Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.682
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(8): 8, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958968

RESUMO

Purpose: The purpose of this study was to evaluate the biomechanical and hydration differences in scleral tissue after two modalities of collagen cross-linking. Methods: Scleral tissue from 40 adult white rabbit eyes was crosslinked by application of 0.1% Rose Bengal solution followed by 80 J/cm2 green light irradiation (RGX) or by application of 0.1% riboflavin solution followed by 5.4 J/cm2 ultraviolet A irradiation (UVX). Posterior scleral strips were excised from treated and untreated sclera for tensile and hydration-tensile tests. For tensile tests, the strips were subjected to uniaxial extension after excision. For hydration-tensile tests, the strips were dehydrated, rehydrated, and then tested. Young's modulus at 8% strain and swelling rate were estimated. ANOVAs were used to test treated-induced differences in scleral biomechanical and hydration properties. Results: Photo-crosslinked sclera tissue was stiffer (Young's modulus at 8% strain: 10.7 ± 4.5 MPa, on average across treatments) than untreated scleral tissue (7.1 ± 4.0 MPa). Scleral stiffness increased 132% after RGX and 90% after UVX compared to untreated sclera. Scleral swelling rate was reduced by 11% after RGX and by 13% after UVX. The stiffness of the treated sclera was also associated with the tissue hydration level. The lower the swelling, the higher the Young's modulus of RGX (-3.8% swelling/MPa) and UVX (-3.5% swelling/MPa) treated sclera. Conclusions: Cross-linking with RGX and UVX impacted the stiffness and hydration of rabbit posterior sclera. The Rose Bengal with green light irradiation may be an alternative method to determine the efficacy and suitability of inducing scleral tissue stiffening in the treatment of myopia.


Assuntos
Reagentes de Ligações Cruzadas , Fármacos Fotossensibilizantes , Riboflavina , Rosa Bengala , Esclera , Raios Ultravioleta , Animais , Coelhos , Reagentes de Ligações Cruzadas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Rosa Bengala/farmacologia , Resistência à Tração , Fenômenos Biomecânicos , Módulo de Elasticidade , Colágeno/metabolismo , Elasticidade
2.
Transl Vis Sci Technol ; 13(7): 14, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023444

RESUMO

Purpose: Photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) stabilizes the corneal stroma and eliminates microorganisms. Numerous PACK-CXL protocols, using different energy sources and chromophores, have been applied in preclinical studies, including live animal studies, with various experimental designs and endpoints. So far, a systematic mapping of the applied protocols and consistency across studies seems lacking but is essential to guide future research. Methods: The scoping review protocol was in line with the JBI Manual for Evidence Synthesis. Electronic databases were searched (Embase, MEDLINE, Scopus, Web of Science) to identify eligible records, followed by a two-step selection process (title and abstract screening, full text screening) for record inclusion. We extracted information on (1) different PACK-CXL protocol characteristics; (2) infectious pathogens tested; (3) study designs and experimental settings; and (4) endpoints used to determine antimicrobial and tissue stabilizing effects. The information was charted in frequency maps. Results: The searches yielded 3654 unique records, 233 of which met the inclusion criteria. With 103 heterogeneous endpoints, the researchers investigated a wide range of PACK-CXL protocols. The tested microorganisms reflected pathogens commonly associated with infectious keratitis. Bacterial solutions and infectious keratitis rabbit models were the most widely used models to study the antimicrobial effects of PACK-CXL. Conclusions: If preclinical PACK-CXL studies are to guide future translational research, further cross-disciplinary efforts are needed to establish, promote, and facilitate acceptance of common endpoints relevant to PACK-CXL. Translational Relevance: Systematic mapping of PACK-CXL protocols in preclinical studies guides future translational research.


Assuntos
Reagentes de Ligações Cruzadas , Ceratite , Fármacos Fotossensibilizantes , Riboflavina , Animais , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Reagentes de Ligações Cruzadas/uso terapêutico , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/uso terapêutico , Riboflavina/farmacologia , Humanos , Fotoquimioterapia/métodos , Substância Própria/metabolismo , Substância Própria/efeitos dos fármacos , Raios Ultravioleta , Colágeno/metabolismo , Crosslinking Corneano
3.
Comput Biol Med ; 178: 108607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897147

RESUMO

Keratoconus (KC) is a degenerative condition affecting the cornea, characterized by progressive thinning and bulging, which can ultimately result in serious visual impairment. The onset and progression of KC are closely tied to the gradual weakening of the cornea's biomechanical properties. KC progression can be prevented with corneal cross-linking (CXL), but this treatment has shortcomings, and evaluating its tissue stiffening effect is important for determining its efficacy. In this field, the shortage of human corneas has made it necessary for most previous studies to rely on animal corneas, which have different microstructure and may be affected differently from human corneas. In this research, we have used the lenticules obtained through small incision lenticule extraction (SMILE) surgeries as a source of human tissue to assess CXL. And to further improve the results' reliability, we used inflation testing, personalized finite element modeling, numerical optimization and histology microstructure analysis. These methods enabled determining the biomechanical and histological effects of CXL protocols involving different irradiation intensities of 3, 9, 18, and 30 mW/cm2, all delivering the same total energy dose of 5.4 J/cm2. The results showed that the CXL effect did not vary significantly with protocols using 3-18 mW/cm2 irradiance, but there was a significant efficacy drop with 30 mW/cm2 irradiance. This study validated the updated algorithm and provided guidance for corneal lenticule reuse and the effects of different CXL protocols on the biomechanical properties of the human corneal stroma.


Assuntos
Substância Própria , Ceratocone , Riboflavina , Raios Ultravioleta , Humanos , Riboflavina/farmacologia , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Ceratocone/metabolismo , Ceratocone/patologia , Ceratocone/tratamento farmacológico , Fenômenos Biomecânicos , Análise de Elementos Finitos , Modelos Biológicos , Adulto , Reagentes de Ligações Cruzadas/farmacologia
4.
Invest Ophthalmol Vis Sci ; 65(5): 24, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748430

RESUMO

Purpose: Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods: The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by ß-hexosaminidase assay. Results: The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions: A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.


Assuntos
Sobrevivência Celular , Reagentes de Ligações Cruzadas , Hidrogéis , Iridoides , Engenharia Tecidual , Animais , Iridoides/farmacologia , Iridoides/metabolismo , Suínos , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/farmacologia , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Materiais Biocompatíveis
5.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722774

RESUMO

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Assuntos
Antibacterianos , Biofilmes , Catecol Oxidase , Tamanho da Partícula , Biofilmes/efeitos dos fármacos , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Catecol Oxidase/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Simulação de Acoplamento Molecular , Escherichia coli/efeitos dos fármacos
6.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724834

RESUMO

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Assuntos
Anti-Inflamatórios não Esteroides , Antifúngicos , Biofilmes , Candida albicans , Candidíase Vulvovaginal , Quitosana , Reagentes de Ligações Cruzadas , Nanopartículas , Ácido Fítico , Biofilmes/efeitos dos fármacos , Ácido Fítico/química , Ácido Fítico/farmacologia , Ácido Fítico/uso terapêutico , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico , Quitosana/química , Quitosana/farmacologia , Quitosana/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Testes de Sensibilidade Microbiana , Citocinas/imunologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Feminino , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/metabolismo , Vagina/microbiologia
7.
J Mater Chem B ; 12(18): 4467-4477, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38629894

RESUMO

Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.


Assuntos
Materiais Biocompatíveis , Colágeno , Rejuvenescimento , Envelhecimento da Pele , Animais , Humanos , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Butileno Glicóis/química , Butileno Glicóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Colágeno/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Regeneração/efeitos dos fármacos , Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos
8.
Biomed Pharmacother ; 174: 116449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518607

RESUMO

Traumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties. In this line, genipin (GP) crosslinking has demonstrated to improve biomechanical properties with good biological properties compared to other crosslinkers. In this study, we evaluated the impact of different GP concentrations (0.05, 0.1 and 0.2% (m/v)) and reaction times (6, 12, 24, 72 h) on bioartificial nerve substitutes (BNS) consisting of nanostructured FA scaffolds. First, crosslinked BNS were studied histologically, ultrastructurally and biomechanically and then, its biocompatibility and immunomodulatory effects were ex vivo assessed with a macrophage cell line. Results showed that GP was able to improve the biomechanical resistance of BNS, which were dependent on both the GP treatment time and concentration without altering the structure. Moreover, biocompatibility analyses on macrophages confirmed high cell viability and a minimal reduction of their metabolic activity by WST-1. In addition, GP-crosslinked BNS effectively directed macrophage polarization from a pro-inflammatory (M1) towards a pro-regenerative (M2) phenotype, which was in line with the cytokines release profile. In conclusion, this study considers time and dose-dependent effects of GP in FA substitutes which exhibited increased biomechanical properties while reducing immunogenicity and promoting pro-regenerative macrophage shift. These tubular substitutes could be useful for nerve application or even other tissue engineering applications such as urethra.


Assuntos
Reagentes de Ligações Cruzadas , Iridoides , Macrófagos , Alicerces Teciduais , Iridoides/farmacologia , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alicerces Teciduais/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Fenômenos Biomecânicos , Sobrevivência Celular/efeitos dos fármacos , Fibrina/metabolismo , Sefarose/química , Sefarose/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Células RAW 264.7
9.
J Mater Chem B ; 12(14): 3417-3435, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525920

RESUMO

Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.


Assuntos
Calcinose , Próteses Valvulares Cardíacas , Humanos , Animais , Bovinos , Idoso , Sulfatos de Condroitina/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Valvas Cardíacas , Glutaral , Anti-Inflamatórios/farmacologia , Pericárdio
10.
Nat Commun ; 15(1): 1766, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409083

RESUMO

The proper axial length of the eye is crucial for achieving emmetropia. In this study, we present a wireless battery-free eye modulation patch designed to correct high myopia and prevent relapse. The patch consists of piezoelectric transducers, an electrochemical micro-actuator, a drug microneedle array, µ-LEDs, a flexible circuit, and biocompatible encapsulation. The system can be wirelessly powered and controlled using external ultrasound. The electrochemical micro-actuator plays a key role in precisely shortening the axial length by driving the posterior sclera inward. This ensures accurate scene imaging on the retina for myopia eye. The drug microneedle array delivers riboflavin to the posterior sclera, and µ-LEDs' blue light induces collagen cross-linking, reinforcing sclera strength. In vivo experiments demonstrate that the patch successfully reduces the rabbit eye's axial length by ~1217 µm and increases sclera strength by 387%. The system operates effectively within the body without the need for batteries. Here, we show that the patch offers a promising avenue for clinically treating high myopia.


Assuntos
Miopia , Animais , Coelhos , Reagentes de Ligações Cruzadas/farmacologia , Modelos Animais de Doenças , Miopia/terapia , Esclera , Riboflavina
11.
Int Ophthalmol ; 44(1): 87, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363414

RESUMO

PURPOSE: To evaluate the effect of conventional and accelerated corneal crosslinking (CXL) on visual acuity, corneal topography, corneal epithelial thickness, and subbasal nerve morphology in progressive keratoconus patients. METHODS: In this prospective and randomized study, twenty eyes of 20 patients were treated with conventional CXL (3 mW/cm2, 30 min, C-CXL) and 19 eyes of 19 patients were treated with accelerated CXL (9 mW/cm2, 10 min, A-CXL). The spherical equivalent, uncorrected visual acuity, best-corrected visual acuity, keratometric measurements, demarcation line measurement and epithelial thickness mapping analyses, and subbasal nerve morphology with in vivo confocal microscopy (IVCCM) were evaluated at baseline and at postoperative months 1, 3 and 6. RESULTS: At postoperative 6 months, a significant improvement was observed in all keratometric values in both treatment groups (p < 0.05). All epithelial thickness indices, except central, temporal, and inferotemporal thickness, were reduced at 1 month postoperatively in both treatment groups. The epithelial map uniformity indices (standard deviation and difference between min-max thickness) were significantly lower than the baseline values at all time points after CXL in both treatment groups (p < 0.001). Compared with the preoperative values, there was a significant decrease in all IVCCM parameters at 1 month postoperatively (p < 0.05). At 6 months postoperatively, corneal nerve fiber density and corneal nerve branch density recovered to preoperative values in the A-CXL group, whereas corneal nerve regeneration was not complete in the C-CXL group. CONCLUSION: Both conventional and accelerated CXL treatments appear to be effective in halting the progression of KC. Corneal epithelial irregularity slightly improves after CXL. The regeneration of subbasal nerves is faster after A-CXL treatment.


Assuntos
Reagentes de Ligações Cruzadas , Ceratocone , Humanos , Topografia da Córnea , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico , Ceratocone/diagnóstico por imagem , Ceratocone/tratamento farmacológico , Microscopia Confocal , Estudos Prospectivos
12.
Indian J Ophthalmol ; 72(2): 174-180, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153964

RESUMO

High myopia is often associated with local ectasia and scleral thinning. The progression of myopia depends upon scleral biochemical and biomechanical properties. Scleral thinning is associated with decreased collagen fiber diameter, defective collagen fibrillogenesis, and collagen cross-linking. Reversing these abnormalities may make the sclera tougher and might serve as a treatment option for myopic progression. Collagen cross-linking is a natural process in the cornea and sclera, which makes the structure stiff. Exogenous collagen cross-linkage is artificially induced with the help of external mediators by using light and dark methods. In this systematic review, we discussed existing literature available on the internet on current evidence-based applications of scleral collagen cross-linking (SXL) by using different interventions. In addition, we compared them in tabular form in terms of their technique, mechanisms, cytotoxicity, and the stage of transition from preclinical to clinical development. Furthermore, we discussed the in-vivo technique to evaluate the post-SXL scleral biomechanical property and outcome in the human eye.


Assuntos
Colágeno , Reagentes de Ligações Cruzadas , Miopia Degenerativa , Humanos , Colágeno/química , Colágeno/metabolismo , Colágeno/uso terapêutico , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia , Reagentes de Ligações Cruzadas/farmacologia , Miopia Degenerativa/patologia , Esclera/efeitos dos fármacos , Esclera/metabolismo , Esclera/patologia
13.
Indian J Ophthalmol ; 72(1): 94-97, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131577

RESUMO

PURPOSE: To assess the long-term safety and stability of visual outcomes following the modified technique of collagen crosslinking (CXL) using refractive lenticule in eyes with thin corneas (<400 µm) and progressive keratoconus. SETTING: A tertiary eye care hospital in India. DESIGN: Prospective, interventional case series. METHODS: Eyes with progressive keratoconus and thin corneas (<400 µm) underwent CXL with intraoperative stromal augmentation using a refractive lenticule obtained from small-incision lenticule extraction (SMILE). Preoperative and postoperative evaluation (3 months, and then yearly thereafter) included corneal tomography (Oculus Pentacam), uncorrected and corrected distance visual acuity (UDVA and CDVA, respectively), manifest refraction, and endothelial cell count (specular microscopy), and adverse events, if any, were noted. The patients were followed up for a period of 5 years. RESULTS: Seven eyes were included in the analysis. Mean corneal flattening of -4.29 D was noted from preoperative maximum keratometry (P = 0.018). An improvement in UDVA and CDVA of 0.38 logarithm of minimum angle of resolution (logMAR) and 0.36 logMAR, respectively, was noted at 5 years postoperative visit. Four eyes demonstrated a gain of two lines in CDVA. Mean spherical equivalent improved from -6.85 D preoperatively to -6.05 D at 5 years postoperatively. Clear demarcation line was noted between 230 to 270 µm on anterior segment optical coherence topography. No significant endothelial cell loss was noted postoperatively. CONCLUSION: Long-term outcomes demonstrated safety and disease stability following lenticule-assisted CXL.


Assuntos
Ceratocone , Humanos , Ceratocone/diagnóstico , Ceratocone/tratamento farmacológico , Ceratocone/cirurgia , Estudos Prospectivos , Substância Própria/cirurgia , Substância Própria/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/uso terapêutico , Topografia da Córnea , Córnea/cirurgia , Córnea/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico
14.
J Dent ; 138: 104733, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783373

RESUMO

OBJECTIVE: To investigate the cross-linking and protective effect of artemisinin (ART), dihydroartemisinin (DHA), and artesunate (AST) on collagen fibers of demineralized dentin surface. METHODS: Molecular docking was used to predict potential interactions of ART, DHA, and AST with dentin type I collagen. Human third molars without caries were completely demineralized and treated with different solutions for 1 min. The molecular interactions and cross-linking degree of ART and its derivatives with dentin collagen were evaluated by FTIR spectroscopy, total extractable protein content, and a ninhydrin assay. Scanning electron microscopy, hydroxyproline release, and ultimate microtensile strength tests (µUTS) were employed to confirm the mechanical properties and anti-collagenase degradation properties of dentin collagen fibers. RESULTS: ART, DHA, and AST combined with dentin type I collagen mainly through hydrogen bonding and hydrophobic interactions, and the cross-linking reaction sites were mainly C=O and CN functional groups. Compared to the control group, ART and its derivatives significantly increased the degree of cross-linking. Additionally, significant increases were observed in resistance to enzymatic digestion and mechanical properties of the artemisinin and its derivatives group. CONCLUSION: ART, DHA, and AST could cross-link with demineralized dentin collagen, through improving the mechanical properties and anti-collagenase degradation properties. CLINICAL SIGNIFICANCE: The study endorses the potential use of ART and its derivatives as a prospective collagen cross-linking agent for degradation-resistant and long-period dentin bonding in composite resin restorations.


Assuntos
Artemisininas , Colagem Dentária , Humanos , Colágeno Tipo I , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/análise , Reagentes de Ligações Cruzadas/química , Simulação de Acoplamento Molecular , Estudos Prospectivos , Resistência à Tração , Colágeno/farmacologia , Colágeno/química , Colagenases/análise , Colagenases/farmacologia , Artemisininas/farmacologia , Artemisininas/análise , Dentina , Colagem Dentária/métodos , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química
15.
Invest Ophthalmol Vis Sci ; 64(13): 26, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37850947

RESUMO

Purpose: To evaluate the regional effects of different corneal cross-linking (CXL) protocols on corneal biomechanical properties. Methods: The study involved both eyes of 50 rabbits, and the left eyes were randomized to the five intervention groups, which included the standard CXL group (SCXL), which was exposed to 3-mW/cm2 irradiation, and three accelerated CXL groups (ACXL1-3), which were exposed to ultraviolet-A at irradiations of 9 mW/cm2, 18 mW/cm2, and 30 mW/cm2, respectively, but with the same total dose (5.4 J/cm2). A control (CO) group was not exposed to ultraviolet-A. No surgery was done on the contralateral eyes. The corneas of each group were evaluated by the effective elastic modulus (Eeff) and the hydraulic conductivity (K) within a 7.5-mm radius using nanoindentation measurements. Results: Compared with the CO group, Eeff (in regions with radii of 0-1.5 mm, 1.5-3.0 mm, and 3.0-4.5 mm) significantly increased by 309%, 276%, and 226%, respectively, with SCXL; by 222%, 209%, and 173%, respectively, with ACXL1; by 111%, 109%, and 94%, respectively, with ACXL2; and by 59%, 41%, and 37%, respectively, with ACXL3 (all P < 0.05). K was also significantly reduced by 84%, 81%, and 78%, respectively, with SCXL; by 75%, 74%, and 70%, respectively, with ACXL1; by 64%, 62%, and 61%, respectively, with ACXL2; and by 33%, 36%, and 32%, respectively, with ACXL3 (all P < 0.05). For the other regions(with radii between 4.5 and 7.5 mm), the SCXL and ACXL1 groups (but not the ACXL2 and ACXL3 groups) still showed significant changes in Eeff and K. Conclusions: CXL had a significant effect on corneal biomechanics in both standard and accelerated procedures that may go beyond the irradiated area. The effect of CXL in stiffening the tissue and reducing permeability consistently decreased with reducing the irradiance duration.


Assuntos
Raios Ultravioleta , Animais , Coelhos , Fenômenos Biomecânicos , Córnea , Crosslinking Corneano , Substância Própria , Reagentes de Ligações Cruzadas/farmacologia , Módulo de Elasticidade , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
16.
Mol Vis ; 29: 102-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859806

RESUMO

Purpose: The purpose of this study was to evaluate the elastic modulus, keratocyte-fibroblast-myocyte transformation, and haze formation of the corneal stroma following combined phototherapeutic keratectomy (PTK) and epithelium-off UV-A/riboflavin corneal collagen crosslinking (CXL) using an in vivo rabbit model. Methods: Rabbits underwent PTK and CXL, PTK only, or CXL 35 days before PTK. Rebound tonometry, Fourier-domain optical coherence tomography, and ultrasound pachymetry were performed on days 7, 14, 21, 42, 70, and 90 post-operatively. Atomic force microscopy, histologic inflammation, and immunohistochemistry for α-smooth muscle actin (α-SMA) were assessed post-mortem. Results: Stromal haze formation following simultaneous PTK and CXL was significantly greater than in corneas that received PTK only and persisted for more than 90 days. No significant difference in stromal haze was noted between groups receiving simultaneous CXL and PTK and those receiving CXL before PTK. Stromal inflammation did not differ between groups at any time point, although the intensity of α-SMA over the number of nuclei was significantly greater at day 21 between groups receiving simultaneous CXL and PTK and those receiving CXL before PTK. The elastic modulus was significantly greater in corneas receiving simultaneous CXL and PTK compared with those receiving PTK alone. Conclusions: We showed that stromal haze formation and stromal stiffness is significantly increased following CXL, regardless of whether it is performed at or before the time of PTK. Further knowledge of the biophysical cues involved in determining corneal wound healing duration and outcomes will be important for understanding scarring following CXL and for the development of improved therapeutic options.


Assuntos
Ceratectomia Fotorrefrativa , Animais , Coelhos , Ceratectomia Fotorrefrativa/métodos , Córnea/patologia , Cicatrização , Colágeno , Substância Própria/patologia , Riboflavina , Inflamação/patologia , Reagentes de Ligações Cruzadas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Raios Ultravioleta
17.
Curr Pharm Des ; 29(31): 2489-2500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881070

RESUMO

BACKGROUND: Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS: This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE: pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS: The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS: An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION: The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.


Assuntos
Diclofenaco , Álcool de Polivinil , Humanos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
18.
Int Ophthalmol ; 43(12): 4837-4849, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861937

RESUMO

PURPOSE: The purpose of this prospective study was to evaluate the effect of combined photorefractive keratectomy (PRK) and corneal collagen cross-linking (CXL) on intraocular pressure (IOP) in patients with keratoconus (KC). METHODS: We included 64 eyes of 34 patients (19 males and 15 females; age: 19-40y) with stages 1-2 keratoconus which had undergone combined wavefront-optimized photorefractive keratectomy and corneal collagen cross linking. Two other groups of patients were added as controls: the PRK group including 110 eyes of 57 patients (23 males and 34 females; age: 18-44y) which had undergone wavefront-optimized photorefractive keratectomy for myopic refractive errors, and the CXL group including 36 eyes of 23 patients (14 males and 9 females; age: 12-38y) with keratoconus, not filling the inclusion criteria for combined PRK and CXL, which had undergone corneal collagen cross-linking. IOP was recorded preoperatively and postoperatively at 3, 6 and 12 months follow-up visits. RESULTS: Preoperative IOP in both CXL (12.1 ± 2.53 mmHg) and PRK + CXL (13.2 ± 2.50 mmHg) groups was significantly lower than PRK group (15.8 ± 3.10 mmHg) (F = 30.505, p < 0.001). At 3 months postoperatively, IOP showed no statistically significant difference between the three studied groups (F = 1.821, p = 0.164). At 6 months postoperatively, IOP in the CXL group (14.6 ± 2.64 mmHg) was significantly higher than both PRK (13.4 ± 2.27 mmHg) and PRK + CXL (13.3 ± 2.62 mmHg) groups (F = 3.721, p = 0.026). At 12 months postoperatively, IOP in the CXL group (14.3 ± 2.69 mmHg) was significantly higher than the PRK group (13.2 ± 2.23 mmHg) and was higher than PRK + CXL group (13.3 ± 2.59 mmHg) although not statistically significant (F = 3.393, p = 0.035). Regarding the percent of change from preoperative IOP, a statistically significant difference between the three studied groups was detected at 3, 6 and 12 months postoperatively (H = 117.459, 109.303, 122.694 respectively, p < 0.001). The median percent of change from preoperative IOP in the PRK group was -16.7%, -15%, and -16.7%, in the CXL group was + 14.3%, + 19.4%, and + 19.1%, while in PRK + CXL group was 0% at 3, 6 and 12 months postoperatively. (Post-hoc power analysis 75%). CONCLUSIONS: Combined PRK and CXL in patients with KC shows no significant effect on IOP, in contrast to either procedure performed separately.


Assuntos
Ceratocone , Ceratectomia Fotorrefrativa , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Adolescente , Criança , Ceratectomia Fotorrefrativa/métodos , Ceratocone/diagnóstico , Ceratocone/tratamento farmacológico , Ceratocone/cirurgia , Crosslinking Corneano , Pressão Intraocular , Fármacos Fotossensibilizantes/uso terapêutico , Estudos Prospectivos , Acuidade Visual , Riboflavina/uso terapêutico , Córnea/cirurgia , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico , Topografia da Córnea
19.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686208

RESUMO

The aggregation and amyloid formation of α-synuclein is associated with Parkinson's disease and other synucleinopathies. In its native, monomeric form α-synuclein is an intrinsically disordered protein represented by highly dynamic conformational ensembles. Inhibition of α-synuclein aggregation using small molecules, peptides, or proteins has been at the center of interest in recent years. Our aim was to explore the effects of cross-linking on the structure and aggregation/amyloid formation properties of α-synuclein. Comparative analysis of available high-resolution amyloid structures and representative structural models and MD trajectory of monomeric α-synuclein revealed that potential cross-links in the monomeric protein are mostly incompatible with the amyloid forms and thus might inhibit fibrillation. Monomeric α-synuclein has been intramolecularly chemically cross-linked under various conditions using different cross-linkers. We determined the location of cross-links and their frequency using mass spectrometry and found that most of them cannot be realized in the amyloid structures. The inhibitory potential of cross-linked proteins has been experimentally investigated using various methods, including thioflavin-T fluorescence and transmission electron microscopy. We found that conformational constraints applied by cross-linking fully blocked α-synuclein amyloid formation. Moreover, DTSSP-cross-linked molecules exhibited an inhibitory effect on the aggregation of unmodified α-synuclein as well.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína , Proteínas Amiloidogênicas , Doença de Parkinson/tratamento farmacológico , Reagentes de Ligações Cruzadas/farmacologia
20.
Ocul Surf ; 30: 150-159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683969

RESUMO

Induced corneal collagen crosslinking and mechanical stiffening via ultraviolet-A photoactivation of riboflavin (UVA CXL) is now a common treatment for corneal ectasia and Keratoconus. Some effects of the procedure such as induced mechanical stiffening, corneal flattening, and cellular toxicity are well-known, but others remain more controversial. Authors report a variety of contradictory effects, and provide evidence based on individual results and observations. A full understanding of the effects of and mechanisms behind this procedure are essential to predicting its outcome. A growing interest in modifications to the standard UVA CXL protocol, such as transepithelial or accelerated UVA CXL, makes analyzing the literature as a whole more urgent. This review presents an analysis of both the agreed-upon and contradictory results reported and the various methods used to obtain them.


Assuntos
Córnea , Ceratocone , Humanos , Raios Ultravioleta , Colágeno , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Ceratocone/tratamento farmacológico , Reagentes de Ligações Cruzadas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Substância Própria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...