Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Expert Opin Investig Drugs ; 32(12): 1113-1121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994870

RESUMO

INTRODUCTION: Successful phase 3 trials of KarXT in people with schizophrenia herald a new era of treating the disorder with drugs that do not target the dopamine D2 receptor. The active component of KarXT is xanomeline, a muscarinic (CHRM) M1 and M4 agonist, making muscarinic receptors a viable target for treating schizophrenia. AREAS COVERED: This review covers the process of taking drugs that activate the muscarinic M1 and M4 receptors from conceptualization to the clinic and details the mechanisms by which activating the CHRM1 and 4 can affect the broad spectrum of symptoms experienced by people with schizophrenia. EXPERT OPINION: Schizophrenia is a syndrome which means drugs that activate muscarinic M1 and M4 receptors, as was the case for antipsychotic drugs acting on the dopamine D2 receptor, will not give optimal outcomes in everyone within the syndrome. Thus, it would be ideal to identify people who are responsive to drugs activating the CHRM1 and 4. Given knowledge of the actions of these receptors, it is possible treatment non-response could be restricted to sub-groups within the syndrome who have deficits in cortical CHRM1 or those with one of the cognitive endophenotypes that may be identifiable by changes in the blood transcriptome.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Agonistas Muscarínicos/farmacologia , Agonistas Muscarínicos/uso terapêutico , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Receptor Muscarínico M4/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Receptores de Dopamina D2/uso terapêutico , Receptor Muscarínico M1
2.
Cell Death Dis ; 14(5): 304, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142586

RESUMO

Current treatment options for prostate cancer focus on targeting androgen receptor (AR) signaling. Inhibiting effects of AR may activate neuroendocrine differentiation and lineage plasticity pathways, thereby promoting the development of neuroendocrine prostate cancer (NEPC). Understanding the regulatory mechanisms of AR has important clinical implications for this most aggressive type of prostate cancer. Here, we demonstrated the tumor-suppressive role of the AR and found that activated AR could directly bind to the regulatory sequence of muscarinic acetylcholine receptor 4 (CHRM4) and downregulate its expression. CHRM4 was highly expressed in prostate cancer cells after androgen-deprivation therapy (ADT). CHRM4 overexpression may drive neuroendocrine differentiation of prostate cancer cells and is associated with immunosuppressive cytokine responses in the tumor microenvironment (TME) of prostate cancer. Mechanistically, CHRM4-driven AKT/MYCN signaling upregulated the interferon alpha 17 (IFNA17) cytokine in the prostate cancer TME after ADT. IFNA17 mediates a feedback mechanism in the TME by activating the CHRM4/AKT/MYCN signaling-driven immune checkpoint pathway and neuroendocrine differentiation of prostate cancer cells. We explored the therapeutic efficacy of targeting CHRM4 as a potential treatment for NEPC and evaluated IFNA17 secretion in the TME as a possible predictive prognostic biomarker for NEPC.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas Proto-Oncogênicas c-akt , Antagonistas de Androgênios/uso terapêutico , Interferon-alfa/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral , Diferenciação Celular , Receptores Androgênicos/metabolismo , Receptor Muscarínico M4/uso terapêutico
3.
Addict Biol ; 27(2): e13145, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229940

RESUMO

Ligands that stimulate muscarinic acetylcholine receptors 1 and 4 (M1 , M4 ) have shown promising effects as putative pharmacotherapy for cocaine use disorder in rodent assays. We have previously shown reductions in cocaine effects with acute M4 stimulation, as well as long-lasting, delayed reductions in cocaine taking and cocaine seeking with combined M1 /M4 receptor stimulation or with M1 stimulation alone. M4 stimulation opposes dopaminergic signalling acutely, but direct dopamine receptor antagonists have proved unhelpful in managing cocaine use disorder because they lose efficacy with long-term administration. It is therefore critical to determine whether M4 approaches themselves can remain effective with repeated or chronic dosing. We assessed the effects of repeated administration of the M4 positive allosteric modulator (PAM) VU0152099 in rats trained to choose between intravenous cocaine and a liquid food reinforcer to obtain quantitative measurement of whether M4 stimulation could produce delayed and lasting reduction in cocaine taking. VU0152099 produced progressively augmenting suppression of cocaine choice and cocaine intake, but produced neither rebound nor lasting effects after treatment ended. To compare and contrast effects of M1 versus M4 stimulation, we tested whether the M4 PAM VU0152100 suppressed cocaine self-administration in mice lacking CalDAG-GEFI signalling factor, required for M1 -mediated suppression of cocaine self-administration. CalDAG-GEFI ablation had no effect on M4 -mediated suppression of cocaine self-administration. These findings support the potential usefulness of M4 PAMs as pharmacotherapy to manage cocaine use disorder, alone or in combination with M1 -selective ligands, and show that M1 and M4 stimulation modulate cocaine-taking behaviour by distinct mechanisms.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Masculino , Camundongos , Camundongos Knockout , Ratos , Receptor Muscarínico M4/uso terapêutico , Autoadministração
4.
Nat Commun ; 5: 3847, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24866701

RESUMO

Focal epilepsy is commonly pharmacoresistant, and resective surgery is often contraindicated by proximity to eloquent cortex. Many patients have no effective treatment options. Gene therapy allows cell-type specific inhibition of neuronal excitability, but on-demand seizure suppression has only been achieved with optogenetics, which requires invasive light delivery. Here we test a combined chemical-genetic approach to achieve localized suppression of neuronal excitability in a seizure focus, using viral expression of the modified muscarinic receptor hM4Di. hM4Di has no effect in the absence of its selective, normally inactive and orally bioavailable agonist clozapine-N-oxide (CNO). Systemic administration of CNO suppresses focal seizures evoked by two different chemoconvulsants, pilocarpine and picrotoxin. CNO also has a robust anti-seizure effect in a chronic model of focal neocortical epilepsy. Chemical-genetic seizure attenuation holds promise as a novel approach to treat intractable focal epilepsy while minimizing disruption of normal circuit function in untransduced brain regions or in the absence of the specific ligand.


Assuntos
Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Terapia Genética , Neocórtex/patologia , Doença Aguda , Animais , Clozapina/análogos & derivados , Clozapina/uso terapêutico , Epilepsias Parciais/fisiopatologia , Inativação Gênica , Humanos , Masculino , Atividade Motora , Neocórtex/fisiopatologia , Picrotoxina , Pilocarpina , Ratos Sprague-Dawley , Receptor Muscarínico M4/genética , Receptor Muscarínico M4/uso terapêutico , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...