Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.963
Filtrar
1.
Nature ; 632(8026): 885-892, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112698

RESUMO

Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.


Assuntos
Movimento Celular , Quimiocina CCL21 , Células Dendríticas , Imunidade Inata , Fator Inibidor de Leucemia , Pulmão , Linfonodos , Linfócitos , Camundongos , Animais , Células Dendríticas/imunologia , Linfonodos/imunologia , Pulmão/imunologia , Pulmão/virologia , Imunidade Inata/imunologia , Quimiocina CCL21/metabolismo , Quimiocina CCL21/imunologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/imunologia , Movimento Celular/imunologia , Feminino , Linfócitos/imunologia , Linfócitos/citologia , Masculino , Receptores CCR7/metabolismo , Receptores CCR7/imunologia , Camundongos Endogâmicos C57BL , Alérgenos/imunologia , Células Endoteliais/imunologia , Vasos Linfáticos/imunologia
2.
Nat Commun ; 15(1): 5500, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951172

RESUMO

Cancer resistance to immune checkpoint inhibitors motivated investigations into leveraging the immunostimulatory properties of radiotherapy to overcome immune evasion and to improve treatment response. However, clinical benefits of radiotherapy-immunotherapy combinations have been modest. Routine concomitant tumor-draining lymph node irradiation (DLN IR) might be the culprit. As crucial sites for generating anti-tumor immunity, DLNs are indispensable for the in situ vaccination effect of radiotherapy. Simultaneously, DLN sparing is often not feasible due to metastatic spread. Using murine models of metastatic disease in female mice, here we demonstrate that delayed (adjuvant), but not neoadjuvant, DLN IR overcomes the detrimental effect of concomitant DLN IR on the efficacy of radio-immunotherapy. Moreover, we identify IR-induced disruption of the CCR7-CCL19/CCL21 homing axis as a key mechanism for the detrimental effect of DLN IR. Our study proposes delayed DLN IR as a strategy to maximize the efficacy of radio-immunotherapy across different tumor types and disease stages.


Assuntos
Inibidores de Checkpoint Imunológico , Linfonodos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Camundongos , Linfonodos/imunologia , Linfonodos/efeitos da radiação , Linfonodos/patologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Irradiação Linfática , Modelos Animais de Doenças , Terapia Combinada/métodos , Humanos , Receptores CCR7/metabolismo , Metástase Neoplásica
3.
Medicine (Baltimore) ; 103(30): e33705, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058890

RESUMO

Chronic kidney disease (CKD) inevitably progresses to end-stage renal disease if intervention does not occur timely. However, there are limitations in predicting the progression of CKD by solely relying on changes in renal function. A biomarker with high sensitivity and specificity that can predict CKD progression early is required. We used the online Gene Expression Omnibus microarray dataset GSE45980 to identify differentially expressed genes (DEGs) in patients with progressive and stable CKD. We then performed functional enrichment and protein-protein interaction network analysis on DEGs and identified key genes. Finally, the expression patterns of key genes were verified using the GSE60860 dataset, and the receiver operating characteristic curve analysis was performed to clarify their predictive ability of progressive CKD. Ultimately, we verified the expression profiles of these hub genes in an in vitro renal interstitial fibrosis model by real-time PCR and western blot analysis. Differential expression analysis identified 50 upregulated genes and 47 downregulated genes. The results of the functional enrichment analysis revealed that upregulated DEGs were mainly enriched in immune response, inflammatory response, and NF-κB signaling pathways, whereas downregulated DEGs were mainly related to angiogenesis and the extracellular environment. Protein-protein interaction network and key gene analysis identified CCR7 as the most important gene. CCR7 mainly plays a role in immune response, and its only receptors, CCL19 and CCL21, have also been identified as DEGs. The receiver operating characteristic curve analysis of CCR7, CCL19, and CCL21 found that CCR7 and CCL19 present good disease prediction ability. CCR7 may be a stable biomarker for predicting CKD progression, and the CCR7-CCL19/CCL21 axis may be a therapeutic target for end-stage renal disease. However, further experiments are needed to explore the relationship between these genes and CKD.


Assuntos
Biomarcadores , Biologia Computacional , Progressão da Doença , Mapas de Interação de Proteínas , Receptores CCR7 , Insuficiência Renal Crônica , Receptores CCR7/genética , Receptores CCR7/metabolismo , Humanos , Biologia Computacional/métodos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Biomarcadores/metabolismo , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Curva ROC
4.
Cell Signal ; 122: 111305, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067836

RESUMO

OBJECTIVE: C-C motif chemokine receptor 7 (CCR7) significantly influences tumors onset and progression, yet its impact on the tumor microenvironment (TME) and specific mechanisms remain elusive. Inflammatory Cancer-Associated Fibroblasts (iCAF), a vital subtype of Cancer-Associated Fibroblasts (CAF), play a critical role in regulating the TME and tumor growth, though the underlying molecular mechanisms are not fully understood. This study aims to determine whether CCR7 participates in tumor regulation by iCAF and to elucidate the specific mechanisms involved. METHODS: Differential gene analysis of CAF subtypes in CCR7 knockout and wild-type groups was conducted using single-cell data. Animal models facilitated the extraction of primary iCAF cells via flow cytometry sorting. Changes in DUSP1 expression and the efficiency of lentivirus-mediated knockdown and overexpression were examined through qPCR and Western Blot. MOC1 and MOC2 cells were co-cultured with iCAF, with subsequent validation of changes in tumor cell proliferation, migration, and invasion using CCK8, EdU, and wound healing assays. ELISA was employed to detect changes in TGF-ß1 concentration in the iCAF supernatant. RESULTS: CAF was categorized into three subtypes-myCAF, iCAF, and apCAF-based on single-cell data. Analysis revealed a significant increase in DUSP1 expression in iCAF from the CCR7 knockout group, confirmed by in vitro experiments. Co-culturing MOC1 and MOC2 cells with iCAF exhibiting lentivirus-mediated DUSP1 knockdown resulted in inhibited tumor cell proliferation, invasion, and migration. In contrast, co-culture with iCAF overexpressing DUSP1 enhanced these capabilities. Additionally, the TGF-ß1 concentration in the supernatant increased in the DUSP1 knockdown iCAF group, whereas it decreased in the DUSP1 overexpression group. CONCLUSION: The CCR7/DUSP1 signaling axis regulates tumor growth by modulating TGF-ß1 secretion in iCAF.


Assuntos
Proliferação de Células , Fosfatase 1 de Especificidade Dupla , Receptores CCR7 , Transdução de Sinais , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Receptores CCR7/metabolismo , Receptores CCR7/genética , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Microambiente Tumoral , Movimento Celular , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica
5.
J Immunol Res ; 2024: 6908968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957433

RESUMO

Background: Kidney transplantation (KT) is the best treatment for end-stage renal disease. Although long and short-term survival rates for the graft have improved significantly with the development of immunosuppressants, acute rejection (AR) remains a major risk factor attacking the graft and patients. The innate immune response plays an important role in rejection. Therefore, our objective is to determine the biomarkers of congenital immunity associated with AR after KT and provide support for future research. Materials and Methods: A differential expression genes (DEGs) analysis was performed based on the dataset GSE174020 from the NCBI gene Expression Synthesis Database (GEO) and then combined with the GSE5099 M1 macrophage-related gene identified in the Molecular Signatures Database. We then identified genes in DEGs associated with M1 macrophages defined as DEM1Gs and performed gene ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) enrichment analysis. Cibersort was used to analyze the immune cell infiltration during AR. At the same time, we used the protein-protein interaction (PPI) network and Cytoscape software to determine the key genes. Dataset, GSE14328 derived from pediatric patients, GSE138043 and GSE9493 derived from adult patients, were used to verify Hub genes. Additional verification was the rat KT model, which was used to perform HE staining, immunohistochemical staining, and Western Blot. Hub genes were searched in the HPA database to confirm their expression. Finally, we construct the interaction network of transcription factor (TF)-Hub genes and miRNA-Hub genes. Results: Compared to the normal group, 366 genes were upregulated, and 423 genes were downregulated in the AR group. Then, 106 genes related to M1 macrophages were found among these genes. GO and KEGG enrichment analysis showed that these genes are mainly involved in cytokine binding, antigen binding, NK cell-mediated cytotoxicity, activation of immune receptors and immune response, and activation of the inflammatory NF-κB signaling pathway. Two Hub genes, namely CCR7 and CD48, were identified by PPI and Cytoscape analysis. They have been verified in external validation sets, originated from both pediatric patients and adult patients, and animal experiments. In the HPA database, CCR7 and CD48 are mainly expressed in T cells, B cells, macrophages, and tissues where these immune cells are distributed. In addition to immunoinfiltration, CD4+T, CD8+T, NK cells, NKT cells, and monocytes increased significantly in the AR group, which was highly consistent with the results of Hub gene screening. Finally, we predicted that 19 TFs and 32 miRNAs might interact with the Hub gene. Conclusions: Through a comprehensive bioinformatic analysis, our findings may provide predictive and therapeutic targets for AR after KT.


Assuntos
Antígeno CD48 , Rejeição de Enxerto , Transplante de Rim , Macrófagos , Mapas de Interação de Proteínas , Receptores CCR7 , Humanos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Transplante de Rim/efeitos adversos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Criança , Ratos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Antígeno CD48/genética , Antígeno CD48/metabolismo , Perfilação da Expressão Gênica , Biomarcadores , Biologia Computacional/métodos , Masculino , Redes Reguladoras de Genes , Bases de Dados Genéticas , Ontologia Genética , Modelos Animais de Doenças , Feminino , MicroRNAs/genética
6.
EMBO J ; 43(15): 3141-3174, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877304

RESUMO

Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.


Assuntos
Quimiocina CCL21 , Células Dendríticas , Exocitose , Receptores CCR7 , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Quimiocina CCL21/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células Dendríticas/metabolismo , Receptores CCR7/metabolismo , Receptores CCR7/genética , Junções Intercelulares/metabolismo , Migração Transendotelial e Transepitelial , Endotélio Linfático/metabolismo , Endotélio Linfático/citologia , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Técnicas de Cocultura , Células Cultivadas , Movimento Celular
7.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
8.
Oncoimmunology ; 13(1): 2369373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915784

RESUMO

Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of ß2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of ß2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for ß2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.


Assuntos
Antígenos CD18 , Células Dendríticas , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Camundongos , Antígenos CD18/metabolismo , Antígenos CD18/genética , Camundongos Endogâmicos C57BL , Adesão Celular , Receptores CCR7/metabolismo , Receptores CCR7/genética , Melanoma Experimental/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Humanos , Reprogramação Metabólica
9.
Immun Inflamm Dis ; 12(5): e1264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780041

RESUMO

AIM: Metastasis is the leading cause of mortality in hepatocellular carcinoma (HCC). The metastasis-associated immune signature in HCC is worth exploring. METHODS: Bioinformatic analysis was conducted based on the single-cell transcriptome data derived from HCC patients in different stages. Cellular composition, pseudotime state transition, and cell-cell interaction were further analyzed and verified. RESULTS: Generally, HCC with metastasis exhibited suppressive immune microenvironment, while HCC without metastasis exhibited active immune microenvironment. Concretely, effector regulatory T cells (eTregs) were found to be enriched in HCC with metastasis. PHLDA1 was identified as one of exhaustion-specific genes and verified to be associated with worse prognosis in HCC patients. Moreover, A novel cluster of CCR7+ dendritic cells (DCs) was identified with high expression of maturation and migration marker genes. Pseudotime analysis showed that inhibition of differentiation occurred in CCR7+ DCs rather than cDC1 in HCC with metastasis. Furthermore, interaction analysis showed that the reduction of CCR7+ DCs lead to impaired CCR7/CCL19 interaction in HCC with metastasis. CONCLUSIONS: HCC with metastasis exhibited upregulation of exhaustion-specific genes of eTregs and inhibition of CCL signal of a novel DC cluster, which added new dimensions to the immune landscape and provided new immune therapeutic targets in advanced HCC.


Assuntos
Carcinoma Hepatocelular , Células Dendríticas , Neoplasias Hepáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Metástase Neoplásica , Transcriptoma , Receptores CCR7/genética , Receptores CCR7/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Linfócitos T Reguladores/imunologia , Prognóstico , Biologia Computacional/métodos , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo
10.
J Cell Mol Med ; 28(10): e18398, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785203

RESUMO

Behçet's disease (BD) is a complex autoimmune disorder impacting several organ systems. Although the involvement of abdominal aortic aneurysm (AAA) in BD is rare, it can be associated with severe consequences. In the present study, we identified diagnostic biomarkers in patients with BD having AAA. Mendelian randomization (MR) analysis was initially used to explore the potential causal association between BD and AAA. The Limma package, WGCNA, PPI and machine learning algorithms were employed to identify potential diagnostic genes. A receiver operating characteristic curve (ROC) for the nomogram was constructed to ascertain the diagnostic value of AAA in patients with BD. Finally, immune cell infiltration analyses and single-sample gene set enrichment analysis (ssGSEA) were conducted. The MR analysis indicated a suggestive association between BD and the risk of AAA (odds ratio [OR]: 1.0384, 95% confidence interval [CI]: 1.0081-1.0696, p = 0.0126). Three hub genes (CD247, CD2 and CCR7) were identified using the integrated bioinformatics analyses, which were subsequently utilised to construct a nomogram (area under the curve [AUC]: 0.982, 95% CI: 0.944-1.000). Finally, the immune cell infiltration assay revealed that dysregulation immune cells were positively correlated with the three hub genes. Our MR analyses revealed a higher susceptibility of patients with BD to AAA. We used a systematic approach to identify three potential hub genes (CD247, CD2 and CCR7) and developed a nomogram to assist in the diagnosis of AAA among patients with BD. In addition, immune cell infiltration analysis indicated the dysregulation in immune cell proportions.


Assuntos
Aneurisma da Aorta Abdominal , Síndrome de Behçet , Biomarcadores , Biologia Computacional , Análise da Randomização Mendeliana , Humanos , Síndrome de Behçet/genética , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/complicações , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/diagnóstico , Biologia Computacional/métodos , Curva ROC , Redes Reguladoras de Genes , Predisposição Genética para Doença , Mapas de Interação de Proteínas/genética , Nomogramas , Receptores CCR7
11.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658802

RESUMO

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Assuntos
Encéfalo , Herpesvirus Humano 1 , Vírus La Crosse , Camundongos Knockout , Monócitos , Receptores CCR2 , Receptores CCR7 , Animais , Receptores CCR2/metabolismo , Receptores CCR2/genética , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/imunologia , Herpesvirus Humano 1/fisiologia , Vírus La Crosse/genética , Vírus La Crosse/fisiologia , Receptores CCR7/metabolismo , Receptores CCR7/genética , Encefalite da Califórnia/virologia , Encefalite da Califórnia/genética , Encefalite da Califórnia/metabolismo , Encefalite da Califórnia/imunologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/virologia , Feminino , Masculino
12.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629806

RESUMO

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Assuntos
Receptor 1 de Quimiocina CX3C , Colo , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocinas , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Colo/microbiologia , Colo/imunologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos Endogâmicos C57BL , Linfonodos/microbiologia , Linfonodos/imunologia , Receptores CCR7/metabolismo , Receptores CCR7/genética
13.
J Inherit Metab Dis ; 47(4): 818-833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623626

RESUMO

Fabry disease (FD) is an X-linked disease characterized by an accumulation of glycosphingolipids, notably of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3) leading to renal failure, cardiomyopathy, and cerebral strokes. Inflammatory processes are involved in the pathophysiology. We investigated the immunological phenotype of peripheral blood mononuclear cells in Fabry patients depending on the clinical phenotype, treatment, Gb3, and lysoGb3 levels and the presence of anti-drug antibodies (ADA). Leucocytes from 41 male patients and 20 controls were analyzed with mass cytometry using both unsupervised and supervised algorithms. FD patients had an increased expression of CD27 and CD28 in memory CD45- and CD45 + CCR7-CD4 T cells (respectively p < 0.014 and p < 0.02). Percentage of CD45RA-CCR7-CD27 + CD28+ cells in CD4 T cells was correlated with plasma lysoGb3 (r = 0.60; p = 0.0036) and phenotype (p < 0.003). The correlation between Gb3 and CD27 in CD4 T cells almost reached significance (r = 0.33; p = 0.058). There was no immune profile associated with the presence of ADA. Treatment with agalsidase beta was associated with an increased proportion of Natural Killer cells. These findings provide valuable insights for understanding FD, linking Gb3 accumulation to inflammation, and proposing new prognostic biomarkers.


Assuntos
Linfócitos T CD4-Positivos , Doença de Fabry , Triexosilceramidas , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Doença de Fabry/imunologia , Masculino , Triexosilceramidas/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Esfingolipídeos/metabolismo , Estudos de Casos e Controles , Antígenos Comuns de Leucócito , Células T de Memória/imunologia , Células T de Memória/metabolismo , Citometria de Fluxo , Antígenos CD28 , Memória Imunológica , Receptores CCR7/metabolismo , Glicolipídeos
14.
J Integr Neurosci ; 23(3): 55, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38538213

RESUMO

BACKGROUND: This study used bioinformatics combined with statistical methods to identify plasma biomarkers that can predict intracranial aneurysm (IA) rupture and provide a strong theoretical basis for the search for new IA rupture prevention methods. METHODS: We downloaded gene expression profiles in the GSE36791 and GSE122897 datasets from the Gene Expression Omnibus (GEO) database. Data were normalized using the "sva" R package and differentially expressed genes (DEGs) were identified using the "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used for DEG function analysis. Univariate logistic regression analysis, least absolute shrinkage and selection operator (LASSO) regression modeling, and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify key biomarker genes. Data from GSE122897 and GSE13353 were extracted to verify our findings. RESULTS: Eight co-DEG mRNAs were identified in the GSE36791 and GSE122897 datasets. Genes associated with inflammatory responses were clustered in the co-DEG mRNAs in IAs. CD6 and C-C chemokine receptor 7 (CCR7) were identified as key genes associated with IA. CD6 and CCR7 were upregulated in patients with IA and their expression levels were positively correlated. There were significant differences in the infiltration of immune cells between IAs and normal vascular wall tissues (p < 0.05). A predictive nomogram was designed using this two-gene signature. Binary transformation of CD6 and CCR7 was performed according to the cut-off value to construct the receiver-operating characteristic (ROC) curve and showed a strong predictive ability of the CD6-CCR7 gene signature (p < 0.01; area under the curve (AUC): 0.90; 95% confidence interval (CI): 0.88-0.92). Furthermore, validation of this two-gene signature using the GSE122897 and GSE13353 datasets proved it to be valuable for clinical application. CONCLUSIONS: The identified two-gene signature (CD6-CCR7) for evaluating the risk of IA rupture demonstrated good clinical application value.


Assuntos
Aneurisma Intracraniano , Humanos , Receptores CCR7/genética , Aneurisma Intracraniano/genética , Algoritmos , Biologia Computacional , Bases de Dados Factuais
15.
J Exp Clin Cancer Res ; 43(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539232

RESUMO

BACKGROUND: Studies have shown that CCR7, an important inflammatory factor, can promote the proliferation and metastasis of oral squamous cell carcinoma (OSCC), but its role in the tumor microenvironment (TME) remains unclear. This paper explores the role of CCR7 in the TME of OSCC. METHODS: In this work, we constructed CCR7 gene knockout mice and OSCC mouse models. Single-cell RNA sequencing (scRNA-seq) and bioinformatics were used to analyze the differences in the OSCC microenvironment between three CCR7 gene knockout mice (KO) and three wild-type mice (WT). Immunohistochemistry, immunofluorescence staining, and flow cytometry were used to analyze the expression of key genes in significantly different cell types between the KO and WT groups. An in vitro experiment was used to verify the effect of CCR7 on M2 macrophage polarization. RESULTS: In the mouse OSCC models, the tumor growth rate in the KO group was significantly lower than that in the WT group. Eight main cell types (including tumor cells, fibroblasts, macrophages, granulocytes, T cells, endothelial cells, monocytes, and B cells) were identified by Seurat analysis. The scRNA-seq results showed that the proportion of tumor cells was lower, but the proportion of inflammatory cells was significantly higher in the KO group than in the WT group. CellPhoneDB analysis results indicated a strong interaction relationship between tumor cells and macrophages, T cells, fibroblasts, and endothelial cells. Functional enrichment results indicated that the expression level of the Dusp1 gene in the KO group was generally higher than that in the WT group in various cell types. Macrophage subclustering results indicated that the proportion of M2 macrophages in the KO group was lower than that in the WT group. In vitro experimental results showed that CCR7 can promote M2 macrophage polarization, thus promoting the proliferation, invasion and migration of OSCC cells. CONCLUSIONS: CCR7 gene knockout can significantly inhibit the growth of mouse oral squamous cell carcinoma by promoting the polarization of M2 macrophages.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Neoplasias Bucais/patologia , Receptores CCR7/genética , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral/genética
16.
Clin Immunol ; 262: 110166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432423

RESUMO

BACKGROUND: Amoxicillin (AX) and clavulanic acid (CLV) are the betalactam antibiotics (BLs) most used to treat bacterial infections, although they can trigger immediate hypersensitivity reactions (IDHRs). The maturation analysis of monocyte-derived dendritic cells (moDCs) and their capacity to induce proliferative response of lymphocytes are useful to test the sensitisation to a drug, although without optimal sensitivity. Nevertheless, this can be improved using directly isolated DCs such as myeloid DCs (mDCs). METHODS: mDCs and moDCs were obtained from 28 allergic patients (AP), 14 to AX, 14 to CLV and from 10 healthy controls (HC). The expression of CCR7, CD40, CD80, CD83, and CD86 was analysed after stimulation with both BLs. We measured the capacity of these pre-primed DCs to induce drug-specific activation of different lymphocyte subpopulations, CD3+, CD4+, CD8+, CD4+Th1, and CD4+Th2, by flow cytometry. RESULTS: Higher expression of CCR7, CD40, CD80, CD83, and CD86 was observed on mDCs compared to moDCs from AP after stimulating with the culprit BL. Similarly, mDCs induced higher proliferative response, mainly of CD4+Th2 cells, compared to moDCs, reaching up to 67% of positive results with AX, whereas of only 25% with CLV. CONCLUSIONS: mDCs from selective AP efficiently recognise the culprit drug which trigger the IDHR. mDCs also trigger proliferation of lymphocytes, mainly those with a Th2 cytokine pattern, although these responses depend on the nature of the drug, mimicking the patient's reaction.


Assuntos
Hipersensibilidade Imediata , Hipersensibilidade , Humanos , Receptores CCR7/metabolismo , Citocinas/metabolismo , Amoxicilina/metabolismo , Hipersensibilidade/metabolismo , Ácido Clavulânico/metabolismo , Antígenos CD40 , Células Dendríticas/metabolismo
17.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534251

RESUMO

The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited ß-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.


Assuntos
Transdução de Sinais , Humanos , Receptores CCR7/metabolismo , Ligantes
18.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474420

RESUMO

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Assuntos
Dinoprostona , Niacinamida/análogos & derivados , Compostos de Piridínio , Sirtuína 3 , Humanos , Dinoprostona/metabolismo , Ligantes , Receptores CCR7/metabolismo , Macrófagos/metabolismo
19.
Aging (Albany NY) ; 16(7): 6229-6261, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552222

RESUMO

This study aims to assess the prognostic value of the C-C motif chemokine receptor (CCR) gene family in hepatocellular carcinoma (HCC) and its relationship with immune infiltration and molecular subtypes of HCC. The evaluation of the GSE14520 dataset and TCGA database confirmed the prognostic significance of CCR. Building upon the correlation between CCR1, CCR5, and CCR7 and favorable prognosis, we further validated the prognostic importance of CCR1, CCR5, and CCR7 in ICGC database and an independent cohort from Guangxi autonomous region. Then, we constructed a risk prognosis model. Additionally, we observed significant positive correlations between CCR1, CCR5, and CCR7 and the infiltration of B cells, T cells, and macrophages in HCC. Subsequently, we conducted CCK assays, Transwell assays, and colony formation assays to evaluate the molecular biological functions of CCR1, CCR5, and CCR7. These experiments further confirmed that upregulation of CCR1, CCR5, and CCR7 can individually inhibit the proliferation, migration, and stemness of HCC cells. By analyzing the relationship between expression levels and tumor mutation frequency, we discovered that patients with high CCR1 expression were more likely to be classified as non-proliferative HCC. Similar conclusions were observed for CCR5 and CCR7. The association of CCR1, CCR5, and CCR7 with the molecular subtypes of HCC suggests that they may serve as intermediary molecules linking immune status and molecular subtypes in HCC. In summary, CCR1, CCR5, and CCR7 have the potential to serve as prognostic biomarkers for HCC and regulate HCC progression by influencing immune cell infiltration.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores CCR1 , Receptores CCR5 , Receptores CCR7 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Receptores CCR1/genética , Receptores CCR1/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Prognóstico , Receptores CCR5/genética , Receptores CCR5/metabolismo , Biomarcadores Tumorais/genética , Linfócitos do Interstício Tumoral/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Pessoa de Meia-Idade
20.
J Clin Invest ; 134(9)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470479

RESUMO

CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.


Assuntos
Encéfalo , Linfócitos T CD4-Positivos , Macaca mulatta , Receptores CCR7 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CCR7/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Vigilância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...