Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.851
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892285

RESUMO

The diterpene cafestol represents the most potent cholesterol-elevating compound known in the human diet, being responsible for more than 80% of the effect of coffee on serum lipids, with a mechanism still not fully clarified. In the present study, the interaction of cafestol and 16-O-methylcafestol with the stabilized ligand-binding domain (LBD) of the Farnesoid X Receptor was evaluated by fluorescence and circular dichroism. Fluorescence quenching was observed with both cafestol and 16-O-methylcafestol due to an interaction occurring in the close environment of the tryptophan W454 residue of the protein, as confirmed by docking and molecular dynamics. A conformational change of the protein was also observed by circular dichroism, particularly for cafestol. These results provide evidence at the molecular level of the interactions of FXR with the coffee diterpenes, confirming that cafestol can act as an agonist of FXR, causing an enhancement of the cholesterol level in blood serum.


Assuntos
Colesterol , Café , Diterpenos , Receptores Citoplasmáticos e Nucleares , Diterpenos/farmacologia , Diterpenos/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Colesterol/metabolismo , Humanos , Café/química , Simulação de Acoplamento Molecular , Ligação Proteica , Simulação de Dinâmica Molecular , Dicroísmo Circular
2.
Nat Commun ; 15(1): 5201, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890295

RESUMO

Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.


Assuntos
Autofagia , Humanos , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Ligantes , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/agonistas , Camundongos , Células HEK293 , Genômica/métodos , Linhagem Celular Tumoral
3.
Curr Rev Clin Exp Pharmacol ; 19(3): 225-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708917

RESUMO

Farnesoid X receptor (FXR) was identified as an orphan nuclear receptor resembling the steroid receptor in the late '90s. Activation of FXR is a crucial step in many physiological functions of the liver. A vital role of FXR is impacting the amount of bile acids in the hepatocytes, which it performs by reducing bile acid synthesis, stimulating the bile salt export pump, and inhibiting its enterohepatic circulation, thus protecting the hepatocytes against the toxic accumulation of bile acids. Furthermore, FXR mediates bile acid biotransformation in the intestine, liver regeneration, glucose hemostasis, and lipid metabolism. In this review, we first discuss the mechanisms of the disparate pleiotropic actions of FXR agonists. We then delve into the pharmacokinetics of Obeticholic acid (OCA), the first-in-class selective, potent FXR agonist. We additionally discuss the clinical journey of OCA in humans, its current evidence in various human diseases, and its plausible roles in the future.


Assuntos
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Animais , Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos
4.
Nat Metab ; 6(5): 947-962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769396

RESUMO

Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.


Assuntos
Agmatina , Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Receptores Citoplasmáticos e Nucleares , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Animais , Feminino , Camundongos , Agmatina/farmacologia , Agmatina/metabolismo , Agmatina/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Resistência à Insulina , Bacteroides/efeitos dos fármacos , Humanos , Carboxiliases/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718845

RESUMO

BACKGROUND: Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS: Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS: OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.


Assuntos
Ácido Quenodesoxicólico , Modelos Animais de Doenças , Mucosa Intestinal , Receptores Citoplasmáticos e Nucleares , Síndrome do Intestino Curto , Animais , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/tratamento farmacológico , Síndrome do Intestino Curto/patologia , Ratos , Humanos , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Pessoa de Meia-Idade , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Adulto , Proteínas de Junções Íntimas/metabolismo
6.
Expert Opin Investig Drugs ; 33(6): 627-638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676426

RESUMO

INTRODUCTION: Up to 40% of Primary biliary cholangitis (PBC) patients have a suboptimal response to Ursodeoxycholic acid (UDCA). Close to half of such patients show a remarkable improvement when additionally treated with Obeticholic acid (OCA) but have a dose-dependent increase of pruritus. This relative success of OCA, a first-in-class Farnesoid receptor (FXR) agonist, has positioned FXR as an attractive target for drug development. Novel candidates have since emerged, providing hope for this subgroup of patients who lack effective and safe treatments. AREAS COVERED: We discussed the role of bile acids in PBC pathogenesis and how the FXR agonists provide therapeutic value by affecting bile acid synthesis and transport. Novel FXR agonists undergoing pre-clinical and clinical trials for PBC were enlisted via literature search by including the terms 'FXR agonists,' 'FXR PBC,' 'PBC clinical trials' on PubMed, MEDLINE via Ovid, and Clinicaltrials.gov. EXPERT OPINION: Novel FXR agonists currently under investigation for PBC improve the disease surrogate markers in early trials. However, as with OCA, pruritus remains a concern with the newer drugs despite targeted chemical modifications to increase FXR specificity. Directing future resources toward studying the molecular mechanisms behind pruritus may lead to better drug design and efficacious yet safer drugs.


Assuntos
Ácidos e Sais Biliares , Ácido Quenodesoxicólico , Desenvolvimento de Medicamentos , Drogas em Investigação , Cirrose Hepática Biliar , Prurido , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/fisiopatologia , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapêutico , Prurido/tratamento farmacológico , Drogas em Investigação/farmacologia , Ácidos e Sais Biliares/metabolismo , Ácido Ursodesoxicólico/farmacologia , Colagogos e Coleréticos/farmacologia , Relação Dose-Resposta a Droga
7.
PLoS One ; 19(4): e0300809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662778

RESUMO

The nuclear farnesoid X receptor (FXR), a master regulator of bile acid and metabolic homeostasis, is a key target for treatment of nonalcoholic steatohepatitis (NASH). This study compared efficacy of FXR agonists obeticholic acid (OCA) and INT-787 by liver histopathology, plasma biomarkers of liver damage, and hepatic gene expression profiles in the Amylin liver NASH (AMLN) diet-induced and biopsy-confirmed Lepob/ob mouse model of NASH. Lepob/ob mice were fed the AMLN diet for 12 weeks before liver biopsy and subsequent treatment with vehicle, OCA, or INT-787 for 8 weeks. Hepatic steatosis, inflammation, and fibrosis (liver lipids, galectin-3, and collagen 1a1 [Col1a1], respectively), as well as plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, were assessed. Hepatic gene expression was assessed in Lepob/ob mice that were fed the AMLN diet for 14 weeks then treated with vehicle, OCA, or INT-787 for 2 weeks. INT-787, which is equipotent to OCA but more hydrophilic, significantly reduced liver lipids, galectin-3, and Col1a1 compared with vehicle, and to a greater extent than OCA. INT-787 significantly reduced plasma ALT and AST levels, whereas OCA did not. INT-787 modulated a substantially greater number of genes associated with FXR signaling, lipid metabolism, and stellate cell activation relative to OCA in hepatic tissue. These findings demonstrate greater efficacy of INT-787 treatment compared with OCA in improving liver histopathology, decreasing liver enzyme levels, and enhancing gene regulation, suggesting superior clinical potential of INT-787 for the treatment of NASH and other chronic liver diseases.


Assuntos
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Modelos Animais de Doenças , Fígado , Hepatopatia Gordurosa não Alcoólica , Receptores Citoplasmáticos e Nucleares , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Galectina 3/metabolismo , Galectina 3/genética
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531483

RESUMO

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates ß-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult ß-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and ß-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in ß-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and ß-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and ß-cell proliferation, a mechanism possibly underlying RYGB-induced ß-cell proliferation.


Assuntos
Proliferação de Células , Fator de Transcrição E2F3 , Epigênese Genética , Células Secretoras de Insulina , Receptores Citoplasmáticos e Nucleares , Animais , Ratos , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Fator de Transcrição E2F3/metabolismo , Fator de Transcrição E2F3/genética , Ratos Wistar , Histonas/metabolismo , Isoxazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia
9.
Expert Opin Ther Pat ; 34(7): 547-564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308658

RESUMO

INTRODUCTION: The Farnesoid X receptor (FXR) is a key transcription factor that is involved in the bile acid signaling network. The modulation of the FXR activity influences glucose and lipid homeostasis, reduces obesity and insulin resistance, as well as it regulates the pathogenesis of inflammatory and metabolic disorders. FXR ligands have therefore emerged in drug discovery as promising therapeutic agents for the prevention and treatment of gastrointestinal and liver diseases, including cancer. AREAS COVERED: Recent advances in the field of FXR modulators are reviewed, with a particular attention on patent applications filed in the past 5 years related to both the discovery and development of FXR targeting drugs. EXPERT OPINION: FXR agonists have proven their efficacy and safety in humans and have shown a significant potential as clinical agents to treat metabolic and inflammatory associated conditions. However, several challenges, including adverse events such as pruritus, remain to be solved. Current studies aim to gain insights into the pathophysiological mechanisms by which FXR regulates metabolism and inflammation in terms of tissue/organ/isoform-specificity, post-translational modifications and coregulatory proteins, on the route of novel, improved FXR modulators.


Assuntos
Desenvolvimento de Medicamentos , Hepatopatias , Patentes como Assunto , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Ligantes , Hepatopatias/tratamento farmacológico , Hepatopatias/fisiopatologia , Hepatopatias/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Inflamação/metabolismo , Descoberta de Drogas , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/fisiopatologia , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Eur J Intern Med ; 124: 14-21, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38307734

RESUMO

Primary biliary cholangitis (PBC) is a rare cholestatic immune-mediated liver disease. The clinical course varies from mild to severe, with a substantial group of patients developing cirrhosis within a decade. These patients are at risk of hepatocellular carcinoma, decompensation and liver failure. First line Ursodeoxycholic acid (UDCA) treatment improves the cholestatic surrogate markers, and was recently associated with a favorable survival free of liver transplantation, even in case of an incomplete biochemical response. However, despite adequate UDCA therapy, patients remain at risk of liver disease progression. Therefore, on-treatment multifactor-based risk stratification is necessary to identify patients in need of additional therapy. This requires a personalized approach; especially as recent studies suggest that complete biochemical normalization as most stringent response criterion might be preferred in selected patients to optimize their outcome. Today, stricter biochemical goals might actually be reachable with the addition of farnesoid X receptor or peroxisome proliferator-activated receptor agonists, or, in highly-selected cases, use of corticosteroids. Randomized controlled trials showed improvements in the key biochemical surrogate markers with the addition of these drugs, which have also been associated with improved clinical outcome. Considering this evolving PBC landscape, with more versatile treatment options and treatment goals, this review recapitulates the recent insight in UDCA therapy, the selection of patients with a residual risk of liver disease progression and the results of the currently available second line treatment options.


Assuntos
Colagogos e Coleréticos , Cirrose Hepática Biliar , Ácido Ursodesoxicólico , Humanos , Ácido Ursodesoxicólico/uso terapêutico , Cirrose Hepática Biliar/tratamento farmacológico , Colagogos e Coleréticos/uso terapêutico , Progressão da Doença , Receptores Citoplasmáticos e Nucleares/agonistas , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante de Fígado , Corticosteroides/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo/agonistas
11.
Clin Pharmacol Drug Dev ; 13(6): 677-687, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346861

RESUMO

Cilofexor is a nonsteroidal farnesoid X receptor agonist being developed in combination with firsocostat/semaglutide for the treatment of nonalcoholic steatohepatitis. This phase 1 study evaluated the effects of food and acid-reducing agents (ARAs) on the pharmacokinetics of cilofexor (100- or 30-mg fixed-dose combination with firsocostat) in healthy participants. Cohorts 1 (n = 20, 100 mg) and 2 (n = 30, 30 mg) followed a 3-period, 2-sequence crossover design and evaluated effects of light-fat and high-fat meals. Cohort 3 (n = 30, 100 mg fasting) followed a 2-period, 2-sequence crossover design and evaluated the effects of a 40-mg single dose of famotidine. Cohort 4 (n = 18, 100 mg) followed a 3-period, 2-sequence crossover design and evaluated the effects of a 40-mg once-daily regimen of omeprazole administered under fasting conditions or following a light-fat meal. Administration with light-fat or high-fat meals resulted in no change and an ∼35% reduction in cilofexor AUC, respectively, relative to the fasting conditions. Under fasting conditions, famotidine increased cilofexor AUC by 3.2-fold and Cmax by 6.1-fold, while omeprazole increased cilofexor AUC by 3.1-fold and Cmax by 4.8-fold. With a low-fat meal, omeprazole increased cilofexor exposure to a lesser extent (Cmax 2.5-fold, AUC 2.1-fold) than fasting conditions. This study suggests that caution should be exercised when cilofexor is administered with ARAs under fed conditions; coadministration of cilofexor (100 or 30 mg) with ARAs under fasting conditions is not recommended with the current clinical trial formulations.


Assuntos
Estudos Cross-Over , Interações Alimento-Droga , Receptores Citoplasmáticos e Nucleares , Humanos , Masculino , Receptores Citoplasmáticos e Nucleares/agonistas , Adulto , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Refeições , Famotidina/farmacocinética , Famotidina/administração & dosagem , Jejum/metabolismo , Combinação de Medicamentos , Voluntários Saudáveis , Gorduras na Dieta/administração & dosagem , Área Sob a Curva
12.
ACS Synth Biol ; 12(7): 1924-1934, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37315218

RESUMO

Protein-based switches that respond to different inputs to regulate cellular outputs, such as gene expression, are central to synthetic biology. For increased controllability, multi-input switches that integrate several cooperating and competing signals for the regulation of a shared output are of particular interest. The nuclear hormone receptor (NHR) superfamily offers promising starting points for engineering multi-input-controlled responses to clinically approved drugs. Starting from the VgEcR/RXR pair, we demonstrate that novel (multi)drug regulation can be achieved by exchange of the ecdysone receptor (EcR) ligand binding domain (LBD) for other human NHR-derived LBDs. For responses activated to saturation by an agonist for the first LBD, we show that outputs can be boosted by an agonist targeting the second LBD. In combination with an antagonist, output levels are tunable by up to three simultaneously present small-molecule drugs. Such high-level control validates NHRs as a versatile, engineerable platform for programming multidrug-controlled responses.


Assuntos
Expressão Gênica , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Controle de Medicamentos e Entorpecentes , Humanos , Genes Reporter , Ligantes , Sítios de Ligação
13.
J Biol Chem ; 299(8): 104921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328104

RESUMO

Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares , Bibliotecas de Moléculas Pequenas , Fator Esteroidogênico 1 , Ligantes , Fosfolipídeos/química , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/química , Bibliotecas de Moléculas Pequenas/química , Fator Esteroidogênico 1/agonistas , Fator Esteroidogênico 1/química , Humanos , Cristalografia por Raios X
14.
Front Immunol ; 14: 1065790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776885

RESUMO

FXR is a key molecule that modulates anti-inflammatory activity in the intestinal-liver axis. Although FXR has pleiotropic functions including regulation of liver inflammation and activation of macrophages, it remains unclear whether it is involved in macrophage polarization. In this paper we demonstrated that stimulation of macrophages derived from the bone marrow using an FXR agonist activated polarization toward M2 but not M1 macrophages. The treatment of mice with chitin skewed macrophage polarization towards M2 macrophages, while co-treatment with an FXR agonist further promoted the polarization toward M2 macrophages in vivo. This skewed polarization towards M2 macrophages by an FXR agonist was accompanied by increased expression of signaling molecules related to the retinoic acid receptor. Inhibition of the retinoic acid receptor suppressed FXR agonist-mediated M2 macrophage polarization, indicating that this polarization was, at least, partly dependent on the retinoic acid receptor pathway. These data demonstrate that FXR has a role in polarization toward M2 macrophages and suggest a possible therapeutic potential of FXR agonists in M2 macrophage-related conditions.


Assuntos
Macrófagos , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Animais , Camundongos , Anti-Inflamatórios/metabolismo , Macrófagos/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas
15.
J Phys Chem B ; 127(2): 465-485, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36609158

RESUMO

Elucidation of structural determinants is pivotal for structure-based drug discovery. The Farnesoid X receptor (FXR) is a proven target for NASH; however, its full agonism causes certain clinical complications. Therefore, partial agonism (PA) appears as a viable alternative for improved therapeutics. Since the agonist and PA both share the same binding site, i.e., ligand-binding pocket (LBP), which is highly dynamic and has synergy with the substrate binding site, the selective designing of PA is challenging. The identification of structural and conformational determinants is critical for PA compared with an agonist. Furthermore, the mechanism by which PA modulates the structural dynamics of FXR at the residue level, a prerequisite for PA designing, is still elusive. Here, by using ∼4.5 µs of MD simulations and residue-wise communication network analysis, we identified the structural regions which are flexible with PA but frozen with an agonist. Also, the network analysis identified the considerable changes between an agonist and PA in biologically essential zones of FXR such as helix H10/H11 and loop L:H11/H12, which lead to the modulation of synergy between LBP and the substrate binding site. Furthermore, the thermodynamic profiling suggested the methionine residues, mainly M328, M365, and M450, seem to be responsible for the recruitment of PA. The other residues I357, Y361, L465, F308, Q316, and K321 are also identified, exclusively interacting with PA. This study offers novel structural and mechanistic insights that are critical for FXR targeted drug discovery for PA designing.


Assuntos
Descoberta de Drogas , Receptores Citoplasmáticos e Nucleares , Sítios de Ligação , Ligantes , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/agonistas
16.
Eur J Med Chem ; 245(Pt 1): 114903, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36375336

RESUMO

Farnesoid X receptor (FXR) is an attractive target for drug discovery against non-alcoholic fatty liver disease (NAFLD). We previously reported an orally active, new-chemotype FXR agonist XJ034 by ensemble learning-driven drug discovery. However, its FXR agonistic activity and the efficacy in vivo remain to be improved. In this study, we designed and synthesized 52 derivatives, and preliminarily evaluated their FXR transactivation activity in HEK293T cells at the concentration of 10 µM. 12 FXR agonists were superior or comparable to compound XJ034, two of which showed over 9-fold activity of compound XJ034, and were as potent as OCA. The molecular docking and molecular dynamics simulations implied an additional hydrogen bond with TYR383 is involved in FXR transactivation for both compounds. According to EC50 determined by the confirmatory transactivation assay, we selected adamantan-1-yl(4-(2-amino-5-chlorophenyl)piperazin-1-yl)methanone (10a, EC50: 1.05 µM) as our lead compound. Interestingly, compound 10a had no agonistic effect on TGR5 or PPAR, and no cytotoxicity to HepG2 cells. In vivo bioassays with high-fat-diet induced C57BL/6J obese (DIO) mice have shown that compound 10a (100 mg/kg) is more effective than compound XJ034 (200 mg/kg) in improving hyperlipidemia, hepatic steatosis and insulin resistance. We also observed that compound 10a down-regulated the expression of genes involved in liver inflammation in vivo, implying its potential to treat hepatic inflammation. In summary, the present data have proved that our strategy for structural optimization is effective, and compound 10a is a promising lead compound with improved efficacy for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Piperazinas , Receptores Citoplasmáticos e Nucleares , Animais , Humanos , Camundongos , Células HEK293 , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Piperazinas/química , Piperazinas/farmacologia
17.
Arch Toxicol ; 96(6): 1829-1843, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35267068

RESUMO

Farnesoid X receptor (FXR) plays an indispensable role in liver homeostasis and has been a promising drug target for hepatic diseases. However, the concerns of undesired biological actions limit the clinical applications of FXR agonists. To reveal the intrinsic mechanism of FXR agonist-induce hepatotoxicity, two typical FXR agonists with different structures (obeticholic acid (OCA) and Px-102) were investigated in the present study. By detecting MMP, ROS, and ATP and analyzing the fate of cells, we found that both OCA and Px-102 reduced the mitochondrial function of hepatocytes and promoted cell apoptosis. Gene ablation or inhibition of FXR or SHP ameliorated the cytotoxicities of OCA and Px-102, which indicated the adverse actions of FXR/SHP activation including down-regulation of phosphorylation of PI3K/AKT and functional hepatic genes. The dose-related injurious effects of OCA (10 mg/kg and 30 mg/kg) and Px-102 (5 mg/kg and 15 mg/kg) on the liver were confirmed on a high-fat diet mouse model. The decrease of hepatocyte-specific genes and augmenter of liver regeneration in the liver caused by OCA or Px-102 suggested an imbalance of liver regeneration and a disruption of hepatic functions. Exploration of intestinally biased FXR agonists or combination of FXR agonist with apoptosis inhibitor may be more beneficial strategies for liver diseases.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Neoplasias Hepáticas Experimentais , Oxazóis , Receptores Citoplasmáticos e Nucleares , Animais , Apoptose/efeitos dos fármacos , Ácido Quenodesoxicólico/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Oxazóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Cell Chem Biol ; 29(7): 1174-1186.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35316658

RESUMO

Phospholipids are ligands for nuclear hormone receptors (NRs) that regulate transcriptional programs relevant to normal physiology and disease. Here, we demonstrate that mimicking phospholipid-NR interactions is a robust strategy to improve agonists of liver receptor homolog-1 (LRH-1), a therapeutic target for colitis. Conventional LRH-1 modulators only partially occupy the binding pocket, leaving vacant a region important for phospholipid binding and allostery. Therefore, we constructed a set of molecules with elements of natural phospholipids appended to a synthetic LRH-1 agonist. We show that the phospholipid-mimicking groups interact with the targeted residues in crystal structures and improve binding affinity, LRH-1 transcriptional activity, and conformational changes at a key allosteric site. The best phospholipid mimetic markedly improves colonic histopathology and disease-related weight loss in a murine T cell transfer model of colitis. This evidence of in vivo efficacy for an LRH-1 modulator in colitis represents a leap forward in agonist development.


Assuntos
Colite , Fosfolipídeos , Receptores Citoplasmáticos e Nucleares , Animais , Colite/tratamento farmacológico , Ligantes , Camundongos , Fosfolipídeos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas
19.
Chem Biol Drug Des ; 99(3): 504-511, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040254

RESUMO

Farnesoid X receptor (FXR) has been considered as a promising target for nonalcoholic steatohepatitis (NASH), while existing FXR agonists suffer from serious side effects. Thus, it is very necessary to identify novel FXR agonists with good safety. Auraptene (AUR) is a new FXR agonist with excellent safety and extensive pharmacological activities, while the lactone of AUR is vulnerable to esterolysis. In this study, the lactone of AUR was converted to metabolically stable amide moiety, and the obtained analog SU5 revealed comparable activity and better metabolic stability than that of AUR. In NASH model, SU5 showed stronger efficacy than AUR on fatty liver by upregulating gene expressions related to FXR in vivo. Moreover, SU5 improved lipid metabolism by downregulating the gene expressions of lipid synthesis, while upregulating the gene expressions of fatty acid ß-oxidation and triglyceride metabolism. Besides, the inflammation-related genes were significantly decreased in SU5-treated group. These positive results highlighted the pharmacological potential of SU5 for the treatment of NASH.


Assuntos
Cumarínicos/uso terapêutico , Dieta , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Colina/metabolismo , Cumarínicos/química , Cumarínicos/metabolismo , Cumarínicos/farmacologia , Dieta/veterinária , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Meia-Vida , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metionina/metabolismo , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Biochem Biophys Res Commun ; 595: 1-6, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091108

RESUMO

Farnesoid X receptor (FXR) is a bile acid-related nuclear receptor and is considered a promising target to treat several liver disorders. Cilofexor is a selective FXR agonist and has already entered phase III trials in primary sclerosing cholangitis (PSC) patients. Pruritis caused by cilofexor treatment is dose dependent. The binding characteristics of cilofexor with FXR and its pruritogenic mechanism remain unclear. In our research, the affinity of cilofexor bound to FXR was detected using an isothermal titration calorimetry (ITC) assay. The binding mechanism between cilofexor and FXR-LBD is explained by the cocrystal structure of the FXR/cilofexor complex. Structural models indicate the possibility that cilofexor activates Mas-related G protein-coupled receptor X4 (MRGPRX4) or G protein-coupled bile acid receptor 1 (GPBAR1), leading to pruritus. In summary, our analyses provide a molecular mechanism of cilofexor binding to FXR and provide a possible explanation for the dose-dependent pruritis of cilofexor.


Assuntos
Azetidinas/química , Ácidos Isonicotínicos/química , Simulação de Acoplamento Molecular , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química , Azetidinas/metabolismo , Azetidinas/farmacologia , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Ligação Competitiva , Calorimetria/métodos , Cristalização , Humanos , Ligação de Hidrogênio , Ácidos Isonicotínicos/metabolismo , Ácidos Isonicotínicos/farmacologia , Isoxazóis/química , Isoxazóis/metabolismo , Isoxazóis/farmacologia , Ligantes , Estrutura Molecular , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...