Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.660
Filtrar
1.
Int J Biol Sci ; 20(11): 4532-4550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247808

RESUMO

Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Camundongos Knockout , Receptor A2A de Adenosina , Cicatrização , Cicatrização/fisiologia , Cicatrização/genética , Animais , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Camundongos , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Sistema de Sinalização das MAP Quinases/fisiologia , Proliferação de Células/genética , Movimento Celular/genética , Angiogênese
2.
Molecules ; 29(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202926

RESUMO

The adenosine A2A receptor (A2AR) has been identified as a therapeutic target for treating neurodegenerative diseases and cancer. In recent years, we have highlighted the 2-aminoquinazoline heterocycle as an promising scaffold for designing new A2AR antagonists, exemplified by 6-bromo-4-(furan-2-yl)quinazolin-2-amine 1 (Ki (hA2AR) = 20 nM). Here, we report the synthesis of new 2-aminoquinazoline derivatives with substitutions at the C6- and C7-positions, and the introduction of aminoalkyl chains containing tertiary amines at the C2-position to enhance antagonist activity and solubility properties. Compound 5m showed a high affinity for hA2AR with a Ki value of 5 nM and demonstrated antagonist activity with an IC50 of 6 µM in a cyclic AMP assay. Introducing aminopentylpiperidine and 4-[(piperidin-1-yl)methyl]aniline substituents maintained the binding affinities (9x, Ki = 21 nM; 10d, Ki = 15 nM) and functional antagonist activities (9x, IC50 = 9 µM; 10d, IC50 = 5 µM) of the synthesized compounds while improving solubility. This study provides insights into the future development of A2AR antagonists for therapeutic applications.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Quinazolinas , Receptor A2A de Adenosina , Quinazolinas/química , Quinazolinas/farmacologia , Quinazolinas/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/química , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , AMP Cíclico/metabolismo , Solubilidade , Ligação Proteica
3.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201299

RESUMO

The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Receptor A2A de Adenosina , Receptores de Dopamina D2 , Transdução de Sinais , Astrócitos/metabolismo , Animais , Receptor A2A de Adenosina/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Receptores de Dopamina D2/metabolismo , Dopamina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Humanos , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Camundongos
4.
Nutrients ; 16(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39203748

RESUMO

Insomnia is a common sleep disorder with significant societal and economic impacts. Current pharmacotherapies for insomnia are often accompanied by side effects, necessitating the development of new therapeutic drugs. In this study, the hypnotic effects and mechanisms of Sedum kamtschaticum 30% ethanol extract (ESK) and one of its active compounds, myricitrin, were investigated using pentobarbital-induced sleep experiments, immunohistochemistry (IHC), receptor binding assays, and enzyme-linked immunosorbent assay (ELISA). The pentobarbital-induced sleep experiments revealed that ESK and myricitrin reduced sleep latency and prolonged total sleep time in a dose-dependent manner. Based on c-Fos immunostaining, ESK, and myricitrin enhanced the GABAergic neural activity in sleep-promoting ventrolateral preoptic nucleus (VLPO) GABAergic. By measuring the level of GABA released from VLPO GABAergic neurons, ESK and myricitrin were found to increase GABA release in the hypothalamus. These effects were significantly inhibited by SCH. Moreover, ESK exhibited a concentration-dependent binding affinity for the adenosine A2A receptors (A2AR). In conclusion, ESK and myricitrin have hypnotic effects, and their underlying mechanisms may be related to the activation of A2AR.


Assuntos
Hipnóticos e Sedativos , Extratos Vegetais , Receptor A2A de Adenosina , Animais , Receptor A2A de Adenosina/metabolismo , Hipnóticos e Sedativos/farmacologia , Camundongos , Masculino , Extratos Vegetais/farmacologia , Sono/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Pentobarbital/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Flavonoides/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo
5.
Front Immunol ; 15: 1427380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188712

RESUMO

Background and objective: Extracellular adenosine (eAdo) bridges tumor metabolism and immune regulation. CD39-CD73-eAdo/A2aR axis regulates tumor microenvironment (TME) and immunotherapy response. In the era of immunotherapy, exploring the impact of the CD39-CD73-eAdo/A2aR axis on TME and developing targeted therapeutic drugs to enhance the efficacy of immunotherapy are the current research hotspots. This study summarizes and explores the research trends and hotspots of the adenosine axis in the field of TME to provide ideas for further in-depth research. Methods: Literature information was obtained from the Web of Science core collection database. The VOS viewer and the bibliometric tool based on R were used to quantify and identify cooperation information and individual influence by analyzing the detailed information of the global annual publication volume, country/region and institution distribution, article authors and co-cited authors, and journal distribution of these articles. At the same time, the distribution of author keywords and the co-occurrence of author keywords, highly cited articles, and highly co-cited references of CD39-CD73-eAdo/A2aR in the field of TME were analyzed to determine research hotspots and trends. Result: 1,721 articles published in the past ten years were included in this study. Through bibliometric analysis, we found that (1) 69 countries and regions explored the effect of the CD39-CD73-eAdo/A2aR on TME, and the research was generally on the rise. Researchers in the United States dominated research in this area, with the highest total citation rate. China had the most significant number of publications. (2) Harvard University has published the most articles in this field. (3) 12,065 authors contributed to the publication of papers in this field, of which 23 published at least eight papers. STAGG J had significant academic influence, with 24 published articles and 2,776 citations. Co-cited authors can be clustered into three categories. Stagg J, Allard B, Ohta A, and Antonioli, L occupied a central position in the network. (4) 579 scholarly journals have published articles in this field. The journal FRONTIERS IN IMMUNOLOGY published the most significant number of papers, with 97 articles and a total of 2,317 citations, and the number of publications increased year by year. (5) "The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets" was the most frequently local cited article (163 times). The "A2A adenosine receptor protects tumors from antitumor T cells" was the most co-cited reference (224 times). (6) Through the analysis of author keywords, we found that the relationship between adenosine and immunotherapy was a core concept for many researchers in this field. Breast cancer, melanoma, colorectal cancer, ovarian cancer, glioblastoma, pancreatic cancer, hepatocellular carcinoma, and lung cancer were the most frequent cancer types in adenosine-related tumor studies. Immunotherapy, immunosuppression, immune checkpoint, and immune checkpoint inhibitors were the hot keywords in the research, reflecting the importance of the adenosine metabolic pathway in tumor immunotherapy. The keywords such as Immunogenic cell death, T cells, Sting, regulatory T cells, innate immunity, and immune infiltration demonstrated the pathways by which adenosine affected the TME. The famous author keywords in recent years have been immunotherapy, immunogenic cell death, inflammation, lung cancer, and gastric cancer. Conclusion: The effect of CD39-CD73-eAdo/A2aR on the infiltration and function of various immune cells in TME, tumor immunotherapy response, and patient prognosis has attracted the attention of researchers from many countries/regions. American scholars still dominate the research in this field, but Chinese scholars produce the most research results. The journal FRONTIERS IN IMMUNOLOGY has published the wealthiest research in the field. Stagg J was a highly influential researcher in this field. Further exploration of targeted inhibition of CD39-CD73-eAdo/A2aR alone or in combination with other immunotherapy, radiotherapy, and chemotherapy in treating various cancer types and developing effective clinical therapeutic drugs are continuous research hotspots in this field.


Assuntos
5'-Nucleotidase , Adenosina , Apirase , Bibliometria , Neoplasias , Microambiente Tumoral , Animais , Humanos , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Apirase/metabolismo , Proteínas Ligadas por GPI/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Receptor A2A de Adenosina/metabolismo , Microambiente Tumoral/imunologia
6.
Mol Biol Rep ; 51(1): 894, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115571

RESUMO

Adenosine is a neuro- and immunomodulator that functions via G protein-coupled cell surface receptors. Several microbes, including viruses, use the adenosine signaling pathway to escape from host defense systems. Since the recent research developments in its role in health and disease, adenosine and its signaling pathway have attracted attention for targeting to treat many diseases. The therapeutic role of adenosine has been extensively studied for neurological, cardiovascular, and inflammatory disorders and bacterial pathophysiology, but published data on the role of adenosine in viral infections are lacking. Therefore, the purpose of this review article was to explain in detail the therapeutic role of adenosine signaling against viral infections, particularly COVID-19 and HIV. Several therapeutic approaches targeting A2AR-mediated pathways are in development and have shown encouraging results in decreasing the intensity of inflammatory reaction. The hypoxia-adenosinergic mechanism provides protection from inflammation-mediated tissue injury during COVID-19. A2AR expression increased remarkably in CD39 + and CD8 + T cells harvested from HIV patients in comparison to healthy subjects. A combined in vitro treatment performed by blocking PD-1 and CD39/adenosine signaling produced a synergistic outcome in restoring the CD8 + T cells funstion in HIV patients. We suggest that A2AR is an ideal target for pharmacological interventions against viral infections because it reduces inflammation, prevents disease progression, and ultimately improves patient survival.


Assuntos
Síndrome da Imunodeficiência Adquirida , Adenosina , COVID-19 , Evasão da Resposta Imune , Receptor A2A de Adenosina , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/imunologia , COVID-19/virologia , Receptor A2A de Adenosina/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Adenosina/metabolismo , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Apirase/metabolismo , Apirase/imunologia
7.
Front Immunol ; 15: 1428551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086479

RESUMO

Background: Myocardial inflammation and apoptosis induced by cirrhosis are among the primary mechanisms of cirrhotic cardiomyopathy. CD73, a common extracellular nucleotidase also known as 5'-nucleotidase, is associated with the progression of inflammation and immunity in multiple organs. However, the mechanism by which CD73 contributes to myocardial inflammation and apoptosis in cirrhosis remains unclear. Methods: In this study, a cirrhotic cardiomyopathy model in mice was established by bile duct ligation. Myocardial-specific overexpression of CD73 was achieved by tail vein injection of AAV9 (adeno-associated virus)-cTNT-NT5E-mCherry, and cardiac function in mice was assessed using echocardiography. Myocardial inflammation infiltration and apoptosis were evaluated through pathological observation and ELISA assays. The expression of CD73, A2AR, apoptotic markers, and proteins related to the NF-κB pathway in myocardial tissue were measured. Results: In the myocardial tissue of the cirrhotic cardiomyopathy mouse model, the expression of CD73 and A2AR increased. Overexpression of CD73 in the myocardium via AAV9 injection and stimulation of A2AR with CGS 21680 inhibited myocardial inflammation and cardiomyocyte apoptosis induced by cirrhosis. Additionally, overexpression of CD73 suppressed the activation of the NF-κB pathway by upregulating the expression of the adenosine receptor A2A. Conclusion: Our study reveals that the CD73/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis through negative feedback regulation of the NF-κB pathway.


Assuntos
5'-Nucleotidase , Cardiomiopatias , Cirrose Hepática , Receptor A2A de Adenosina , Transdução de Sinais , Animais , Masculino , Camundongos , 5'-Nucleotidase/metabolismo , Apoptose , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/imunologia , Modelos Animais de Doenças , Retroalimentação Fisiológica , Proteínas Ligadas por GPI , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor A2A de Adenosina/metabolismo
8.
Eur J Med Res ; 29(1): 433, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192377

RESUMO

BACKGROUND: Reduction of inflammatory damage and inhibition of nucleus pulposus (NP) apoptosis are considered to be the main effective therapy idea to reverse the intervertebral disc degeneration (IDD) and alleviate the chronic low back pain. The adenosine A2A receptor (A2AR), as a member of G protein-coupled receptor families, plays an important role in the anti-inflammation and relieving pain. So far, the impact of A2AR on IDD therapy is unclear. The aim of this study was to explore the role of Adenosine A2A receptor (A2AR) in the intervertebral disc degeneration (IDD) and clarify potential mechanism. MATERIALS AND METHODS: IL-1ß and acupuncture was used to establish IDD model rats. A2AR agonist CGS-21680 and A2AR antagonist SCH442416 were used to investigate the therapeutical effects for IDD. Histological examination, western blotting analysis and RT-PCR were employed to evaluate the the association between A2AR and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway. RESULTS: A2AR activity of the intervertebral disc tissues was up-regulated in feedback way, and cAMP, PKA and CREB expression were also increased. But in general, IL-1ß-induced IDD promoted the significant up-regulation the expression of inflammatory factors. The nucleus pulposus (NP) inflammation was exacerbated in result of MMP3 and Col-II decline through activating NF-κB signaling pathway. A2AR agonist CGS-21680 exhibited a disc protective effect through significantly increasing A2AR activity, then further activated cAMP/PKA signaling pathway with attenuating the release of TNF-α and IL-6 via down-regulating NF-κB. In contrast, SCH442416 inhibited A2AR activation, consistent with lower expression levels of cAMP and PKA, further leading to the acceleration of IDD. CONCLUSIONS: The activation of A2AR can prevent inflammatory responses and mitigates degradation of IDD thus suggest a potential novel therapeutic strategy of IDD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Inflamação , Degeneração do Disco Intervertebral , NF-kappa B , Receptor A2A de Adenosina , Transdução de Sinais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor A2A de Adenosina/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Inflamação/metabolismo , Masculino , Ratos Sprague-Dawley , Fenetilaminas/farmacologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Núcleo Pulposo/efeitos dos fármacos , AMP Cíclico/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Modelos Animais de Doenças , Adenosina/análogos & derivados
9.
Bioorg Med Chem ; 112: 117881, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178585

RESUMO

A series of 2,6,9-trisubstituted purine derivatives were designed and synthesized with diverse chemical moieties. Through a comprehensive biological evaluation, we identified 4-(6-(methylamino)-2-(phenylethynyl)-9H-purin-9-yl)phenol (6a) as a promising A2AAR antagonist with potent antifibrotic properties. Compound 6a demonstrated significant efficacy in inhibiting CRE promoter activity and in reducing the expression of fibrogenic marker proteins and downstream effectors of A2AAR activation, surpassing the A2AAR antagonist ZM241385 and initial screening hits, 9-benzyl-N-methyl-2-(phenylethynyl)-9H-purin-6-amine (5a) and 9-((benzyloxy)methyl)-N-methyl-2-(phenylethynyl)-9H-purin-6-amine (5j). Further validation revealed that compound 6a effectively inhibited fibrogenic marker proteins induced by A2AAR overexpression or TGF-ß1 treatment in hepatic stellate cells, alongside reducing PKA and CREB phosphorylation. These findings suggest that compound 6a exerts its antifibrotic action by modulating the cAMP/PKA/CREB pathway through A2AAR inhibition. Overall, our study provides valuable insights for the development of novel therapeutics that target hepatic fibrosis through A2AAR antagonism.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antifibróticos , Desenho de Fármacos , Purinas , Humanos , Antifibróticos/farmacologia , Antifibróticos/síntese química , Antifibróticos/química , Purinas/farmacologia , Purinas/química , Purinas/síntese química , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Estrutura Molecular , Receptor A2A de Adenosina/metabolismo , Relação Dose-Resposta a Droga , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Animais
10.
J Am Chem Soc ; 146(29): 20045-20058, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001877

RESUMO

G protein-coupled receptor (GPCR) structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches allow for probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied the adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation, and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of the A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, our study provides a new structural MS approach that would be generalizable to characterizing conformational transition and plasticity for challenging integral membrane proteins.


Assuntos
Espectrometria de Massas , Conformação Proteica , Receptor A2A de Adenosina , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
11.
EMBO Rep ; 25(8): 3547-3573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009832

RESUMO

The COVID-19 pandemic reminded us of the urgent need for new antivirals to control emerging infectious diseases and potential future pandemics. Immunotherapy has revolutionized oncology and could complement the use of antivirals, but its application to infectious diseases remains largely unexplored. Nucleoside analogs are a class of agents widely used as antiviral and anti-neoplastic drugs. Their antiviral activity is generally based on interference with viral nucleic acid replication or transcription. Based on our previous work and computer modeling, we hypothesize that antiviral adenosine analogs, like remdesivir, have previously unrecognized immunomodulatory properties which contribute to their therapeutic activity. In the case of remdesivir, we here show that these properties are due to its metabolite, GS-441524, acting as an Adenosine A2A Receptor antagonist. Our findings support a new rationale for the design of next-generation antiviral agents with dual - immunomodulatory and intrinsic - antiviral properties. These compounds could represent game-changing therapies to control emerging viral diseases and future pandemics.


Assuntos
Monofosfato de Adenosina , Adenosina , Alanina , Antivirais , COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/química , COVID-19/imunologia , COVID-19/virologia , Animais , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Pandemias , Tratamento Farmacológico da COVID-19 , Chlorocebus aethiops , Replicação Viral/efeitos dos fármacos , Células Vero , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Receptor A2A de Adenosina/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia
12.
Planta Med ; 90(11): 864-875, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047773

RESUMO

The increasing prevalence of sleep dysregulation cases has prompted the search for effective and safe sleep-enhancing agents. Numerous medications used in the treatment of sleep disorders function by enhancing γ-aminobutyric acid neurotransmitter activity. Unfortunately, these substances may induce significant adverse effects in chronic users, such as dependence and motor behavior impairments. Consequently, there is a growing interest in exploring therapeutic sleep-enhancing agents derived from natural sources, with the anticipation of causing less severe side effects. Prunella vulgaris (PV), a perennial plant indigenous to South Korea, exhibits various pharmacological effects, likely attributed to its chemical composition. Rosmarinic acid, one of its components, has previously demonstrated sleep-potentiating properties, suggesting the potential for PV to exhibit similar pharmacological effects. This study aims to investigate the potential effects of repeated administration of PV extract on the sleep behavior, brainwave activity, sleep-wake cycle, and physiological behavior of mice. Findings indicate that PV extracts exhibit sleep-enhancing effects in mice, characterized by prolonged sleep duration and a reduced onset time of pentobarbital-induced sleep. However, PV extracts only reduced alpha wave powers, with minor alterations in wakefulness and rapid-eye-movement sleep duration. In contrast to diazepam, PV extracts lack adverse effects on locomotor activity, motor coordination, or anxiety in mice. Receptor-binding assay and caffeine treatment support the potential involvement of adenosine A2A receptors in the effects of PV, suggesting distinct mechanisms of action compared to diazepam, despite both exhibiting sleep-altering effects. Overall, our results suggest that PV holds promise as a potential source of sleep-aiding agents.


Assuntos
Pentobarbital , Extratos Vegetais , Prunella , Receptor A2A de Adenosina , Sono , Animais , Prunella/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Sono/efeitos dos fármacos , Masculino , Pentobarbital/farmacologia , Hipnóticos e Sedativos/farmacologia , Medicamentos Indutores do Sono/farmacologia , Camundongos Endogâmicos ICR
13.
Pharmacol Rep ; 76(5): 1012-1031, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39048810

RESUMO

BACKGROUND: The objective of the study was to ascertain the antidepressant potential of the co-administration of NMDA receptor ligands and selective adenosine A1 and A2A receptor antagonists. METHODS: The forced swim test (FST) and spontaneous locomotor activity test were carried out in adult male naïve mice. Before the behavioral testing, animals received DPCPX (a selective adenosine A1 receptor antagonist, 1 mg/kg) or istradefylline (a selective adenosine A2A receptor antagonist, 0.5 mg/kg) in combination with L-701,324 (a potent NMDA receptor antagonist, 1 mg/kg), D-cycloserine (a partial agonist at the glycine recognition site of NMDA receptor, 2.5 mg/kg), CGP 37849 (a competitive NMDA receptor antagonist, 0.3 mg/kg) or MK-801 (a non-competitive NMDA receptor antagonist, 0.05 mg/kg). Additionally, serum BDNF level and the mRNA level of the Adora1, Comt, and Slc6a15 genes in the murine prefrontal cortex were determined. RESULTS: The obtained results showed that DPCPX and istradefylline administered jointly with NMDA receptor ligands (except for DPCPX + D-cycloserine combination) produced an antidepressant effect in the FST in mice without enhancement in spontaneous motility of animals. An elevation in BDNF concentration was noted in the D-cycloserine-treated group. Adora1 expression increased with L-701,324, DPCPX + D-cycloserine, and DPCPX + CGP 37849, while D-cycloserine, CGP 37849, and MK-801 led to a decrease. Comt mRNA levels dropped with DPCPX + L-701,324, istradefylline + L-701,324/CGP 37849 but increased with D-cycloserine, MK-801, CGP 37849 and DPCPX + MK-801/ CGP 37849. Slc6a15 levels were reduced by D-cycloserine, DPCPX + L-701,324 but rose with DPCPX + CGP 37849/MK-801 and istradefylline + D-cycloserine/MK-801/CGP 37849. CONCLUSION: Our study suggests that selective antagonists of adenosine receptors may enhance the antidepressant efficacy of NMDA receptor ligands highlighting a potential synergistic interaction between the adenosinergic and glutamatergic systems. Wherein, A2A receptor antagonists are seen as more promising candidates in this context. Given the intricate nature of changes in BDNF levels and the expression of Adora1, Comt, and Slc6a15 seen after drug combinations exerting antidepressant properties, further research and integrative approaches are crucial understand better the mechanisms underlying their antidepressant action.


Assuntos
Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Antidepressivos , Receptor A1 de Adenosina , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Masculino , Antidepressivos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptor A1 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Ligantes , Xantinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor A2A de Adenosina/metabolismo , Purinas/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Quinolonas
14.
Brain ; 147(8): 2691-2705, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964748

RESUMO

Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Transtornos da Memória , Camundongos Transgênicos , Neurônios , Receptor A2A de Adenosina , Sinapses , Animais , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Sinapses/metabolismo , Sinapses/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Hipocampo/metabolismo , Hipocampo/patologia , Presenilina-1/genética , Modelos Animais de Doenças , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Masculino , Camundongos Endogâmicos C57BL
15.
Gen Physiol Biophys ; 43(4): 335-346, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953575

RESUMO

Diabetic osteoporosis is a common health problem that is associated with a disruption in bone metabolism. A2A adenosine receptor (A2AAR) signaling seems to play a critical role in bone homeostasis. This study aimed to evaluate the effect of A2AAR stimulation on the treatment of diabetic-induced osteoporosis versus insulin treatment. Forty adult male rats were allocated into control (C), untreated diabetic-induced osteoporosis (DIO), insulin-treated DIO (I-DIO), and A2AAR agonist-treated DIO (A-DIO) groups. Both insulin and A2AAR agonist treatments significantly increased serum insulin level, glutathione peroxidase (GPx) activity, bone expression of osteoprotegerin (Opg) and ß-catenin (Ctnnb1), and cortical and trabecular bone thickness, whereas they decreased serum fasting glucose, malondialdehyde (MDA), tumor necrosis factor α (TNF-α), bone expression of receptor activator of nuclear factor kappa-B ligand (Rankl), runt-related transcription factor-2 (Runx2), and sclerostin (Sost) versus the untreated DIO groups. A2AAR agonist treatment was more effective than insulin in ameliorating diabetic osteoporosis. This might be attributed to the upregulation of ß-catenin gene expression, enhancing its anabolic effect on bone, in addition to the A2AAR agonist's anti-oxidative, anti-inflammatory, and anti-diabetic effects.


Assuntos
Diabetes Mellitus Experimental , Osteoporose , Animais , Masculino , Ratos , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Insulina/metabolismo , Osteoporose/metabolismo , Osteoporose/etiologia , Osteoporose/tratamento farmacológico , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Resultado do Tratamento
16.
Clin Immunol ; 266: 110309, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002795

RESUMO

Psoriasis is a common inflammatory systemic disease characterized by pro-inflammatory macrophages activation (M1 macrophage) infiltrated in the dermal layer. How M1 macrophage contributes to psoriasis remains unknown. In this study, we found that adenosine A2A receptor (A2AR) agonist CGS 21680 HCl alleviated the imiquimod (IMQ) and mouse IL-23 Protein (rmIL-23)-induced psoriasis inflammation through reducing infiltration of M1. Conversely, Adora2a deletion in mice exacerbated psoriasis-like phenotype. Mechanistically, A2AR activation inhibited M1 macrophage activation via the NF-κB-KRT16 pathway to reduce the secretion of CXCL10/11 and inhibit Th1/17 differentiation. Notably, the KRT16 expression was first found in M1 macrophage in our study, not only in keratinocytes (KCs). CXCL10/11 are first identified as primarily derived from macrophages and dendritic cells (DCs) rather than KCs in psoriasis using single cell RNA sequencing (scRNA-Seq). In total, the study emphasizes the importance of M1 as an innate immune cell in pathogenesis of psoriasis.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Ativação de Macrófagos , Macrófagos , Psoríase , Receptor A2A de Adenosina , Animais , Humanos , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Adenosina/análogos & derivados , Agonistas do Receptor A2 de Adenosina/farmacologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Imiquimode/farmacologia , Imunidade Inata/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenetilaminas/farmacologia , Psoríase/imunologia , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética
17.
Neuropharmacology ; 258: 110055, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950692

RESUMO

Sleep disturbances and persistent pain conditions are public health challenges worldwide. Although it is well-known that sleep deficit increases pain sensitivity, the underlying mechanisms remain elusive. We have recently demonstrated the involvement of nucleus accumbens (NAc) and anterior cingulate cortex (ACC) in the pronociceptive effect of sleep restriction. In this study, we found that sleep restriction increases c-Fos expression in NAc and ACC, suggesting hyperactivation of these regions during prolonged wakefulness in male Wistar rats. Blocking adenosine A2A receptors in the NAc or GABAA receptors in the ventral tegmental area (VTA), dorsal raphe nucleus (DRN), or locus coeruleus (LC) effectively mitigated the pronociceptive effect of sleep restriction. In contrast, the blockade of GABAA receptors in each of these nuclei only transiently reduced carrageenan-induced hyperalgesia. Pharmacological activation of dopamine D2, serotonin 5-HT1A and noradrenaline alpha-2 receptors within the ACC also prevented the pronociceptive effect of sleep restriction. While pharmacological inhibition of these same monoaminergic receptors in the ACC restored the pronociceptive effect which had been prevented by the GABAergic disinhibition of the of the VTA, DRN or LC. Overall, these findings suggest that the pronociceptive effect of sleep restriction relies on increased adenosinergic activity on NAc, heightened GABAergic activity in VTA, DRN, and LC, and reduced inhibitory monoaminergic activity on ACC. These findings advance our understanding of the interplay between sleep and pain, shedding light on potential NAc-brainstem-ACC mechanisms that could mediate increased pain sensitivity under conditions of sleep impairment.


Assuntos
Núcleo Accumbens , Ratos Wistar , Privação do Sono , Área Tegmentar Ventral , Animais , Masculino , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Ratos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Hiperalgesia/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Carragenina , Receptores de GABA-A/metabolismo , Receptores de Dopamina D2/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia
18.
J Med Chem ; 67(15): 13056-13066, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39036887

RESUMO

Activation of the adenosine 2A receptor (A2AR) can lead to tumor immunosuppression, which results in poor prognosis of immunotherapy. The aim of this study was to design novel 18F-labeled probes ([18F]F-PFP2 and [18F]F-PFP4) to visualize A2AR in the tumor. The uptake of radioprobes in A2AR-negative 4T1 breast tumor was lower than that of A2AR-positive B16F10 melanoma at 1 h p.i. (1.22 ± 0.36% ID/g vs 2.80 ± 0.72% ID/g), 2 h p.i. (1.09 ± 0.20% ID/g vs 2.93 ± 0.76% ID/g) and 3 h p.i. (0.89 ± 0.27% ID/g vs 2.73 ± 0.58% ID/g), respectively. B16F10 lung metastasis models were employed to expand the application scenarios, observing significantly higher uptake of [18F]F-PFP2 in metastatic lesions compared to normal lung tissue (5.55 ± 2.18% ID/g vs 1.89 ± 0.65% ID/g, tumor/lung ratio ∼3). It is given that [18F]F-PFP2 might lay the foundation for establishing an A2AR-targeted imaging evaluation system for tumors, which will provide more precise guidance for personalized treatment.


Assuntos
Compostos Radiofarmacêuticos , Receptor A2A de Adenosina , Animais , Camundongos , Receptor A2A de Adenosina/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Feminino , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Humanos , Tomografia por Emissão de Pósitrons/métodos , Camundongos Endogâmicos BALB C , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia
19.
Br J Pharmacol ; 181(19): 3779-3795, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38877785

RESUMO

BACKGROUND AND PURPOSE: The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH: A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS: A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS: A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.


Assuntos
Adenosina , Epitélio Corneano , Fenetilaminas , Receptor A2A de Adenosina , Transdução de Sinais , Cicatrização , Proteínas de Sinalização YAP , Cicatrização/efeitos dos fármacos , Animais , Fenetilaminas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Receptor A2A de Adenosina/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Humanos , Camundongos , Agonistas do Receptor A2 de Adenosina/farmacologia , Movimento Celular/efeitos dos fármacos , Masculino , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia
20.
J Med Chem ; 67(12): 10490-10507, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38845345

RESUMO

Building on the preceding structural analysis and a structure-activity relationship (SAR) of 8-aryl-2-hexynyl nucleoside hA2AAR antagonist 2a, we strategically inverted C2/C8 substituents and eliminated the ribose moiety. These modifications aimed to mitigate potential steric interactions between ribose and adenosine receptors. The SAR findings indicated that such inversions significantly modulated hA3AR binding affinities depending on the type of ribose, whereas removal of ribose altered the functional efficacy via hA2AAR. Among the synthesized derivatives, 2-aryl-8-hexynyl adenine 4a demonstrated the highest selectivity for hA2AAR (Ki,hA2A = 5.0 ± 0.5 nM, Ki,hA3/Ki,hA2A = 86) and effectively blocked cAMP production and restored IL-2 secretion in PBMCs. Favorable pharmacokinetic properties and a notable enhancement of anticancer effects in combination with an mAb immune checkpoint blockade were observed upon oral administration of 4a. These findings establish 4a as a viable immune-oncology therapeutic candidate.


Assuntos
Adenina , Antagonistas do Receptor A2 de Adenosina , Nucleosídeos , Receptor A2A de Adenosina , Ribose , Humanos , Relação Estrutura-Atividade , Animais , Adenina/farmacologia , Adenina/química , Adenina/análogos & derivados , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Nucleosídeos/química , Nucleosídeos/farmacologia , Nucleosídeos/síntese química , Ribose/química , Ribose/metabolismo , Receptor A2A de Adenosina/metabolismo , Camundongos , Estrutura Molecular , Ratos , Feminino , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...