-2 was detected in various samples, including blood, urine, and throat swabs from 12.77% (6/47) tick-bitten patients. It was found in blood samples of 14.29% (1/7) of wild badgers, 7.69% (1/13) of red foxes, and 13.69% (23/168) of Hy. asiaticum egg batches. Furthermore, ELISA results revealed that 9.55% (94/984) of the serum samples (34 from males and 60 from females) were tested positive for TcTV-2-specific IgG, while 2.95% (29/984, 7 males and 22 females) showed positivity for TcTV-2-specific IgM. Additionally, 1.02% (10/984, 4 males and 6 females) of the sera tested positive for both TcTV-2-specific IgM and IgG. Phylogenetic analysis indicated that the TcTV-2 strains detected in this study were genetically similar, regardless of their origin and host species. CONCLUSIONS: Clinical symptoms of TcTV-2 infection in patients are nonspecific, with common symptoms including headache, fever, asthenia, vomiting, myalgia, rash, and meningitis-like signs. TcTV-2 can be detected in blood, urine, and throat swab samples of infected patients. Among local herdsmen, 9.55% tested positive for TcTV-2-specific IgG and 2.95% for TcTV-2-specific IgM. Importantly, TcTV-2 can be transovarially transmitted in Hy. asiaticum ticks, and the Asian badgers and red foxes are potential reservoirs of TcTV-2.


Assuntos
Filogenia , Estudos Retrospectivos , Animais , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , China/epidemiologia , Anticorpos Antivirais/sangue , Adulto Jovem , Imunoglobulina G/sangue , Adolescente , Imunoglobulina M/sangue , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/virologia , Doenças Transmitidas por Carrapatos/veterinária , Idoso , Criança , Picadas de Carrapatos/epidemiologia , Raposas/virologia
16.
Sci Rep ; 14(1): 14446, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910176

RESUMO

Coyotes (Canis latrans) are believed to contribute to declining kit fox (Vulpes macrotis) numbers in the Great Basin desert through intraguild predation. Intraguild prey have been shown to exhibit adaptive compromise, whereby an animal increases selection for risky, but food-rich areas during times of food stress (i.e. winter). We evaluated the habitat selection of kit foxes in the Great Basin desert to elucidate if they demonstrated adaptive compromise as a method of coexisting with coyotes. We created 2nd order resource selection functions to analyze kit fox habitat selection associated with coyote relative probability of use (RPU), prey abundance, and type of soil substrate. In the summer, we found that kit fox selection for areas of relatively more abundant prey was not significant, and there was a small positive selection for coyote RPU. In the winter, we found a positive relationship between kit fox selection and prey abundance as well as a stronger selection for coyote RPU. These findings do follow the pattern of adaptive compromise. We also found kit foxes selected for silty and sandy soils, which are conducive to den construction, as they use dens seasonally for breeding but also year-round for multiple uses, including refugia from predators and extreme heat. Soil substrate appeared to be an important factor impacting kit fox habitat selection.


Assuntos
Coiotes , Clima Desértico , Ecossistema , Raposas , Comportamento Predatório , Estações do Ano , Animais , Raposas/fisiologia , Coiotes/fisiologia , Comportamento Predatório/fisiologia , Solo
17.
Mol Ecol ; 33(13): e17418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847182

RESUMO

Human-facilitated introductions of nonnative populations can lead to secondary contact between allopatric lineages, resulting in lineage homogenisation or the formation of stable hybrid zones maintained by reproductive barriers. We investigated patterns of gene flow between the native Sacramento Valley red fox (Vulpes vulpes patwin) and introduced conspecifics of captive-bred origin in California's Central Valley. Considering their recent divergence (20-70 kya), we hypothesised that any observed barriers to gene flow were primarily driven by pre-zygotic (e.g. behavioural differences) rather than post-zygotic (e.g. reduced hybrid fitness) barriers. We also explored whether nonnative genes could confer higher fitness in the human-dominated landscape resulting in selective introgression into the native population. Genetic analysis of red foxes (n = 682) at both mitochondrial (cytochrome b + D-loop) and nuclear (19,051 SNPs) loci revealed narrower cline widths than expected under a simulated model of unrestricted gene flow, consistent with the existence of reproductive barriers. We identified several loci with reduced introgression that were previously linked to behavioural divergence in captive-bred and domestic canids, supporting pre-zygotic, yet possibly hereditary, barriers as a mechanism driving the narrowness and stability of the hybrid zone. Several loci with elevated gene flow from the nonnative into the native population were linked to genes associated with domestication and adaptation to human-dominated landscapes. This study contributes to our understanding of hybridisation dynamics in vertebrates, particularly in the context of species introductions and landscape changes, underscoring the importance of considering how multiple mechanisms may be maintaining lineages at the species and subspecies level.


Assuntos
Raposas , Fluxo Gênico , Genética Populacional , Hibridização Genética , Espécies Introduzidas , Animais , Raposas/genética , DNA Mitocondrial/genética , California , Polimorfismo de Nucleotídeo Único/genética , Introgressão Genética , Distribuição Animal
18.
Parasit Vectors ; 17(1): 248, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844973

RESUMO

BACKGROUND: Sarcoptic mange is a skin disease caused by the contagious ectoparasite Sarcoptes scabiei, capable of suppressing and extirpating wild canid populations. Starting in 2015, we observed a multi-year epizootic of sarcoptic mange affecting a red fox (Vulpes vulpes) population on Fire Island, NY, USA. We explored the ecological factors that contributed to the spread of sarcoptic mange and characterized the epizootic in a landscape where red foxes are geographically constrained. METHODS: We tested for the presence of S. scabiei DNA in skin samples collected from deceased red foxes with lesions visibly consistent with sarcoptic mange disease. We deployed 96-100 remote trail camera stations each year to capture red fox occurrences and used generalized linear mixed-effects models to assess the affects of red fox ecology, human and other wildlife activity, and island geography on the frequency of detecting diseased red foxes. We rated the extent of visual lesions in diseased individuals and mapped the severity and variability of the sarcoptic mange disease. RESULTS: Skin samples that we analyzed demonstrated 99.8% similarity to S. scabiei sequences in GenBank. Our top-ranked model (weight = 0.94) showed that diseased red foxes were detected more frequently close to roadways, close to territories of other diseased red foxes, away from human shelters, and in areas with more mammal activity. There was no evidence that detection rates in humans and their dogs or distance to the nearest red fox den explained the detection rates of diseased red foxes. Although detected infrequently, we observed the most severe signs of sarcoptic mange at the periphery of residential villages. The spread of visual signs of the disease was approximately 7.3 ha/week in 2015 and 12.1 ha/week in 2017. CONCLUSIONS: We quantified two separate outbreaks of sarcoptic mange disease that occurred > 40 km apart and were separated by a year. Sarcoptic mange revealed an unfettered spread across the red fox population. The transmission of S. scabiei mites in this system was likely driven by red fox behaviors and contact between individuals, in line with previous studies. Sarcoptic mange is likely an important contributor to red fox population dynamics within barrier island systems.


Assuntos
Raposas , Sarcoptes scabiei , Escabiose , Animais , Raposas/parasitologia , Escabiose/veterinária , Escabiose/epidemiologia , Escabiose/parasitologia , Sarcoptes scabiei/genética , Pele/parasitologia , Pele/patologia , New York/epidemiologia , Animais Selvagens/parasitologia , Geografia , Humanos
19.
Euro Surveill ; 29(25)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38904114

RESUMO

BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.


Assuntos
Animais Selvagens , Zoonoses , Animais , Animais Selvagens/microbiologia , Europa (Continente)/epidemiologia , Zoonoses/epidemiologia , Bases de Dados Factuais , Humanos , Ratos , Sciuridae/microbiologia , Ouriços/microbiologia , Coelhos , Camundongos , Vigilância da População , Raposas/microbiologia , Raposas/parasitologia
20.
Euro Surveill ; 29(25)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38904109

RESUMO

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Assuntos
Animais Selvagens , Charadriiformes , Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Finlândia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais Selvagens/virologia , Charadriiformes/virologia , Surtos de Doenças/veterinária , Fazendas , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/epidemiologia , Raposas/virologia , Aves/virologia , Vison/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...