Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.390
Filtrar
1.
Int J Nanomedicine ; 19: 6337-6358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946884

RESUMO

Background: It is well-established that osteoclast activity is significantly influenced by fluctuations in intracellular pH. Consequently, a pH-sensitive gated nano-drug delivery system represents a promising therapeutic approach to mitigate osteoclast overactivity. Our prior research indicated that naringin, a natural flavonoid, effectively mitigates osteoclast activity. However, naringin showed low oral availability and short half-life, which hinders its clinical application. We developed a drug delivery system wherein chitosan, as gatekeepers, coats mesoporous silica nanoparticles loaded with naringin (CS@MSNs-Naringin). However, the inhibitory effects of CS@MSNs-Naringin on osteoclasts and the underlying mechanisms remain unclear, warranting further research. Methods: First, we synthesized CS@MSNs-Naringin and conducted a comprehensive characterization. We also measured drug release rates in a pH gradient solution and verified its biosafety. Subsequently, we investigated the impact of CS@MSNs-Naringin on osteoclasts induced by bone marrow-derived macrophages, focusing on differentiation and bone resorption activity while exploring potential mechanisms. Finally, we established a rat model of bilateral critical-sized calvarial bone defects, in which CS@MSNs-Naringin was dispersed in GelMA hydrogel to achieve in situ drug delivery. We observed the ability of CS@MSNs-Naringin to promote bone regeneration and inhibit osteoclast activity in vivo. Results: CS@MSNs-Naringin exhibited high uniformity and dispersity, low cytotoxicity (concentration≤120 µg/mL), and significant pH sensitivity. In vitro, compared to Naringin and MSNs-Naringin, CS@MSNs-Naringin more effectively inhibited the formation and bone resorption activity of osteoclasts. This effect was accompanied by decreased phosphorylation of key factors in the NF-κB and MAPK signaling pathways, increased apoptosis levels, and a subsequent reduction in the production of osteoclast-specific genes and proteins. In vivo, CS@MSNs-Naringin outperformed Naringin and MSNs-Naringin, promoting new bone formation while inhibiting osteoclast activity to a greater extent. Conclusion: Our research suggested that CS@MSNs-Naringin exhibited the strikingly ability to anti-osteoclasts in vitro and in vivo, moreover promoted bone regeneration in the calvarial bone defect.


Assuntos
Regeneração Óssea , Flavanonas , Nanopartículas , Osteoclastos , Dióxido de Silício , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/farmacocinética , Flavanonas/administração & dosagem , Animais , Osteoclastos/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Ratos , Camundongos , Ratos Sprague-Dawley , Quitosana/química , Masculino , Liberação Controlada de Fármacos , Porosidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Sistemas de Liberação de Medicamentos/métodos , Diferenciação Celular/efeitos dos fármacos
2.
Aging (Albany NY) ; 16(11): 9569-9583, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862240

RESUMO

The global prevalence of osteoporosis is being exacerbated by the increasing number of aging societies and longer life expectancies. In response, numerous drugs have been developed in recent years to mitigate bone resorption and enhance bone density. Nonetheless, the efficacy and safety of these pharmaceutical interventions remain constrained. Corylin (CL), a naturally occurring compound derived from the anti-osteoporosis plant Psoralea corylifolia L., has exhibited promising potential in impeding osteoclast differentiation. This study aims to evaluate the effect and molecular mechanisms of CL regulating osteoclast differentiation in vitro and its potential as a therapeutic agent for osteoporosis treatment in vivo. Our investigation revealed that CL effectively inhibits osteoclast formation and their bone resorption capacity by downregulating the transcription factors NFATc1 and c-fos, consequently resulting in the downregulation of genes associated with bone resorption. Furthermore, it has been observed that CL can effectively mitigate the migration and fusion of pre-osteoclast, while also attenuating the activation of mitochondrial mass and function. The results obtained from an in vivo study have demonstrated that CL is capable of attenuating the bone loss induced by ovariectomy (OVX). Based on these significant findings, it is proposed that CL exhibits considerable potential as a novel drug strategy for inhibiting osteoclast differentiation, thereby offering a promising approach for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Osteoclastos , Osteoporose , Animais , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Camundongos , Reabsorção Óssea/tratamento farmacológico , Feminino , Ovariectomia/efeitos adversos , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Células RAW 264.7 , Osteogênese/efeitos dos fármacos , Flavonoides
3.
J Histochem Cytochem ; 72(6): 373-385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804525

RESUMO

Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.


Assuntos
Reabsorção Óssea , Ácido Hialurônico , Osteogênese , Osteoporose , Ratos , Reabsorção Óssea/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ovariectomia , Feminino , Ratos Sprague-Dawley , Osteoclastos/efeitos dos fármacos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osteoblastos/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico
4.
Eur J Pharmacol ; 974: 176630, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692426

RESUMO

Osteoporosis is the most common bone disorder, in which an imbalance between osteoclastic bone resorption and osteoblastic bone formation disrupts bone homeostasis. Osteoporosis management using anti-osteoclastic agents is a promising strategy; however, this remains an unmet need. Sphingosine-1-phosphate (S1P) and its receptors (S1PRs) are essential for maintaining bone homeostasis. Here, we identified that Siponimod, a Food and Drug Administration-approved S1PR antagonist for the treatment of multiple sclerosis, shows promising therapeutic effects against osteoporosis by inhibiting osteoclast formation and function. We found that Siponimod inhibited osteoclast formation in a dose-dependent manner without causing cytotoxicity. Podosome belt staining and bone resorption assays indicated that Siponimod treatment impaired osteoclast function. Western blot and qPCR assays demonstrated that Siponimod suppressed the expression of osteoclast-specific markers, including C-Fos, Nftac1, and Ctsk. Mechanistically, we validated that Siponimod downregulated receptor activator of nuclear factor kappa B ligand (RANKL)-induced Mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways during osteoclastogenesis. Moreover, in a preclinical mouse model, Siponimod prevented ovariectomy-induced bone loss by suppressing osteoclast activity in vivo. Collectively, these results suggest that Siponimod could serve as an alternative therapeutic agent for the treatment of osteoporosis.


Assuntos
Azetidinas , Compostos de Benzil , Reposicionamento de Medicamentos , Esclerose Múltipla , Osteoclastos , Osteoporose , Animais , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Feminino , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Osteogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante RANK/metabolismo , Humanos
5.
J Med Chem ; 67(10): 8271-8295, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717088

RESUMO

A series of heterocyclic ring-fused derivatives of bisnoralcohol (BA) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Most of these derivatives possessed potent antiosteoporosis activities in a dose-dependent manner. Among these compounds, 31 (SH442, IC50 = 0.052 µM) exhibited the highest potency, displaying 100% inhibition at 1.0 µM and 82.8% inhibition at an even lower concentration of 0.1 µM, which was much more potent than the lead compound BA (IC50 = 2.325 µM). Cytotoxicity tests suggested that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation did not result from their cytotoxicity. Mechanistic studies revealed that SH442 inhibited the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, TRAF6, c-Fos, CTSK, and MMP9. Especially, SH442 could significantly attenuate bone loss of ovariectomy mouse in vivo. Therefore, these BA derivatives could be used as promising leads for the development of a new type of antiosteoporosis agent.


Assuntos
Osteoclastos , Osteoporose , Animais , Feminino , Camundongos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ovariectomia , Ligante RANK/metabolismo , Ligante RANK/antagonistas & inibidores , Células RAW 264.7 , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
Eur J Pharmacol ; 977: 176666, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797313

RESUMO

Osteoporosis is a highly prevalent bone metabolic disease in menopause due to estrogen deficiency. Hyperoside is a main compound in Semen cuscutae. Our team previously reported that Semen cuscutae has anti osteoporosis effect on ovariectomized mice by inhibiting bone resorption of osteoclasts. However, it is still unclear whether hyperoside affects osteoclast differentiation and bone resorption, and whether its anti-osteoporosis effect is related to an estrogen-like effect. This study investigates the potential mechanism of hyperoside's anti-osteoporotic effect by examining its impact on osteoclast differentiation and its relationship with the estrogen receptor. DXA, Micro-CT, TRAP staining, HE, and ELISA were used to assess the impact of hyperoside on OVX-induced osteoporosis. The effect of hyperoside on octeoclast differentiation was evaluated using TRAP activity assay, TRAP staining, F-actin staining. The activation of the estrogen receptor by hyperoside and its relationship with osteoclast differentiation were detected using dual-luciferase reporter assay and estrogen receptor antagonists. Our findings revealed that hyperoside (20-80 mg/kg) protect against OVX-induced osteoporosis, including increasing BMD and BMC and improving bone microstructure. Hyperoside inhibited osteoclast differentiation in a concentration dependent manner, whereas estrogen receptor α antagonists reversed its inhibitory effect osteoclast differentiation. Western blot results suggested that hyperoside inhibited TRAP, RANKL, c-Fos and ITG ß3 protein expression in osteoclast or femoral bone marrow of ovariectomized mice. Our findings suggest that hyperoside inhibits osteoclast differentiation and protects OVX-induced osteoporosis through the ERα/ITGß3 signaling pathway.


Assuntos
Diferenciação Celular , Receptor alfa de Estrogênio , Osteoclastos , Osteoporose , Ovariectomia , Quercetina , Transdução de Sinais , Animais , Ovariectomia/efeitos adversos , Feminino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Receptor alfa de Estrogênio/metabolismo , Quercetina/farmacologia , Quercetina/análogos & derivados , Quercetina/uso terapêutico , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle
7.
J Nanobiotechnology ; 22(1): 153, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580995

RESUMO

BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Osteoclastos , Nanomedicina , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/patologia , Diferenciação Celular
8.
Curr Osteoporos Rep ; 22(3): 353-365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652430

RESUMO

PURPOSE OF REVIEW: This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS: OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.


Assuntos
Antioxidantes , Osteoporose , Quercetina , Quercetina/uso terapêutico , Quercetina/farmacologia , Humanos , Osteoporose/tratamento farmacológico , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Células-Tronco Mesenquimais , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia
9.
Phytomedicine ; 129: 155559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579642

RESUMO

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Assuntos
Benzilisoquinolinas , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Ovariectomia , Ligante RANK , Espécies Reativas de Oxigênio , Animais , Benzilisoquinolinas/farmacologia , Feminino , Ligante RANK/metabolismo , Camundongos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Modelos Animais de Doenças , Reabsorção Óssea/tratamento farmacológico , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Humanos , Tetra-Hidroisoquinolinas
10.
Biochem Pharmacol ; 224: 116230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643905

RESUMO

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.


Assuntos
Artrite Experimental , Reabsorção Óssea , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Animais , Camundongos , Fatores de Transcrição NFATC/metabolismo , Células RAW 264.7 , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Artrite Experimental/induzido quimicamente , Osteogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Proteína Tirosina Quinase CSK/metabolismo , Simulação de Acoplamento Molecular , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores
11.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615917

RESUMO

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Assuntos
Ferro , Camundongos Endogâmicos C57BL , Mitocôndrias , Biogênese de Organelas , Osteoclastos , Periodontite , Animais , Camundongos , Ferro/metabolismo , Células RAW 264.7 , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteogênese/efeitos dos fármacos , Masculino , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/etiologia , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia
12.
Bioorg Chem ; 147: 107364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636434

RESUMO

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.


Assuntos
Reabsorção Óssea , Osteogênese , Ovariectomia , PPAR delta , Transdução de Sinais , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Ratos , PPAR delta/metabolismo , Feminino , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Células RAW 264.7 , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Relação Dose-Resposta a Droga , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Ratos Sprague-Dawley , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Diferenciação Celular/efeitos dos fármacos
13.
Biomolecules ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672518

RESUMO

Glycogen synthase kinase 3-beta (GSK3ß) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3ß in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3ß enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3ß is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (ß)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3ß has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3ß may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3ß inhibitors as bone-protecting agents. Some studies demonstrated that GSK3ß inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3ß silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3ß on osteoclastogenesis and bone resorption.


Assuntos
Glicogênio Sintase Quinase 3 beta , Osteoclastos , Osteogênese , Humanos , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/citologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante RANK/metabolismo , Ligante RANK/farmacologia
14.
J Med Chem ; 67(9): 7585-7602, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38630440

RESUMO

An efficient protocol for the synthesis of ß-trifluoroethoxydimethyl selenides was achieved under mild reaction conditions, and 39 compounds were prepared. All compounds were evaluated for their abilities to inhibit RANKL-induced osteoclastogenesis, compound 4aa exhibited the most potent activity. Further investigations revealed that 4aa could inhibit F-actin ring generation, bone resorption, and osteoclast-specific gene expression in vitro. Western blot analyses demonstrated that compound 4aa abrogated the RANKL-induced mitogen-activated protein kinase and NF-kB-signaling pathways. In addition, 4aa also displayed a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. In vivo experiments revealed that compound 4aa significantly ameliorated bone loss in an ovariectomized (OVX) mice model. Furthermore, the surface plasmon resonance experiment results revealed that 4aa probably bound to RANKL. Collectively, the above-mentioned findings suggested that compound 4aa as a potential RANKL inhibitor averted OVX-triggered osteoporosis by regulating the inhibition of osteoclast differentiation and stimulation of osteoblast differentiation.


Assuntos
Desenho de Fármacos , Osteoclastos , Osteoporose , Ligante RANK , Animais , Camundongos , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Ligante RANK/antagonistas & inibidores , Feminino , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ovariectomia , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Osteogênese/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Camundongos Endogâmicos C57BL
15.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604070

RESUMO

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Reabsorção Óssea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteogênese , Ligante RANK/metabolismo
16.
J Pharm Pharmacol ; 76(7): 813-823, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554122

RESUMO

BACKGROUND: Elevated reactive oxygen species levels promote excessive osteoclastogenesis and bone resorption. Puerarin, a natural antioxidant, can prevent bone loss through its antioxidant effects; however, the underlying molecular mechanism remains unclear. This study aimed to explore the effects of puerarin on osteoclast differentiation and bone resorption by regulating the PI3K/AKT/FoxO1 signaling pathway. MATERIALS AND METHODS: An ovariectomized (OVX) rat model of osteoporosis and H2O2-induced oxidative cell model of RAW 264.7 cells were established. The following indices were measured including bone µ-CT scanning and the protein expression levels of FoxO1, p-FoxO1, and catalase were detected using western blotting. RESULTS: Puerarin strongly alleviated oxidative stress-induced bone loss in OVX rats in vivo owing to its antioxidant effects. Puerarin improved the oxidative stress status of cells and inhibited osteoclast formation in vitro. Moreover, the protein expression of FoxO1 and its downstream target, catalase, was upregulated by puerarin. CONCLUSIONS: Puerarin improved the OPG/RANKL ratio, upregulated the protein expression and transcriptional activity of FoxO1, and suppressed the differentiation of RAW264.7 cells into osteoclasts. FoxO1 is a pivotal target of puerarin to confer anti-osteoporosis effects.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Proteína Forkhead Box O1 , Isoflavonas , Osteoclastos , Osteogênese , Osteoporose , Ovariectomia , Estresse Oxidativo , Transdução de Sinais , Animais , Isoflavonas/farmacologia , Proteína Forkhead Box O1/metabolismo , Camundongos , Células RAW 264.7 , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Feminino , Ratos , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Ligante RANK/metabolismo , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-akt/metabolismo , Catalase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
17.
Calcif Tissue Int ; 114(4): 430-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483547

RESUMO

Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.


Assuntos
Aminopiridinas , Benzamidas , Reabsorção Óssea , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Animais , Rolipram/farmacologia , Rolipram/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/metabolismo , Osteoclastos/metabolismo , Adenilil Ciclases/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Canais de Cloreto/genética , Ciclopropanos
18.
Matrix Biol ; 129: 15-28, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548090

RESUMO

Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.


Assuntos
Catepsina K , Colagenases , Heparitina Sulfato , Osteoclastos , Catepsina K/metabolismo , Catepsina K/antagonistas & inibidores , Catepsina K/química , Catepsina K/genética , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Colagenases/metabolismo , Humanos , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Sítios de Ligação , Camundongos , Cristalografia por Raios X , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Ligação Proteica , Domínio Catalítico , Modelos Moleculares , Multimerização Proteica
19.
J Agric Food Chem ; 72(14): 8149-8166, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551844

RESUMO

Declining estrogen production in postmenopausal females causes osteoporosis in which the resorption of bone exceeds the increase in bone formation. Although clinical drugs are currently available for the treatment of osteoporosis, sustained medication use is accompanied by serious side effects. Corydalis bungeana Herba, a famous traditional Chinese herb listed in the Chinese Pharmacopoeia Commission, constitutes various traditional Chinese Medicine prescriptions, which date back to thousands of years. One of the primary active components of C. bungeana Turcz. is Corynoline (Cor), a plant isoquinoline alkaloid derived from the Corydalis species, which possesses bone metabolism disease therapeutic potential. The study aimed at exploring the effects as well as mechanisms of Cor on osteoclast formation and bone resorption. TRAcP staining, F-actin belt formation, and pit formation were employed for assessing the osteoclast function. Western blot, qPCR, network pharmacology, and docking analyses were used for analyzing the expression of osteoclast-associated genes and related signaling pathways. The study focused on investigating how Cor affected OVX-induced trabecular bone loss by using a mouse model. Cor could weaken osteoclast formation and function by affecting the biological receptor activators of NF-κB and its ligand at various concentrations. Mechanistically, Cor inhibited the NF-κB activation, and the MAPKs pathway stimulated by RANKL. Besides, Cor enhanced the protein stability of the Nrf2, which effectively abolished the RANKL-stimulated ROS generation. According to an OVX mouse model, Cor functions in restoring bone mass, improving microarchitecture, and reducing the ROS levels in the distal femurs, which corroborated with its in vitro antiosteoclastogenic effect. The present study indicates that Cor may restrain osteoclast formation and bone loss by modulating NF-κB/MAPKs and Nrf2 signaling pathways. Cor was shown to be a potential drug candidate that can be utilized for the treatment of osteoporosis.


Assuntos
Alcaloides de Berberina , Reabsorção Óssea , Osteoporose , Feminino , Humanos , Osteogênese , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Diferenciação Celular
20.
J Ethnopharmacol ; 328: 118060, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521429

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoporosis (OP) is a metabolic disorder characterized by disrupted osteoclastic bone resorption and osteoblastic bone formation. Curculigo orchioides Gaertn has a long history of application in traditional Chinese and Indian medicine for treating OP. Orcinol gentiobioside (OGB) is a principal active constituent derived from Curculigo orchioides Gaertn and has been shown to have anti-OP activity. However, the therapeutic efficacy and mechanism of OGB in modulating osteoclastic bone resorption remain undefined. AIM OF THE STUDY: To evaluate the effect of OGB on the formation, differentiation and function of osteoclasts derived from bone marrow macrophages (BMMs), and further elucidate the underlying action mechanism of OGB in OP. MATERIALS AND METHODS: Osteoclasts derived from BMMs were utilized to evaluate the effect of OGB on osteoclast formation, differentiation and bone resorption. Tartrate-resistant acid phosphatase (TRAP) staining and activity assays were conducted to denote the activity of osteoclasts. Osteoclast-related genes and proteins were determined by RT-PCR and Western blotting assays. The formation of the F-actin ring was observed by confocal laser microscopy, and bone resorption pits were observed by inverted microscopy. The target of OGB in osteoclasts was predicted by using molecular docking and further verified by Cellular Thermal Shift Assay (CETSA) and reversal effects of the target activator. The apoptosis of osteoclasts was analyzed by flow cytometry, and autophagic flux in osteoclasts was determined by confocal laser microscopy. RESULTS: OGB inhibited osteoclast formation and differentiation, osteoclast-related genes and proteins expression, F-actin ring formation, and bone resorption activity. Molecular docking and CETSA analysis demonstrated that OGB exhibited good affinity for c-Jun N-terminal Kinase 1 (JNK1). In addition, OGB induced apoptosis and inhibited autophagy in osteoclasts, and the JNK agonist anisomycin reversed the increase in apoptosis and inhibition of autophagy induced by OGB in osteoclasts. CONCLUSION: OGB inhibited osteoclastogenesis by promoting apoptosis and diminishing autophagy via JNK1 signaling.


Assuntos
Reabsorção Óssea , Osteogênese , Resorcinóis , Humanos , Actinas/metabolismo , Simulação de Acoplamento Molecular , Células Cultivadas , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Apoptose , Autofagia , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...