RESUMO
Neuroinflammation is a critical factor that contributes to neurological impairment and is closely associated with the onset and progression of neurodegenerative diseases. In the central nervous system (CNS), microglia play a pivotal role in the regulation of inflammation through various signaling pathways. Therefore, mitigating microglial inflammation is considered a promising strategy for restraining neuroinflammation. Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and exhibit clear neuroprotective effects in various disease models. However, whether the activation of mAChRs can harness benefits in neuroinflammation remains largely unexplored. In this study, the anti-inflammatory effects of mAChRs were found in a neuroinflammation mouse model. The expression of various cytokines and chemokines was regulated in the brains and spinal cords after the administration of mAChR agonists. Microglia were the primary target cells through which mAChRs exerted their anti-inflammatory effects. The results showed that the activation of mAChRs decreased the pro-inflammatory phenotypes of microglia, including the expression of inflammatory cytokines, morphological characteristics, and distribution density. Such anti-inflammatory modulation further exerted neuroprotection, which was found to be even more significant by the direct activation of neuronal mAChRs. This study elucidates the dual mechanisms through which mAChRs exert neuroprotective effects in central inflammatory responses, providing evidence for their application in inflammation-related neurological disorders.
Assuntos
Modelos Animais de Doenças , Microglia , Doenças Neuroinflamatórias , Receptores Muscarínicos , Animais , Microglia/metabolismo , Microglia/patologia , Camundongos , Receptores Muscarínicos/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Agonistas Muscarínicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
OBJECTIVE: In the context of postoperative anal pain, understanding the intricate mechanisms and effective interventions is paramount. This study investigates the role of Muscarinic Acetylcholine Receptors (mAChRs) and the IP3-Ca2+-CaM signaling pathway in a rat model of postoperative anal pain, exploring the potential analgesic effects of electroacupuncture. METHODS: Comprehensive approaches involving mechanical sensitivity assays, Western blotting, immunohistochemistry, and intracellular calcium concentration measurement were used. RESULTS: The authors found elevated mAChRs expression in the postoperative pain model. Antagonizing mAChRs reduced pain sensitivity and attenuated the IP3-Ca2+-CaM pathway. Remarkably, electroacupuncture treatment further mitigated pain, potentially by suppressing this signaling cascade. INTERPRETATION: These findings reveal a novel connection between mAChRs and the IP3-Ca2+-CaM pathway in postoperative anal pain and suggest electroacupuncture as a promising avenue for pain relief through these mechanisms, offering insights into innovative strategies for postoperative pain management.
Assuntos
Eletroacupuntura , Hemorroidectomia , Dor Pós-Operatória , Ratos Sprague-Dawley , Receptores Muscarínicos , Transdução de Sinais , Animais , Eletroacupuntura/métodos , Dor Pós-Operatória/terapia , Masculino , Hemorroidectomia/métodos , Receptores Muscarínicos/metabolismo , Pontos de Acupuntura , Canal Anal/cirurgia , Modelos Animais de Doenças , Western Blotting , Ratos , Imuno-Histoquímica , Cálcio/metabolismo , Resultado do TratamentoRESUMO
Several medications are commonly administered to older Japanese patients. Since some of them have not been included in previously developed scales to estimate the anticholinergic burden, we have developed a new muscarinic receptor binding-based anticholinergic burden scale. This study aimed to investigate the functional inhibitory effects of 60 medications, classified as anticholinergic burden scales 3 and 2 by the anticholinergic burden scale, on muscarinic receptor-mediated contractions in the bladder and ileum. The relaxation response induced by these drugs on isolated rat bladders and ileum smooth muscles constricted by carbachol was assessed using the organ bath method. All drugs inhibited smooth muscle contractile responses induced by the muscarinic receptor activation in a concentration-dependent manner in the rat bladder and ileum. Notably, variations were observed in the relaxation responses of the drugs, and the function EC50 values were positively correlated with the binding IC50 values in the bladder and ileum. The results of this study provide functional pharmacological evidence for the muscarinic receptor binding-based anticholinergic burden scale. Implementation of this scale may help reduce the risk of constipation and urinary retention, which are common side effects associated with anticholinergic drugs.
Assuntos
Antagonistas Colinérgicos , Íleo , Contração Muscular , Músculo Liso , Receptores Muscarínicos , Bexiga Urinária , Animais , Íleo/efeitos dos fármacos , Íleo/metabolismo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Masculino , Antagonistas Colinérgicos/farmacologia , Ratos , Carbacol/farmacologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Ratos Wistar , Relaxamento Muscular/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Concentração Inibidora 50RESUMO
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Assuntos
Doenças do Sistema Nervoso , Receptores Muscarínicos , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Animais , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Agonistas Muscarínicos/uso terapêutico , Descoberta de Drogas/métodos , Desenho de Fármacos , Regulação Alostérica/efeitos dos fármacosRESUMO
The synthesized compound 1-(2-chlorophenyl) 6-7-dimethoxy-3-methyl-3,4-dihydroisoquinoline (DIQ) was investigated as a biological agent. Its potential to affect muscle contractility was predicted through in silico PASS analysis. Based on the in silico analysis, its capabilities were experimentally investigated. The study aimed to investigate the effects of DIQ on the ex vivo spontaneous contractile activity (CA) of smooth muscle (SM) tissue. DIQ was observed to reduce the strength of Ca2+-dependent contractions in SM preparations (SMP), possibly by increasing cytosolic Ca2+ levels through the activation of a voltage-gated L-type Ca2+ channel. DIQ potently affected calcium currents by modulating the function of muscarinic acetylcholine receptors (mAChRs) and 5-hydroxytryptamine (5-HT) receptors at a concentration of 50 µM. Immunohistochemical tests showed a 47% reduction in 5-HT2A and 5-HT2B receptor activity in SM cells and neurons in the myenteric plexus (MP), further confirming the effects of DIQ. Furthermore, a significant inhibition of neuronal activity was observed when the compound was co-administered with 5-HT to SM tissues. The conducted experiments confirm the ability of the isoquinoline analog to act as a physiologically active molecule to control muscle contractility and related physiological processes.
Assuntos
Isoquinolinas , Contração Muscular , Músculo Liso , Animais , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Isoquinolinas/farmacologia , Isoquinolinas/química , Cálcio/metabolismo , Receptores de Serotonina/metabolismo , Ratos , Receptores Muscarínicos/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismoRESUMO
Despite its efficacy in human epidermal growth factor receptor 2 positive cancer treatment, trastuzumab-induced cardiotoxicity (TIC) has become a growing concern. Due to the lack of cardiomyocyte regeneration and proliferation in adult heart, cell death significantly contributes to cardiovascular diseases. Cardiac autonomic modulation by vagus nerve stimulation (VNS) has shown cardioprotective effects in several heart disease models, while the effects of VNS and its underlying mechanisms against TIC have not been found. Forty adult male Wistar rats were divided into 5 groups: (i) control without VNS (CSham) group, (ii) trastuzumab (4 mg/kg/day, i.p.) without VNS (TSham) group, (iii) trastuzumab + VNS (TVNS) group, (iv) trastuzumab + VNS + mAChR blocker (atropine; 1 mg/kg/day, ip, TVNS + Atro) group, and (v) trastuzumab + VNS + nAChR blocker (mecamylamine; 7.5 mg/kg/day, ip, TVNS + Mec) group. Our results showed that trastuzumab induced cardiac dysfunction by increasing autonomic dysfunction, mitochondrial dysfunction/dynamics imbalance, and cardiomyocyte death including apoptosis, autophagic deficiency, pyroptosis, and ferroptosis, which were notably alleviated by VNS. However, mAChR and nAChR blockers significantly inhibited the beneficial effects of VNS on cardiac autonomic dysfunction, mitochondrial dysfunction, cardiomyocyte apoptosis, pyroptosis, and ferroptosis. Only nAChR could counteract the protective effects of VNS on cardiac mitochondrial dynamics imbalance and autophagy insufficiency. Therefore, VNS prevented TIC by rebalancing autonomic activity, ameliorating mitochondrial dysfunction and cardiomyocyte death through mAChR and nAChR activation. The current study provides a novel perspective elucidating the potential treatment of VNS, thus also offering other pharmacological therapeutic promises in TIC patients.
Assuntos
Apoptose , Cardiotoxicidade , Miócitos Cardíacos , Ratos Wistar , Receptores Muscarínicos , Receptores Nicotínicos , Trastuzumab , Estimulação do Nervo Vago , Animais , Estimulação do Nervo Vago/métodos , Masculino , Ratos , Trastuzumab/toxicidade , Trastuzumab/farmacologia , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/toxicidade , Nervo Vago/efeitos dos fármacosRESUMO
Age-related conditions, such as sarcopenia, cause physical disabilities for an increasing section of society. At the neuromuscular junction, the postsynaptic-derived neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) have neuroprotective functions and contribute to the correct regulation of the exocytotic machinery. Similarly, presynaptic muscarinic signalling plays a fundamental modulatory function in this synapse. However, whether or not these signalling pathways are compromised in ageing neuromuscular system has not yet been analysed. The present study analyses, through Western blotting, the differences in expression and activation of the main key proteins of the BDNF/NT-4 and muscarinic pathways related to neurotransmission in young versus ageing Extensor digitorum longus (EDL) rat muscles. The main results show an imbalance in several sections of these pathways: (i) a change in the stoichiometry of BDNF/NT-4, (ii) an imbalance of Tropomyosin-related kinase B receptor (TrkB)-FL/TrkB-T1 and neurotrophic receptor p 75 (p75NTR), (iii) no changes in the cytosol/membrane distribution of phosphorylated downstream protein kinase C (PKC)ßI and PKCε, (iv) a reduction in the M2-subtype muscarinic receptor and P/Q-subtype voltage-gated calcium channel, (v) an imbalance of phosphorylated mammalian uncoordinated-18-1 (Munc18-1) (S313) and synaptosomal-associated protein 25 (SNAP-25) (S187), and (vi) normal levels of molecules related to the management of acetylcholine (Ach). Based on this descriptive analysis, we hypothesise that these pathways can be adjusted to ensure neurotransmission rather than undergoing negative alterations caused by ageing. However, further studies are needed to assess this hypothetical suggestion. Our results contribute to the understanding of some previously described neuromuscular functional age-related impairments. Strategies to promote these signalling pathways could improve the neuromuscular physiology and quality of life of older people.
Assuntos
Envelhecimento , Fator Neurotrófico Derivado do Encéfalo , Junção Neuromuscular , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Animais , Junção Neuromuscular/metabolismo , Envelhecimento/metabolismo , Ratos , Receptor trkB/metabolismo , Fatores de Crescimento Neural/metabolismo , Masculino , Receptores Muscarínicos/metabolismo , Transmissão Sináptica , Receptores de Fator de Crescimento Neural/metabolismo , Ratos WistarRESUMO
The Drosophila melanogaster MD-RR strain contains an Rdl mutation (A301S) resulting in resistance to several insecticide classes viz. phenyl pyrazoles (e.g., fipronil), cyclodienes (e.g., dieldrin), and chlorinated aliphatic hydrocarbons (e.g., lindane). Fitness costs are commonly observed with resistant insect populations as side effects of the genetic change conferring the resistant phenotype. Because of fitness costs, reversion from the resistant to susceptible genotype and phenotype is common. However, the Rdl genotype in D. melanogaster appears to allow the flies to maintain the resistant genotype/phenotype without selective pressure and with minimal fitness costs. We provide evidence that compensation for the Rdl mutation influences the cholinergic system, where an increase in acetylcholinesterase gene expression and enzyme activity results in neurophysiological changes and cross resistance to a carbamate insecticide (propoxur oral resistance ratio (RR) of 63) and an organophosphate insecticide (dichlorvos oral RR of 7). Such cross resistance was not previously reported with the initial collection and testing of this strain. In addition to acetylcholinesterase, the Rdl mutation influences the expression of the muscarinic acetylcholine receptor subtype-B, resulting in resistance to non-selective muscarinic compounds (pilocarpine and atropine). Collectively, these results indicate that the Rdl mutation (A301S) at GABA-gated ionophore complex influences the physiology of the cholinergic system, leading to resistance to established insecticide classes. Additionally, this mutation may impact the effectiveness of insecticides targeting novel sites, like muscarinic receptors.
Assuntos
Acetilcolinesterase , Canais de Cloreto , Proteínas de Drosophila , Drosophila melanogaster , Resistência a Inseticidas , Receptores de GABA-A , Animais , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Resistência a Inseticidas/genética , Inseticidas , Mutação , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismoRESUMO
Tropane-containing small molecules like scopolamine are a promising class of psychoplastogens. However, their potent antagonism of all muscarinic receptor subtypes presents the potential for undesirable anticholinergic side effects. In an effort to decouple their neuroplasticity-promoting effects from their muscarinic activity, we performed phenotypic structure-activity relationship studies across a variety of structurally distinct subclasses of tropanes. We discovered several novel tropanes capable of significantly increasing cortical neuronal growth while exhibiting drastically reduced activity at all muscarinic receptor subtypes compared to scopolamine.
Assuntos
Receptores Muscarínicos , Tropanos , Animais , Relação Estrutura-Atividade , Tropanos/química , Tropanos/farmacologia , Tropanos/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/química , Escopolamina/farmacologia , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/química , Humanos , Camundongos , Ratos , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismoRESUMO
A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.
Assuntos
Dioxanos , Receptores Muscarínicos , Ligantes , Dioxanos/química , Dioxanos/farmacologia , Dioxanos/síntese química , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/química , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/síntese química , Humanos , Sítios de Ligação , Células CHO , Cricetulus , Relação Dose-Resposta a DrogaRESUMO
BACKGROUND: Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission. Neurotransmission at the NMJ is also highly modulated by muscarinic receptors M1 and M2 (mAChRs), which are related to PKA and TrkB signallings. Here, we investigated the hypothesis that TrkB, in cooperation with mAChRs, regulates the activity-dependent dynamics of PKA subunits to phosphorylate SNAP-25 and Synapsin-1. METHODS: To explore this, we stimulated the rat phrenic nerve at 1Hz (30 minutes), with or without subsequent contraction (abolished by µ-conotoxin GIIIB). Pharmacological treatments were conducted with the anti-TrkB antibody clone 47/TrkB for TrkB inhibition and exogenous h-BDNF; muscarinic inhibition with Pirenzepine-dihydrochloride and Methoctramine-tetrahydrochloride for M1 and M2 mAChRs, respectively. Diaphragm protein levels and phosphorylation' changes were detected by Western blotting. Location of the target proteins was demonstrated using immunohistochemistry. RESULTS: While TrkB does not directly impact the levels of PKA catalytic subunits Cα and Cß, it regulates PKA regulatory subunits RIα and RIIß, facilitating the phosphorylation of critical exocytotic targets such as SNAP-25 and Synapsin-1. Furthermore, the muscarinic receptors pathway maintains a delicate balance in this regulatory process. These findings explain the dynamic interplay of PKA subunits influenced by BDNF/TrkB signalling, M1 and M2 mAChRs pathways, that are differently regulated by pre- and postsynaptic activity, demonstrating the specific roles of the BDNF/TrkB and muscarinic receptors pathway in retrograde regulation. CONCLUSION: This complex molecular interplay has the relevance of interrelating two fundamental pathways in PKA-synaptic modulation: one retrograde (neurotrophic) and the other autocrine (muscarinic). This deepens the fundamental understanding of neuromuscular physiology of neurotransmission that gives plasticity to synapses and holds the potential for identifying therapeutic strategies in conditions characterized by impaired neuromuscular communication.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Quinases Dependentes de AMP Cíclico , Junção Neuromuscular , Receptor trkB , Transdução de Sinais , Sinapsinas , Proteína 25 Associada a Sinaptossoma , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Junção Neuromuscular/metabolismo , Fosforilação , Ratos Wistar , Receptor trkB/metabolismo , Receptores Muscarínicos/metabolismo , Sinapsinas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismoRESUMO
Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the endogenous neurotransmitter, acetylcholine (ACh). Disruption of mAChR signalling has been associated with a variety of neurological disorders and non-neurological diseases. Consequently, the development of agonists and antagonists of the mAChRs has been a major avenue in drug discovery. Unfortunately, mAChR ligands are often associated with on-target side effects for two reasons. The first reason is due to the high sequence conservation at the orthosteric ACh binding site among all five receptor subtypes (M1-M5), making on-target subtype selectivity a major challenge. The second reason is due to on-target side effects of mAChR drugs that are associated with the pleiotropic nature of mAChR signalling at the level of a single mAChR subtype. Indeed, there is growing evidence that within the myriad of signalling events produced by mAChR ligands, some will have therapeutic benefits, whilst others may promote cholinergic side effects. This paradigm of drug action, known as ligand bias or biased agonism, is an attractive feature for next-generation mAChR drugs, as it holds the promise of developing drugs devoid of on-target adverse effects. Although relatively simple to detect and even quantify in vitro, ligand bias, as observed in recombinant systems, does not always translate to in vivo systems, which remains a major hurdle in GPCR drug discovery, including the mAChR family. Here we report recent studies that have attempted to detect and quantify ligand bias at the mAChR family, and briefly discuss the challenges associated with biased agonist drug development. This article is part of the Special Issue on "Ligand Bias".
Assuntos
Receptores Muscarínicos , Humanos , Animais , Ligantes , Receptores Muscarínicos/metabolismo , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Descoberta de Drogas/métodos , Acetilcolina/metabolismoRESUMO
Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.
Assuntos
Acetilcolina , Células Amácrinas , Animais , Células Amácrinas/metabolismo , Camundongos , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismoRESUMO
RATIONALE: Muscarinic receptor activity in the basolateral amygdala (BLA) is known to be involved in plasticity mechanisms that underlie emotional learning. The BLA is involved in the Attenuation of Neophobia, an incidental taste learning task in which a novel taste becomes familiar and recognized as safe. OBJECTIVE: Here we assessed the role of muscarinic receptor activity in the BLA in incidental taste learning. METHODS: Young adult male Wistar rats were bilaterally implanted with cannulas aimed at BLA. After recovery, rats were randomly assigned to either vehicle or muscarinic antagonist group, for each experiment. We tested the effect of specific and non-specific muscarinic antagonists administered either 1) 20 min before novel taste presentation; 2) immediately after novel taste presentation; 3) immediately after retrieval (the second taste presentation on Day 5 -S2-) or immediately after the fifth taste presentation on Day 8 (S5). RESULTS: Non-specific muscarinic receptor antagonist scopolamine infused prior to novel taste, while not affecting novel taste preference, abolished AN, i.e., the increased preference observed in control animals on the second presentation. When administered after taste consumption, intra-BLA scopolamine not only prevented AN but caused a steep decrease in the taste preference on the second presentation. This scopolamine-induced taste avoidance was not dependent on taste novelty, nor did it generalize to another novel taste. Targeting putative postsynaptic muscarinic receptors with specific M1 or M3 antagonists appeared to produce a partial taste avoidance, while M2 antagonism had no effect. CONCLUSION: These data suggest that if a salient gustatory experience is followed by muscarinic receptors antagonism in the BLA, it will be strongly and persistently avoided in the future. The study also shows that scopolamine is not just an amnesic drug, and its cognitive effects may be highly dependent on the task and the structure involved.
Assuntos
Aprendizagem da Esquiva , Complexo Nuclear Basolateral da Amígdala , Antagonistas Muscarínicos , Ratos Wistar , Sacarina , Escopolamina , Paladar , Animais , Escopolamina/farmacologia , Escopolamina/administração & dosagem , Masculino , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/administração & dosagem , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Ratos , Sacarina/administração & dosagem , Paladar/efeitos dos fármacos , Receptores Muscarínicos/metabolismoRESUMO
Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.
Assuntos
Hipocampo , Plasticidade Neuronal , Transmissão Sináptica , Animais , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Ratos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Carbacol/farmacologia , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo , Ratos Wistar , Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/metabolismo , Agonistas Muscarínicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacosRESUMO
Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.
Assuntos
Acetilcolina , Neoplasias Gastrointestinais , Humanos , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Acetilcolina/metabolismo , Animais , Transdução de Sinais , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismoRESUMO
Receptor occupancy is an indicator of antipsychotic efficacy and safety. It is desirable to simultaneously determine the occupancy of multiple brain receptors as an indicator of the efficacy and central side effects of antipsychotics because many of these drugs have binding affinities for various receptors, such as dopamine 2 (D2), histamine 1 (H1), and muscarinic acetylcholine (mACh) receptors. The purpose of this study was to develop a method for the simultaneous measurement of multiple receptor occupancies in the brain by the simultaneous quantification of unlabeled tracer levels using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rats were pre-administered with a vehicle, displacer, or olanzapine, and mixed solutions of raclopride, doxepin, and 3-quinuclidinyl benzilate (3-QNB) were administered (3, 10, and 30 µg/kg). The brain tissue and plasma tracer concentrations were quantified 45 min later using LC-MS/MS, and the binding potential was calculated. The highest binding potential was observed at 3 µg/kg raclopride, 10 µg/kg doxepin, and 30 µg/kg 3-QNB. Tracer-specific binding at these optimal tracer doses in the cerebral cortex was markedly reduced by pre-administration of displacers. D2, H1, and mACh receptor occupancy by olanzapine increased in a dose-dependent manner, reaching 70-95%, 19-43%, and 12-45%, respectively, at an olanzapine dose range of 3-10 mg/kg. These results suggest that simultaneous determination of in vivo D2, H1, and mACh receptor occupancy is possible using LC-MS/MS.
Assuntos
Antipsicóticos , Olanzapina , Ratos Sprague-Dawley , Receptores de Dopamina D2 , Receptores Histamínicos H1 , Receptores Muscarínicos , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Ratos , Masculino , Antipsicóticos/administração & dosagem , Cromatografia Líquida/métodos , Receptores de Dopamina D2/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Olanzapina/farmacocinética , Olanzapina/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Benzodiazepinas/análise , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacocinética , Racloprida/metabolismo , Doxepina/farmacocinética , Quinuclidinil Benzilato/metabolismo , Relação Dose-Resposta a DrogaRESUMO
Dopaminergic receptor antagonism is a crucial component of all licensed treatments for psychosis, and dopamine dysfunction has been central to pathophysiological models of psychotic symptoms. Some clinical trials, however, indicate that drugs that act through muscarinic receptor agonism can also be effective in treating psychosis, potentially implicating muscarinic abnormalities in the pathophysiology of psychosis. Here, we discuss understanding of the central muscarinic system, and we examine preclinical, behavioural, post-mortem, and neuroimaging evidence for its involvement in psychosis. We then consider how altered muscarinic signalling could contribute to the genesis and maintenance of psychotic symptoms, and we review the clinical evidence for muscarinic agents as treatments. Finally, we discuss future research that could clarify the relationship between the muscarinic system and psychotic symptoms.
Assuntos
Transtornos Psicóticos , Receptores Muscarínicos , Humanos , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antipsicóticos/uso terapêutico , Antipsicóticos/farmacologia , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , AnimaisRESUMO
Activation of the vagus nerve mediates cardioprotection and attenuates myocardial ischemia/reperfusion (I/R) injury. In response to vagal activation, acetylcholine (ACh) is released from the intracardiac nervous system (ICNS) and activates intracellular cardioprotective signaling cascades. Recently, however, a nonneuronal cholinergic cardiac system (NNCCS) in cardiomyocytes has been described as an additional source of ACh. To investigate whether the NNCCS mediates cardioprotection in the absence of vagal and ICNS activation, we used a reductionist approach of isolated adult rat ventricular cardiomyocytes without neuronal cells, using hypoxic preconditioning (HPC) as a protective stimulus. Adult rat ventricular cardiomyocytes were isolated, the absence of neuronal cells was confirmed, and HPC was induced by 10/20 min hypoxia/reoxygenation (H/R) before subjection to 30/5 min H/R to simulate I/R injury. Cardiomyocyte viability was assessed by trypan blue staining at baseline and after HPC+H/R or H/R. Intra- and extracellular ACh was quantified using liquid chromatography-coupled mass spectrometry at baseline, after HPC, after hypoxia, and after reoxygenation, respectively. In a subset of experiments, muscarinic and nicotinic ACh receptor (m- and nAChR) antagonists were added during HPC or during H/R. Cardiomyocyte viability at baseline (69 ± 4%) was reduced by H/R (10 ± 3%). With HPC, cardiomyocyte viability was preserved after H/R (25 ± 6%). Intra- and extracellular ACh increased during hypoxia; HPC further increased both intra- and extracellular ACh (from 0.9 ± 0.7 to 1.5 ± 1.0 nmol/mg; from 0.7 ± 0.6 to 1.1 ± 0.7 nmol/mg, respectively). The addition of mAChR and nAChR antagonists during HPC had no impact on HPC's protection; however, protection was abrogated when antagonists were added during H/R (cardiomyocyte viability after H/R: 23 ± 5%; 13 ± 4%). In conclusion, activation of the NNCCS is involved in cardiomyocyte protection; HPC increases intra- and extracellular ACh during H/R, and m- and nAChRs are causally involved in HPC's cardiomyocyte protection during H/R. The interplay between upstream ICNS activation and NNCCS activation in myocardial cholinergic metabolism and cardioprotection needs to be investigated in future studies.NEW & NOTEWORTHY The intracardiac nervous system is considered to be involved in ischemic conditioning's cardioprotection through the release of acetylcholine (ACh). However, we demonstrate that hypoxic preconditioning (HPC) protects from hypoxia/reoxygenation injury and increases intra- and extracellular ACh during hypoxia in isolated adult ventricular rat cardiomyocytes. HPC's protection involves cardiomyocyte muscarinic and nicotinic ACh receptor activation. Thus, besides the intracardiac nervous system, a nonneuronal cholinergic cardiac system may also be causally involved in cardiomyocyte protection by ischemic conditioning.
Assuntos
Acetilcolina , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Masculino , Hipóxia Celular , Ratos , Sistema Colinérgico não Neuronal , Precondicionamento Isquêmico Miocárdico , Ratos Sprague-Dawley , Sobrevivência Celular , Receptores Muscarínicos/metabolismo , Células Cultivadas , Antagonistas Muscarínicos/farmacologiaRESUMO
Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.