Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.307
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2321532121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830102

RESUMO

Cannabis sativa is known for its therapeutic benefit in various diseases including pain relief by targeting cannabinoid receptors. The primary component of cannabis, Δ9-tetrahydrocannabinol (THC), and other agonists engage the orthosteric site of CB1, activating both Gi and ß-arrestin signaling pathways. The activation of diverse pathways could result in on-target side effects and cannabis addiction, which may hinder therapeutic potential. A significant challenge in pharmacology is the design of a ligand that can modulate specific signaling of CB1. By leveraging insights from the structure-function selectivity relationship (SFSR), we have identified Gi signaling-biased agonist-allosteric modulators (ago-BAMs). Further, two cryoelectron microscopy (cryo-EM) structures reveal the binding mode of ago-BAM at the extrahelical allosteric site of CB1. Combining mutagenesis and pharmacological studies, we elucidated the detailed mechanism of ago-BAM-mediated biased signaling. Notably, ago-BAM CB-05 demonstrated analgesic efficacy with fewer side effects, minimal drug toxicity and no cannabis addiction in mouse pain models. In summary, our finding not only suggests that ago-BAMs of CB1 provide a potential nonopioid strategy for pain management but also sheds light on BAM identification for GPCRs.


Assuntos
Microscopia Crioeletrônica , Receptor CB1 de Canabinoide , Transdução de Sinais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/química , Animais , Regulação Alostérica/efeitos dos fármacos , Camundongos , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Relação Estrutura-Atividade , Dronabinol/farmacologia , Dronabinol/química , Dronabinol/análogos & derivados , Cannabis/química , Cannabis/metabolismo
2.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780511

RESUMO

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Assuntos
Glândulas Suprarrenais , Hipertensão , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , beta Catenina , Animais , beta Catenina/metabolismo , beta Catenina/genética , Masculino , Hipertensão/metabolismo , Hipertensão/genética , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Imuno-Histoquímica , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/genética , Hipertensão Renovascular/patologia
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710516

RESUMO

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Assuntos
Ácidos Araquidônicos , Camundongos Endogâmicos C57BL , Encefalopatia Associada a Sepse , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Camundongos , Masculino , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Lipopolissacarídeos/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Cognição/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo
4.
Sci Adv ; 10(22): eado0077, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809980

RESUMO

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.


Assuntos
Receptor CB1 de Canabinoide , Transdução de Sinais , Sinapses , Transmissão Sináptica , Animais , Transmissão Sináptica/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Sinapses/metabolismo , Terminações Pré-Sinápticas/metabolismo , Camundongos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Dronabinol/farmacologia
5.
J Pregnancy ; 2024: 6620156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745869

RESUMO

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Assuntos
Placenta , Nascimento Prematuro , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Humanos , Feminino , Gravidez , Placenta/metabolismo , Nascimento Prematuro/metabolismo , Estudos Prospectivos , Adulto , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Estudos de Casos e Controles , RNA Mensageiro/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética
6.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732230

RESUMO

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Assuntos
Endocanabinoides , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Humanos , Receptor CB2 de Canabinoide/metabolismo , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Células HEK293 , Ligantes , Glicerídeos/farmacologia , Técnicas Biossensoriais/métodos , Moduladores de Receptores de Canabinoides/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/metabolismo
7.
Sci Rep ; 14(1): 9181, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649680

RESUMO

The Cannabis sativa plant has been used for centuries as a recreational drug and more recently in the treatment of patients with neurological or psychiatric disorders. In many instances, treatment goals include relief from posttraumatic disorders, anxiety, or to support treatment of chronic pain. Ligands acting on cannabinoid receptor 1 (CB1R) are also potential targets for the treatment of other health conditions. Using an evidence-based approach, pharmacological investigation of CB1R agonists is timely, with the aim to provide chronically ill patients relief using well-defined and characterized compounds from cannabis. Hexahydrocannabinol (HHC), currently available over the counter in many countries to adults and even children, is of great interests to policy makers, legal administrators, and healthcare regulators, as well as pharmacologists. Herein, we studied the pharmacodynamics of HHC epimers, which activate CB1R. We compared their key CB1R-mediated signaling pathway activities and compared them to the pathways activated by Δ9-tetrahydrocannabinol (Δ9-THC). We provide evidence that activation of CB1R by HHC ligands is only broadly comparable to those mediated by Δ9-THC, and that both HHC epimers have unique properties. Together with the greater chemical stability of HHC compared to Δ9-THC, these molecules have a potential to become a part of modern medicine.


Assuntos
Dronabinol , Receptor CB1 de Canabinoide , Transdução de Sinais , Dronabinol/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos , Humanos , Canabinol/farmacologia , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Camundongos
8.
ACS Chem Neurosci ; 15(9): 1787-1812, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597712

RESUMO

ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gßγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and ß-arrestin 2 (ßarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; ßarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.


Assuntos
Agonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/síntese química , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Células HEK293 , Relação Estrutura-Atividade , Animais
9.
Am J Physiol Renal Physiol ; 326(6): F917-F930, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634131

RESUMO

Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.


Assuntos
Aquaporina 2 , Benzoxazinas , Diurese , Túbulos Renais Coletores , Morfolinas , Naftalenos , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Diurese/efeitos dos fármacos , Benzoxazinas/farmacologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Aquaporina 2/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Masculino , Diabetes Insípido Neurogênico/metabolismo , Diabetes Insípido Neurogênico/fisiopatologia , Camundongos Endogâmicos C57BL , Agonistas de Receptores de Canabinoides/farmacologia , Camundongos , Modelos Animais de Doenças
10.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661670

RESUMO

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Agonistas de Receptores de Canabinoides , Dopamina , Camundongos Endogâmicos C57BL , Animais , Dopamina/metabolismo , Masculino , Camundongos , Agonistas de Receptores de Canabinoides/farmacologia , Serotonina/metabolismo , Locomoção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Cocaína/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Atividade Motora/efeitos dos fármacos
11.
Behav Pharmacol ; 35(4): 161-171, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660819

RESUMO

Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.


Assuntos
Cannabis , Dronabinol , Terpenos , Animais , Terpenos/farmacologia , Ratos , Dronabinol/farmacologia , Masculino , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Indóis/farmacologia , Naftalenos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga , Aprendizagem por Discriminação/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673761

RESUMO

Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.


Assuntos
Esclerose Múltipla , Córtex Pré-Frontal , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptores de Canabinoides , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Córtex Pré-Frontal/metabolismo , Receptores de Canabinoides/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Masculino , Adulto , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Pessoa de Meia-Idade , Regulação para Cima , Multimerização Proteica
13.
Nutrients ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674820

RESUMO

Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.


Assuntos
Dexametasona , Microbioma Gastrointestinal , Atrofia Muscular , Extratos Vegetais , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Extratos Vegetais/farmacologia , Camundongos , Dexametasona/farmacologia , Dexametasona/efeitos adversos , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/induzido quimicamente , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Receptores de Canabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Linhagem Celular , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Sarcopenia/tratamento farmacológico
14.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675558

RESUMO

The cannabinoid-type I (CB1) receptor functions as a double-edged sword to decide cell fate: apoptosis/survival. Elevated CB1 receptor expression is shown to cause acute ceramide accumulation to meet the energy requirements of fast-growing cancers. However, the flip side of continual CB1 activation is the initiation of a second ceramide peak that leads to cell death. In this study, we used ovarian cancer cells, PA1, which expressed CB1, which increased threefold when treated with a natural compound, bis(palmitoleic acid) ester of a glycerol (C2). This novel compound is isolated from a marine snail, Conus inscriptus, using hexane and the structural details are available in the public domain PubChem database (ID: 14275348). The compound induced two acute ceramide pools to cause G0/G1 arrest and killed cells by apoptosis. The compound increased intracellular ceramides (C:16 to 7 times and C:18 to 10 times), both of which are apoptotic inducers in response to CB1 signaling and thus the compound is a potent CB1 agonist. The compound is not genotoxic because it did not induce micronuclei formation in non-cancerous Chinese hamster ovarian (CHO) cells. Since the compound induced the cannabinoid pathway, we tested if there was a psychotropic effect in zebrafish models, however, it was evident that there were no observable neurobehavioral changes in the treatment groups. With the available data, we propose that this marine compound is safe to be used in non-cancerous cells as well as zebrafish. Thus, this anticancer compound is non-toxic and triggers the CB1 pathway without causing psychotropic effects.


Assuntos
Apoptose , Ceramidas , Caramujo Conus , Ácidos Graxos , Receptor CB1 de Canabinoide , Animais , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Ceramidas/química , Ácidos Graxos/farmacologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais/efeitos dos fármacos , Caramujo Conus/química
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653357

RESUMO

Muscle degeneration is a common feature in cancer cachexia that cannot be reversed. Recent advances show that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1), regulates muscle processes, including metabolism, anabolism and regenerative capacity. However, it is unclear whether muscle endocannabinoids, their receptors and enzymes are responsive to cachexia and exercise. Therefore, this study investigated whether cachexia and exercise affected muscle endocannabinoid signaling, and whether CB1 expression correlated with markers of muscle anabolism, catabolism and metabolism. Male BALB/c mice were injected with PBS (CON) or C26 colon carcinoma cells (C26) and had access to wheel running (VWR) or remained sedentary (n = 5-6/group). Mice were sacrificed 18 days upon PBS/tumor cell injection. Cachexic mice exhibited a lower muscle CB1 expression (-43 %; p < 0.001) and lower levels of the endocannabinoid anandamide (AEA; -22 %; p = 0.044), as well as a lower expression of the AEA-synthesizing enzyme NAPE-PLD (-37 %; p < 0.001), whereas the expression of the AEA degrading enzyme FAAH was higher (+160 %; p < 0.001). The 2-AG-degrading enzyme MAGL, was lower in cachexic muscle (-34 %; p = 0.007), but 2-AG and its synthetizing enzyme DAGLß were not different between CON and C26. VWR increased muscle CB1 (+25 %; p = 0.005) and increased MAGL expression (+30 %; p = 0.035). CB1 expression correlated with muscle mass, markers of metabolism (e.g. p-AMPK, PGC1α) and of catabolism (e.g. p-FOXO, LC3b, Atg5). Our findings depict an emerging role of the endocannabinoid system in muscle physiology. Future studies should elaborate how this translates into potential therapies to combat cancer cachexia, and other degenerative conditions.


Assuntos
Caquexia , Endocanabinoides , Camundongos Endogâmicos BALB C , Músculo Esquelético , Receptor CB1 de Canabinoide , Animais , Endocanabinoides/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Caquexia/metabolismo , Caquexia/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Linhagem Celular Tumoral , Alcamidas Poli-Insaturadas/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Condicionamento Físico Animal , Ácidos Araquidônicos/metabolismo
16.
Eur J Pharmacol ; 971: 176549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561104

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and ß-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.


Assuntos
Agonistas de Receptores de Canabinoides , Processamento de Proteína Pós-Traducional , Humanos , Camundongos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Receptores de Canabinoides/metabolismo , Ligantes , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
17.
Biochem Pharmacol ; 224: 116190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604257

RESUMO

Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction. There are seven different GRK subtypes, which may uniquely phosphorylate the C-terminal tail in a type of 'phosphorylation barcode,' potentially differentially contributing to arrestin translocation and arrestin-dependent signalling. Such contributions may be exploited to develop arrestin-biased ligands. Here, we examine the effect of different GRK subtypes on the ability to promote translocation of arrestin-2 and arrestin-3 to the cannabinoid CB1 receptor (CB1) with a range of ligands. We find that most GRK subtypes (including visual GRK1) can enhance arrestin-2 and -3 translocation to CB1, and that GRK-dependent changes in arrestin-2 and arrestin-3 translocation were broadly shared for most agonists tested. GRK2/3 generally enhanced arrestin translocation more than the other GRK subtypes, with some small differences between ligands. We also explore the interplay between G protein activity and GRK2/3-dependent arrestin translocation, highlighting that high-efficacy G protein agonists will cause GRK2/3 dependent arrestin translocation. This study supports the hypothesis that arrestin-biased ligands for CB1 must engage GRK5/6 rather than GRK2/3, and G protein-biased ligands must have inherently low efficacy.


Assuntos
Arrestinas , Transporte Proteico , Receptor CB1 de Canabinoide , Transdução de Sinais , Humanos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Transdução de Sinais/fisiologia , Células HEK293 , Arrestinas/metabolismo , Transporte Proteico/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Animais , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética
18.
Curr Biol ; 34(9): 1918-1929.e5, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636514

RESUMO

The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.


Assuntos
Ingestão de Líquidos , Córtex Insular , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Masculino , Camundongos , Ingestão de Líquidos/fisiologia , Córtex Insular/fisiologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/metabolismo
19.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675703

RESUMO

While the opioid crisis has justifiably occupied news headlines, emergency rooms are seeing many thousands of visits for another cause: cannabinoid toxicity. This is partly due to the spread of cheap and extremely potent synthetic cannabinoids that can cause serious neurological and cardiovascular complications-and deaths-every year. While an opioid overdose can be reversed by naloxone, there is no analogous treatment for cannabis toxicity. Without an antidote, doctors rely on sedatives, with their own risks, or 'waiting it out' to treat these patients. We have shown that the canonical synthetic 'designer' cannabinoids are highly potent CB1 receptor agonists and, as a result, competitive antagonists may struggle to rapidly reverse an overdose due to synthetic cannabinoids. Negative allosteric modulators (NAMs) have the potential to attenuate the effects of synthetic cannabinoids without having to directly compete for binding. We tested a group of CB1 NAMs for their ability to reverse the effects of the canonical synthetic designer cannabinoid JWH018 in vitro in a neuronal model of endogenous cannabinoid signaling and also in vivo. We tested ABD1085, RTICBM189, and PSNCBAM1 in autaptic hippocampal neurons that endogenously express a retrograde CB1-dependent circuit that inhibits neurotransmission. We found that all of these compounds blocked/reversed JWH018, though some proved more potent than others. We then tested whether these compounds could block the effects of JWH018 in vivo, using a test of nociception in mice. We found that only two of these compounds-RTICBM189 and PSNCBAM1-blocked JWH018 when applied in advance. The in vitro potency of a compound did not predict its in vivo potency. PSNCBAM1 proved to be the more potent of the compounds and also reversed the effects of JWH018 when applied afterward, a condition that more closely mimics an overdose situation. Lastly, we found that PSNCBAM1 did not elicit withdrawal after chronic JWH018 treatment. In summary, CB1 NAMs can, in principle, reverse the effects of the canonical synthetic designer cannabinoid JWH018 both in vitro and in vivo, without inducing withdrawal. These findings suggest a novel pharmacological approach to at last provide a tool to counter cannabinoid toxicity.


Assuntos
Canabinoides , Receptor CB1 de Canabinoide , Animais , Humanos , Camundongos , Regulação Alostérica/efeitos dos fármacos , Canabinoides/farmacologia , Canabinoides/química , Indóis/farmacologia , Indóis/química , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/farmacologia
20.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514794

RESUMO

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transtornos da Memória , Ubiquitina-Proteína Ligases , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mutação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA