Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.279
Filtrar
1.
Nat Commun ; 15(1): 7688, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227386

RESUMO

Autoimmune diseases such as systemic lupus erythematosus (SLE) display a strong female bias. Although sex hormones have been associated with protecting males from autoimmunity, the molecular mechanisms are incompletely understood. Here we report that androgen receptor (AR) expressed in T cells regulates genes involved in T cell activation directly, or indirectly via controlling other transcription factors. T cell-specific deletion of AR in mice leads to T cell activation and enhanced autoimmunity in male mice. Mechanistically, Ptpn22, a phosphatase and negative regulator of T cell receptor signaling, is downregulated in AR-deficient T cells. Moreover, a conserved androgen-response element is found in the regulatory region of Ptpn22 gene, and the mutation of this transcription element in non-obese diabetic mice increases the incidence of spontaneous and inducible diabetes in male mice. Lastly, Ptpn22 deficiency increases the disease severity of male mice in a mouse model of SLE. Our results thus implicate AR-regulated genes such as PTPN22 as potential therapeutic targets for autoimmune diseases.


Assuntos
Androgênios , Autoimunidade , Lúpus Eritematoso Sistêmico , Proteína Tirosina Fosfatase não Receptora Tipo 22 , Receptores Androgênicos , Linfócitos T , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Masculino , Feminino , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Androgênios/metabolismo , Camundongos Knockout , Ativação Linfocitária , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais
2.
Breast Cancer Res ; 26(1): 132, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272208

RESUMO

BACKGROUND: Despite evidence indicating the dominance of cell-of-origin signatures in molecular tumor patterns, translating these genome-wide patterns into actionable insights has been challenging. This study introduces breast cancer cell-of-origin signatures that offer significant prognostic value across all breast cancer subtypes and various clinical cohorts, compared to previously developed genomic signatures. METHODS: We previously reported that triple hormone receptor (THR) co-expression patterns of androgen (AR), estrogen (ER), and vitamin D (VDR) receptors are maintained at the protein level in human breast cancers. Here, we developed corresponding mRNA signatures (THR-50 and THR-70) based on these patterns to categorize breast tumors by their THR expression levels. The THR mRNA signatures were evaluated across 56 breast cancer datasets (5040 patients) using Kaplan-Meier survival analysis, Cox proportional hazard regression, and unsupervised clustering. RESULTS: The THR signatures effectively predict both overall and progression-free survival across all evaluated datasets, independent of subtype, grade, or treatment status, suggesting improvement over existing prognostic signatures. Furthermore, they delineate three distinct ER-positive breast cancer subtypes with significant survival in differences-expanding on the conventional two subtypes. Additionally, coupling THR-70 with an immune signature identifies a predominantly ER-negative breast cancer subgroup with a highly favorable prognosis, comparable to ER-positive cases, as well as an ER-negative subgroup with notably poor outcome, characterized by a 15-fold shorter survival. CONCLUSIONS: The THR cell-of-origin signature introduces a novel dimension to breast cancer biology, potentially serving as a robust foundation for integrating additional prognostic biomarkers. These signatures offer utility as a prognostic index for stratifying existing breast cancer subtypes and for de novo classification of breast cancer cases. Moreover, THR signatures may also hold promise in predicting hormone treatment responses targeting AR and/or VDR.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Receptores Androgênicos , Receptores de Calcitriol , Receptores de Estrogênio , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Prognóstico , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Estimativa de Kaplan-Meier , Transcriptoma
3.
Pestic Biochem Physiol ; 204: 106065, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277380

RESUMO

Organophosphate pesticides have potent endocrine disrupting effects, hence banned in many countries. However, many organophosphates like chlorpyrifos, malathion et cetera continue to be used in some countries (Wolejko et al., 2022; Wolejko et al., 2022)including India. Fodder mediated ingestion of these substances may be harmful for livestock fertility. We have investigated the effect of the widely used organophosphate pesticide chlorpyrifos (CPF) and its metabolite, 3,5,6-trichloropyridinol (TCPy) on the expression of genes essential for spermatogenesis in goat testicular tissue. The testicular Sertoli cells (Sc) regulate germ cell division and differentiation under the influence of follicle stimulating hormone (FSH) and testosterone (T). Impaired FSH and T mediated signalling in Sc can compromise spermatogenesis leading to sub-fertility/infertility. As Sc express receptors (R) for FSH and T, they are highly susceptible to the endocrine disrupting effects of pesticides affecting fertility by dysregulating the functioning of Sc. Our results indicated that exposure to different concentrations of CPF and TCPy can compromise Sc function by downregulating the expression of FSHR and AR which was associated with a concomitant decline in the expression of genes essential for germ cell division and differentiation, like KITLG, INHBB, CLDN11 and GJA1. CPF also induced a significant reduction in the activity of acetylcholinesterase in the testes and increased the total testicular antioxidant capacity. Our results suggested that CPF and its metabolite TCPy may induce reproductive toxicity by dysregulating the expression of Sc specific genes essential for spermatogenesis.


Assuntos
Clorpirifos , Cabras , Espermatogênese , Testículo , Animais , Masculino , Espermatogênese/efeitos dos fármacos , Clorpirifos/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inseticidas/toxicidade , Piridinas/farmacologia , Piridinas/toxicidade , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Piridonas
4.
Nat Commun ; 15(1): 7984, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266569

RESUMO

Alterations in nuclear structure and function are hallmarks of cancer cells. Little is known about these changes in Cancer-Associated Fibroblasts (CAFs), crucial components of the tumor microenvironment. Loss of the androgen receptor (AR) in human dermal fibroblasts (HDFs), which triggers early steps of CAF activation, leads to nuclear membrane changes and micronuclei formation, independent of cellular senescence. Similar changes occur in established CAFs and are reversed by restoring AR activity. AR associates with nuclear lamin A/C, and its loss causes lamin A/C nucleoplasmic redistribution. AR serves as a bridge between lamin A/C and the protein phosphatase PPP1. Loss of AR decreases lamin-PPP1 association and increases lamin A/C phosphorylation at Ser 301, a characteristic of CAFs. Phosphorylated lamin A/C at Ser 301 binds to the regulatory region of CAF effector genes of the myofibroblast subtype. Expression of a lamin A/C Ser301 phosphomimetic mutant alone can transform normal fibroblasts into tumor-promoting CAFs.


Assuntos
Fibroblastos Associados a Câncer , Núcleo Celular , Lamina Tipo A , Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Fosforilação , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Núcleo Celular/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/genética , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Masculino , Microambiente Tumoral
5.
Stem Cell Res Ther ; 15(1): 287, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256806

RESUMO

BACKGROUND: Androgenetic alopecia (AGA) is a common form of hair loss. Androgens, such as testosterone and dihydrotestosterone, are the main causes of AGA. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can reduce AGA. However, preparing therapeutic doses of MSCs for clinical use is challenging. Induced pluripotent stem cell-derived MSCs (iMSCs) are homogenous and easily expandable, enabling scalable production of EVs. Hyaluronic acid (HA) can exert various functions including free radical scavenging, immune regulation, and cell migration. Herein, we examined whether hyaluronic acid (HA) stimulation of iMSCs could produce EVs with enhanced therapeutic outcomes for AGA. METHODS: EVs were collected from iMSCs primed with HA (HA-iMSC-EVs) or without HA (iMSC-EVs). The characteristics of EVs were examined using dynamic light scattering, cryo-transmission electron microscopy, immunoblotting, flow cytometry, and proteomic analysis. In vitro, we compared the potential of EVs in stimulating the survival of hair follicle dermal papilla cells undergoing testosterone-mediated AGA. Additionally, the expression of androgen receptor (AR) and relevant growth factors as well as key proteins of Wnt/ß-catenin signaling pathway (ß-catenin and phosphorylated GSK3ß) was analyzed. Subsequently, AGA was induced in male C57/BL6 mice by testosterone administration, followed by repeated injections of iMSC-EVs, HA-iMSC-EVs, finasteride, or vehicle. Several parameters including hair growth, anagen phase ratio, reactivation of Wnt/ß-catenin pathway, and AR expression was examined using qPCR, immunoblotting, and immunofluorescence analysis. RESULTS: Both types of EVs showed typical characteristics for EVs, such as size distribution, markers, and surface protein expression. In hair follicle dermal papilla cells, the mRNA levels of AR, TGF-ß, and IL-6 increased by testosterone was blocked by HA-iMSC-EVs, which also contributed to the augmented expression of trophic genes related to hair regrowth. However, no notable changes were observed in the iMSC-EVs. Re-activation of Wnt/ß-catenin was observed in HA-iMSC-EVs but not in iMSC-EVs, as shown by ß-catenin stabilization and an increase in phosphorylated GSK3ß. Restoration of hair growth was more significant in HA-iMSC-EVs than in iMSC-EVs, and was comparable to that in mice treated with finasteride. Consistently, the decreased anagen ratio induced by testosterone was reversed by HA-iMSC-EVs, but not by iMSC-EVs. An increased expression of hair follicular ß-catenin protein, as well as the reduction of AR was observed in the skin tissue of AGA mice receiving HA-iMSC-EVs, but not in those treated with iMSC-EVs. CONCLUSIONS: Our results suggest that HA-iMSC-EVs have potential to improve AGA by regulating growth factors/cytokines and stimulating AR-related Wnt/ß-catenin signaling.


Assuntos
Alopecia , Vesículas Extracelulares , Folículo Piloso , Ácido Hialurônico , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Alopecia/terapia , Alopecia/metabolismo , Alopecia/tratamento farmacológico , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Testosterona/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL
6.
World J Surg Oncol ; 22(1): 243, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256855

RESUMO

OBJECTIVE: To investigate the relationship between the expression of androgen receptor (AR) and clinical characteristics in breast cancer. PATIENTS AND METHODS: The clinical records of all 432 patients tested for AR in our institution between January 2020 and May 2023 were reviewed. Clinical characteristics, age, menopausal status, tumor node metastasis (TNM) stage, distant metastasis, pathological complete response (pCR), histopathological features histological grade, estrogen receptor (ER), progesterone receptor, Her-2, Ki-67, and molecular subtype were registered for all patients. RESULTS: About 377 (87.27%) of the 432 patients had AR expression. No significant difference in AR expression was found with age, menopausal status, TNM stage of primary tumor, or pCR. AR was positively and significantly associated with the histological grade, and recurrence. The AR expression was significantly related with molecular subtypes, including ER, PR Her-2, Ki67 and molecular subtype. ER (OR = 10.489, 95%CI: 5.470-21.569), PR (OR = 7.690, 95%CI: 3.974-16.129, Her-2 (OR = 10.489, 95%CI: 2.779-23.490 and tumor recurrence (OR = 0.110, 95%CI: 0.031-0.377 were significant independent risk factors affecting AR expression. CONCLUSIONS: AR expression can serve as a reliable basis for judging the clinical molecular types and poor prognosis for breast cancer. AR may be a novel biomarker and target in AR-positive breast cancer depending on significant difference in AR expression among different molecular types of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Recidiva Local de Neoplasia , Receptor ErbB-2 , Receptores Androgênicos , Receptores de Estrogênio , Receptores de Progesterona , Humanos , Receptores Androgênicos/metabolismo , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Prognóstico , Adulto , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Receptores de Estrogênio/metabolismo , Seguimentos , Idoso , Estudos Retrospectivos , Metástase Linfática , Estadiamento de Neoplasias , Gradação de Tumores , Idoso de 80 Anos ou mais
7.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273194

RESUMO

The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRß support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Receptores de Calcitriol , Receptores dos Hormônios Tireóideos , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Masculino , Receptores de Calcitriol/metabolismo , Receptores Androgênicos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Hormônios Tireóideos/metabolismo , Terapia de Alvo Molecular
8.
J Clin Invest ; 134(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286979

RESUMO

The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração , Proteínas Proto-Oncogênicas c-bcl-2 , Masculino , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Camundongos , Metilação de DNA , Transição Epitelial-Mesenquimal , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese
9.
Environ Int ; 191: 108995, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241331

RESUMO

Traditional methods for identifying endocrine-disrupting chemicals (EDCs) that activate androgen receptors (AR) are costly, time-consuming, and low-throughput. This study developed a knowledge-based deep neural network model (AR-DNN) to predict AR-mediated adverse outcomes on female zebrafish fertility. This model started with chemical fingerprints as the input layer and was implemented through a five-layer virtual AR-induced adverse outcome pathway (AOP). Results indicated that the AR-DNN effectively and accurately screens new reproductive toxicants (AUC = 0.94, accuracy = 0.85), providing potential toxicity pathways. Furthermore, 1477 and 2448 chemicals that could lead to infertility were identified in the plastic additives list (PLASTICMAP, n = 7112) and the Inventory of Existing Chemical Substances in China (IECSC, n = 17741), respectively. Colourants containing steroid-like structures are the major active plastic additives that might lower female zebrafish fertility through AR binding, DNA binding, and transcriptional activation. While active IECSC chemicals primarily have the same fragments, such as benzonitrile, nitrobenzene, and quinolone. The predicted toxicity pathways were consistent with existing fish evidence, demonstrating the model's applicability. This knowledge-based approach offers a promising computational toxicology strategy for predicting and characterising the endocrine-disrupting effects and toxic mechanisms of organic chemicals, potentially leading to more efficient and cost-effective screening of EDCs.


Assuntos
Disruptores Endócrinos , Aprendizado de Máquina , Receptores Androgênicos , Peixe-Zebra , Animais , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/toxicidade , Feminino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
10.
Proc Natl Acad Sci U S A ; 121(39): e2407768121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292748

RESUMO

Androgens exert their effects primarily by binding to the androgen receptor (AR), a ligand-dependent nuclear receptor. While androgens have anabolic effects on skeletal muscle, previous studies reported that AR functions in myofibers to regulate skeletal muscle quality, rather than skeletal muscle mass. Therefore, the anabolic effects of androgens are exerted via nonmyofiber cells. In this context, the cellular and molecular mechanisms of AR in mesenchymal progenitors, which play a crucial role in maintaining skeletal muscle homeostasis, remain largely unknown. In this study, we demonstrated expression of AR in mesenchymal progenitors and found that targeted AR ablation in mesenchymal progenitors reduced limb muscle mass in mature adult, but not young or aged, male mice, although fatty infiltration of muscle was not affected. The absence of AR in mesenchymal progenitors led to remarkable perineal muscle hypotrophy, regardless of age, due to abnormal regulation of transcripts associated with cell death and extracellular matrix organization. Additionally, we revealed that AR in mesenchymal progenitors regulates the expression of insulin-like growth factor 1 (Igf1) and that IGF1 administration prevents perineal muscle atrophy in a paracrine manner. These findings indicate that the anabolic effects of androgens regulate skeletal muscle mass via, at least in part, AR signaling in mesenchymal progenitors.


Assuntos
Fator de Crescimento Insulin-Like I , Células-Tronco Mesenquimais , Músculo Esquelético , Receptores Androgênicos , Animais , Masculino , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Músculo Esquelético/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia
11.
Nat Commun ; 15(1): 7675, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227594

RESUMO

Most prostate cancers express the androgen receptor (AR), and tumor growth and progression are facilitated by exceptionally low levels of systemic or intratumorally produced androgens. Thus, absolute inhibition of the androgen signaling axis remains the goal of current therapeutic approaches to treat prostate cancer (PCa). Paradoxically, high dose androgens also exhibit considerable efficacy as a treatment modality in patients with late-stage metastatic PCa. Here we show that low levels of androgens, functioning through an AR monomer, facilitate a non-genomic activation of the mTOR signaling pathway to drive proliferation. Conversely, high dose androgens facilitate the formation of AR dimers/oligomers to suppress c-MYC expression, inhibit proliferation and drive a transcriptional program associated with a differentiated phenotype. These findings highlight the inherent liabilities in current approaches used to inhibit AR action in PCa and are instructive as to strategies that can be used to develop new therapeutics for this disease and other androgenopathies.


Assuntos
Androgênios , Proliferação de Células , Neoplasias da Próstata , Receptores Androgênicos , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Androgênios/metabolismo , Androgênios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Multimerização Proteica/efeitos dos fármacos , Animais
12.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253786

RESUMO

Prostate cancer progression is driven by androgen receptor (AR) activity, which is a target for therapeutic approaches. Enzalutamide is an AR inhibitor that prolongs the survival of patients with advanced prostate cancer. However, resistance mechanisms arise and impair its efficacy. One of these mechanisms is the expression of AR-V7, a constitutively active AR splice variant. The Mediator complex is a multisubunit protein that modulates gene expression on a genome-wide scale. MED12 and cyclin-dependent kinase (CDK)8, or its paralog CDK19, are components of the kinase module that regulates the proliferation of prostate cancer cells. In this study, we investigated how MED12 and CDK8/19 influence cancer-driven processes in prostate cancer cell lines, focusing on AR activity and the enzalutamide response. We inhibited MED12 expression and CDK8/19 activity in LNCaP (AR+, enzalutamide-sensitive), 22Rv1 (AR-V7+, enzalutamide-resistant), and PC3 (AR-, enzalutamide-insensitive) cells. Both MED12 and CDK8/19 inhibition reduced cell proliferation in all cell lines, and MED12 inhibition reduced proliferation in the respective 3D spheroids. MED12 knockdown significantly inhibited c-Myc protein expression and signaling pathways. In 22Rv1 cells, it consistently inhibited the AR response, prostate-specific antigen (PSA) secretion, AR target genes, and AR-V7 expression. Combined with enzalutamide, MED12 inhibition additively decreased the AR activity in both LNCaP and 22Rv1 cells. CDK8/19 inhibition significantly decreased PSA secretion in LNCaP and 22Rv1 cells and, when combined with enzalutamide, additively reduced proliferation in 22Rv1 cells. Our study revealed that MED12 and CDK8/19 regulate AR activity and that their inhibition may modulate response to enzalutamide in prostate cancer.


Assuntos
Benzamidas , Proliferação de Células , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Complexo Mediador , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Receptores Androgênicos , Feniltioidantoína/farmacologia , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/genética , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
13.
Can J Urol ; 31(4): 11931-11940, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39217516

RESUMO

INTRODUCTION:   Prostate cancer has a variable natural history and, despite the existence of biochemical recurrence (BCR) predictors, they are still limited in predicting outcomes.  The role of testosterone in advanced prostate cancer is well known, however its role in localized prostate cancer is still uncertain.  In the present study, we evaluated the relationship of testosterone levels and androgen receptor (AR) expression with oncological and functional outcomes, in patients undergoing radical retropubic prostatectomy (RRP). MATERIALS AND METHODS:   Through a retrospective study, patients who underwent RRP, who had at least two preoperative total testosterone dosages, were analyzed and compared according to testosterone levels, oncological and functional outcomes.  After analyzing data, tissue samples were selected in a biorepository to carry out the AR and the AR-V7 expression. RESULTS:   After applying exclusion criteria, 212 patients were included in the analysis.  Thirty-two patients (15.1%) had low testosterone levels and, in this group, a lower rates of erectile function recovery were observed at 24 months (53.1% vs. 71.7%; p = 0.037), a higher rate of BCR (21.9% vs. 9.4%; p = 0.041) and higher International Society of Urological Pathology (ISUP) grade in biopsy products.  The AR expression was higher in patients with low testosterone, but there was no difference in relapse rates. CONCLUSIONS:   Lower levels of testosterone were related to lower rates of erectile function recovery at the end of 24 months after RRP, in addition to conferring higher rates of BCR and higher ISUP grades in biopsy.  Furthermore, patients with total testosterone < 300 ng/dL had higher expression of AR, but no difference in BCR rates.


Assuntos
Prostatectomia , Neoplasias da Próstata , Receptores Androgênicos , Testosterona , Humanos , Masculino , Prostatectomia/métodos , Testosterona/sangue , Receptores Androgênicos/metabolismo , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Recidiva Local de Neoplasia
14.
Steroids ; 211: 109501, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39208923

RESUMO

The androgen receptor (AR) is a type I nuclear receptor and master transcription factor responsible for development and maintenance of male secondary sex characteristics. Aberrant AR activity is associated with numerous diseases, including prostate cancer, androgen insensitivity syndrome, spinal and bulbar muscular atrophy, and androgenic alopecia. Recent studies have shown that AR adopts numerous conformations that can modulate its ability to bind and transcribe its target DNA substrates, a feature that can be hijacked in the context of cancer. Here, we summarize a series of structural observations describing how this elusive shape-shifter binds to multiple partners, including self-interactions, DNA, and steroid and non-steroidal ligands. We present evidence that AR's pervasive structural plasticity confers an ability to broadly bind and transcribe numerous ligands in the normal and disease state, and explain the structural basis for adaptive resistance mutations to antiandrogen treatment. These evolutionary features are integral to receptor function, and are commonly lost in androgen insensitivity syndrome, or reinforced in cancer.


Assuntos
Receptores Androgênicos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/genética , Humanos , Masculino , Ligantes , Animais
15.
Steroids ; 210: 109486, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111362

RESUMO

Androgen receptor (AR) and its ligand androgens are important for development and physiology of various tissues. AR and its ligands also play critical role in the development of various diseases, making it a valuable therapeutic target. AR ligands, both agonists and antagonists, are being widely used to treat pathological conditions, including prostate cancer and hypogonadism. Despite AR being studied widely over the last five decades, the last decade has seen striking advances in the knowledge on AR and discoveries that have the potential to translate to the clinic. This review provides an overview of the advances in AR biology, AR molecular mechanisms of action, and next generation molecules that are currently in development. Several of the areas described in the review are just unraveling and the next decade will bring more clarity on these developments that will put AR at the forefront of both basic biology and drug development.


Assuntos
Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/química , Animais , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Ligantes , Desenvolvimento de Medicamentos
16.
Mol Biol Rep ; 51(1): 933, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180588

RESUMO

BACKGROUND: Patients prone to psoriasis suffer after a breakdown of the epidermal barrier and develop poorly healing lesions with abnormal proliferation of keratinocytes. Strong inflammatory reactions with genotoxicity (short telomeres) suggest impaired immune defenses with DNA damage repair response (DDR) in patients with psoriasis. Recent evidence indicates the existence of crosstalk mechanisms linking the DDR machinery and hormonal signaling pathways that cooperate to influence both progressions of many diseases and responses to treatment. The aim of this study was to clarify whether steroid biosynthesis and genomic stability markers are altered in parallel during the formation of psoriatic skin. Understanding the interaction of the steroid pathway and DNA damage response is crucial to addressing underlying fundamental issues and managing resulting epidermal barrier disruption in psoriasis. METHODS: Skin (Lesional, non-lesional) and blood samples from twenty psoriasis patients and fifteen healthy volunteers were collected. Real-Time-PCR study was performed to assess levels of known transcripts such as: estrogen (ESR1, ESR2), androgen (AR), glucocorticoid/mineralocorticoid receptors (NR3C1, NR3C2), HSD11B1/HSD11B2, and DNA damage sensors (SMC1A, TREX1, TREX2, SSBP3, RAD1, RAD18, EXO1, POLH, HUS1). RESULTS: We found that ESR1, ESR2, HSD11B1, NR3C1, NR3C2, POLH, and SMC1A transcripts were significantly decreased and AR, TREX1, RAD1, and SSBP3 transcripts were increased dramatically in the lesional skin compared to skin samples of controls. CONCLUSION: We found that the regulation of the steroidogenic pathway was disrupted in the lesional tissue of psoriasis patients and that a sufficient glucocorticoid and mineralocorticoid response did not form and the estrogen/androgen balance was altered in favour of androgens. We suggest that an increased androgen response in the presence of DDR increases the risk of developing psoriasis. Although this situation may be the cause or the consequence of a disruption of the epidermal barrier, our data suggest developing new therapeutic strategies.


Assuntos
Androgênios , Dano ao DNA , Psoríase , Humanos , Dano ao DNA/genética , Psoríase/genética , Psoríase/metabolismo , Feminino , Adulto , Androgênios/metabolismo , Masculino , Pessoa de Meia-Idade , Cortisona/metabolismo , Pele/metabolismo , Pele/patologia , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Estrogênios/metabolismo , Reparo do DNA/genética , Fenótipo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
17.
Nat Commun ; 15(1): 6672, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107274

RESUMO

Castration-resistant prostate cancer (CRPC) is a frequently occurring disease with adverse clinical outcomes and limited therapeutic options. Here, we identify methionine adenosyltransferase 2a (MAT2A) as a critical driver of the androgen-indifferent state in ERG fusion-positive CRPC. MAT2A is upregulated in CRPC and cooperates with ERG in promoting cell plasticity, stemness and tumorigenesis. RNA, ATAC and ChIP-sequencing coupled with histone post-translational modification analysis by mass spectrometry show that MAT2A broadly impacts the transcriptional and epigenetic landscape. MAT2A enhances H3K4me2 at multiple genomic sites, promoting the expression of pro-tumorigenic non-canonical AR target genes. Genetic and pharmacological inhibition of MAT2A reverses the transcriptional and epigenetic remodeling in CRPC models and improves the response to AR and EZH2 inhibitors. These data reveal a role of MAT2A in epigenetic reprogramming and provide a proof of concept for testing MAT2A inhibitors in CRPC patients to improve clinical responses and prevent treatment resistance.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Metionina Adenosiltransferase , Neoplasias de Próstata Resistentes à Castração , Regulador Transcricional ERG , Masculino , Humanos , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Animais , Androgênios/metabolismo , Epigenoma , Camundongos , Histonas/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores
19.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201315

RESUMO

In prostate cancer (PCa), androgens upregulate tumorigenesis, whereas in benign tissue, the revival of androgen receptor (AR) signaling suppresses aggressive behaviors, suggesting therapeutic potential. Dogs, natural PCa models, often lack AR in PCa. We restored AR in dog PCa to investigate resultant characteristics. Three AR-null canine PCa lines (1508, Leo, 1258) were transfected with canine wild-type AR and treated with dihydrotestosterone (DHT). In 1508, AR restoration decreased clonogenicity (p = 0.03), viability (p = 0.004), migration (p = 0.03), invasion (p = 0.01), and increased expression of the tumor suppressor NKX3.1, an AR transcriptional target (p = 0.001). In Leo, AR decreased clonogenicity (p = 0.04) and the expression of another AR transcriptional target FOLH1 (p < 0.001) and increased the expression of NKX3.1 (p = 0.01). In 1258, AR increased migration (p = 0.006) and invasion (p = 0.03). Epithelial-mesenchymal transition (EMT) marker (Vimentin, N-cadherin, SNAIL1) expression increased with AR restoration in Leo and 1258 but not 1508; siRNA vimentin knockdown abrogated AR-induced 1258 migration only. Overall, 1508 showed AR-mediated tumor suppression; AR affected proliferation in Leo but not migration or invasion; and EMT and AR regulated migration and invasion in 1258 but not proliferation. This study highlights the heterogeneous nature of PCa in dogs and cell line-specific effects of AR abrogation on aggressive behaviors.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Receptores Androgênicos , Transdução de Sinais , Animais , Cães , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Masculino , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Proliferação de Células
20.
Cell Death Dis ; 15(8): 559, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097593

RESUMO

Sharply increased reactive oxygen species (ROS) are thought to induce oxidative stress, damage cell structure and cause cell death; however, its role in prostate cancer remains unclear. Enzalutamide is a widely used anti-prostate cancer drug that antagonizes androgen binding with its receptor. Further exploration of the mechanism and potential application strategies of enzalutamide is crucial for the treatment of prostate cancer. Here, we confirmed PEX10 can be induced by ROS activators while reduce ROS level in prostate cancer cells, which weakened the anti-tumor effect of ROS activators. The androgen receptor (AR) can promote the expression of PEX10 by acting as an enhancer in cooperation with FOXA1. The anti-tumor drug enzalutamide inhibits PEX10 by inhibiting the function of AR, and synergize with ROS activators ML210 or RSL3 to produce a stronger anti-tumor effect, thereby sensitizing cells to ROS activators. This study reveals a previously unrecognized function of enzalutamide and AR by regulating PEX10 and suggests a new strategy of enzalutamide application in prostate cancer treatment.


Assuntos
Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Espécies Reativas de Oxigênio , Humanos , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Masculino , Benzamidas/farmacologia , Nitrilas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Animais , Camundongos , Proteínas de Membrana/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...