Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
1.
Gene ; 928: 148804, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089529

RESUMO

Rheumatoid arthritis (RA) is a multifactorial autoimmune inflammatory disease that mainly affects the joints, on reducing functional capacity and impacting quality of life. Cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6) are crucial in the pathogenesis and treatment of this disease. Some patients using TNF inhibitors (TNFi) do not respond or lose their response to these medications. Clinical, sociodemographic, and genetic data were used to evaluate the associations of single nucleotide polymorphisms (SNP) in TNF, TNFRSF1A, and TNFRSF1B genes with the diagnosis of RA, standardized score results, laboratory tests, and response to TNFi. In one subsample, TNF and IL-6 serum levels cytokines were performed. A total of 654 subjects (360 healthy controls and 294 diagnosed with RA) were included in the analysis. Higher levels of TNF have been found in individuals diagnosed with RA. IL-6 levels were higher in individuals who did not respond to TNFi treatment, while responders had levels comparable to those without the disease. No associations were found between the SNPs studied and the diagnosis of RA; however, rs767455-C seems to play a role in the response to golimumab treatment, being related to better therapeutic response and lower mean serum leukocyte levels. In addition, rs1061622-G was associated with poorer functional capacity and rs1800629-A was associated with higher leukocyte values and serum transaminase levels. The rs1061622-G and rs767455-C may play a role in the response to TNFi treatment, especially for patients using golimumab, although they do not seem to be associated with the diagnosis of RA. Polymosphisms in the TNF pathway may impact baseline levels of immune cells and markers of renal and hepatic function in RA patients. Our results highlight the importance of evaluating the impact of these polymorphisms on TNFi response and safety, particularly in larger-scale studies.


Assuntos
Artrite Reumatoide , Interleucina-6 , Polimorfismo de Nucleotídeo Único , Receptores Tipo II do Fator de Necrose Tumoral , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/tratamento farmacológico , Feminino , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/genética , Interleucina-6/genética , Interleucina-6/sangue , Receptores Tipo II do Fator de Necrose Tumoral/genética , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Adulto , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Idoso , Estudos de Casos e Controles , Antirreumáticos/uso terapêutico
3.
Int Immunopharmacol ; 139: 112676, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39053230

RESUMO

Accumulation of alpha-synuclein (α-syn) is a key pathological hallmark of synucleinopathies and has been shown to negatively impact neuronal function and activity. α-syn is an important factor contributing to astrocyte overactivation, though the effect of astrocyte overactivation on neurons remains unclear. Single-cell RNA sequencing data of mouse brain frontal cortex and midbrain from Hua-Syn (A53T) and wild type mice were utilized from the GEO database. Enrichment analysis, protein-protein interaction networks, and cell-cell interaction networks all indicated enhanced communication between astrocytes and neurons, along with the involvement of TNF and inflammation-related signaling pathways. In vitro experiments were performed to further explore the mechanism of neurotoxicity in astrocyte-neuron crosstalk. Astrocytes were treated by α-syn, neuronal TNFR1 receptors were antagonized by R-7050, and the cells were co-cultured after 24 h treatment. ELISA results revealed that cytokines such as TNF-α and IL-6 were significantly upregulated in astrocytes following the endocytosis of α-syn. Immunofluorescence (IF) showed neuronal dendritic reduction, axon elongation and increased co-localisation of TNFR1 receptor expression. Western blot showed up-regulation of PKR, P-eIF2α and ATF4 protein expression. Conversely, after antagonizing neuronal TNFR1 receptors with the R-7050 chemical inhibitor, neuronal synaptic structure was significantly restored and the expression of PKR, P-eIF2α and ATF4 was down-regulated. In summary, TNF-α acts as a signaling molecule mediating the up-regulated astrocyte-neuron crosstalk, providing new insights into the pathogenesis of α-syn-related neurological disorders.


Assuntos
Astrócitos , Comunicação Celular , Neurônios , Receptores Tipo I de Fatores de Necrose Tumoral , Análise de Célula Única , alfa-Sinucleína , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Técnicas de Cocultura , Células Cultivadas , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Camundongos Transgênicos
4.
Nature ; 632(8024): 419-428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020166

RESUMO

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Transformação Celular Neoplásica , Evolução Clonal , Células Clonais , Análise de Célula Única , Fatores de Necrose Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Evolução Clonal/genética , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Mutação , Invasividade Neoplásica/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Comunicação Autócrina , Análise de Sobrevida
5.
J Infect Dev Ctries ; 18(5): 770-778, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865403

RESUMO

INTRODUCTION: Studies in different populations have shown that single-nucleotide polymorphisms (SNPs) of tumor necrosis factor-alpha (TNFα) and TNF receptors 1 and 2 (TNFR1 and TNFR2) may be involved in the pathogenesis of lepromatous leprosy (LL). To further explore the results in a Mexican population, we compared the frequencies of the polymorphisms in - 308 G>A TNFA (rs1800629), - 383 A>C TNFRS1A (rs2234649), and + 196 T >G TNFSR1B (rs1061622) genes in LL patients (n = 133) and healthy subjects (n = 198). METHODOLOGY: The genotyping was performed with the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) technique. Statistical analysis was performed using the χ2 test, within the 95% confidence interval. Odds ratios (OR) were calculated and Hardy-Weinberg equilibrium was verified for all control subjects and patients. RESULTS: We found an association between the TNFSR1 -383 A>C genotype and the risk of lepromatous leprosy when leprosy patients were compared to controls (OR = 1.71, CI: 1.08-2.69, p = 0.02). Furthermore, it was also associated with the risk of LL in a dominant model (AC + CC vs AA, OR: 1.65, 95% CI: 1.05-2.057, p = 0.02). Similar genotype and allele frequencies for the SNPs TNFA - 308 G>A and TNFSR2 + 196 T>G were observed between leprosy patients and healthy subjects. CONCLUSIONS: The TNFSR1 -383 A>C could be a potential marker for the identification of high-risk populations. However, additional studies, using larger samples of different ethnic populations, are required.


Assuntos
Predisposição Genética para Doença , Hanseníase Virchowiana , Polimorfismo de Nucleotídeo Único , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , México , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Hanseníase Virchowiana/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Adulto Jovem , Idoso , Frequência do Gene , Polimorfismo de Fragmento de Restrição , Estudos de Casos e Controles , Genótipo , Adolescente , Reação em Cadeia da Polimerase
6.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943486

RESUMO

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Assuntos
Espinhas Dendríticas , Giro Denteado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Espinhas Dendríticas/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Giro Denteado/metabolismo , Giro Denteado/citologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Neurônios/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência
7.
J Affect Disord ; 362: 217-224, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945405

RESUMO

BACKGROUND: Disrupted cellular communication, inflammatory responses and mitochondrial dysfunction are consistently observed in late-life depression (LLD). Exosomes (EXs) mediate cellular communication by transporting molecules, including mitochondrial DNA (EX-mtDNA), playing critical role in immunoregulation alongside tumor necrosis factor (TNF). Changes in EX-mtDNA are indicators of impaired mitochondrial function and might increase vulnerability to adverse health outcomes. Our study examined EX-mtDNA levels and integrity, exploring their associations with levels of TNF receptors I and II (TNFRI and TNFRII), and clinical outcomes in LLD. METHODS: Ninety older adults (50 LLD and 40 controls (HC)) participated in the study. Blood was collected and exosomes were isolated using size-exclusion chromatography. DNA was extracted and EX-mtDNA levels and deletion were assessed using qPCR. Plasma TNFRI and TNFRII levels were quantified by multiplex immunoassay. Correlation analysis explored relationships between EX-mtDNA, clinical outcomes, and inflammatory markers. RESULTS: Although no differences were observed in EX-mtDNA levels between groups, elevated levels correlated with poorer cognitive performance (r = -0.328, p = 0.002) and increased TNFRII levels (r = 0.367, p = 0.004). LLD exhibited higher deletion rates (F(83,1) = 4.402, p = 0.039), with a trend remaining after adjusting for covariates (p = 0.084). Deletion correlated with poorer cognitive performance (r = -0.335, p = 0.002). No other associations were found. LIMITATION: Cross-sectional study with a small number of participants from a specialized geriatric psychiatry treatment center. CONCLUSION: Our findings suggest that EX-mtDNA holds promise as an indicator of cognitive outcomes in LLD. Additional research is needed to further comprehend the role of EX-mtDNA levels/integrity in LLD, paving the way for its clinical application in the future.


Assuntos
Disfunção Cognitiva , DNA Mitocondrial , Exossomos , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Masculino , Feminino , Idoso , Disfunção Cognitiva/sangue , Disfunção Cognitiva/genética , Exossomos/genética , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Idoso de 80 Anos ou mais , Depressão/sangue , Depressão/genética , Estudos de Casos e Controles , Biomarcadores/sangue
8.
Cell Death Differ ; 31(7): 938-953, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849574

RESUMO

Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.


Assuntos
Apoptose , Caspase 8 , Inflamação , Queratinócitos , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Caspase 8/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Queratinócitos/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Transdução de Sinais , Humanos , Proteínas Quinases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Am J Hypertens ; 37(9): 717-725, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38780971

RESUMO

BACKGROUND: High salt (HS) intake induces an augmented hypertensive response to nitric oxide (NO) inhibition, though it causes minimal changes in blood pressure (BP) in NO intact condition. The cause of such augmentation is not known. HS induces tumor necrosis factor-alpha (TNFα) production that causes natriuresis via activation of its receptor type 1 (TNFR1). We hypothesized that NO deficiency reduces renal TNFR1 activity, leading to enhanced sodium retention and hypertension. METHODS: We examined the changes in renal TNFR1 protein expression (Immunohistochemistry analyses) after HS (4% NaCl) intake in wild-type mice (WT, C57BL6) treated with a NO synthase (NOS) inhibitor, nitro-l-arginine methyl ester (L-NAME; 0.05 mg/min/g; osmotic mini-pump), as well as in endothelial NOS knockout mice (eNOSKO) and compared the responses in WT mice with normal salt (NS; 0.3% NaCl) intake. BP was measured with tail-cuff plethysmography and 24-hour urine collections were made using metabolic cages. RESULTS: HS alone did not alter mean BP in untreated mice (76 ±â€…3 to 77 ±â€…1 mm Hg) but induced an augmented response in L-NAME treated (106 ±â€…1 vs. 97 ±â€…2 mm Hg) and in eNOSKO (107 ±â€…2 vs. 89 ±â€…3 mm Hg) mice. The percentage area of TNFR1 expression in renal tissue was higher in WT + HS (4.1 + 0.5%) than in WT + NS mice (2.7 ±â€…0.6%). However, TNFR1 expression was significantly lower in L-NAME treated WT + NS (0.9 ±â€…0.1%) and in eNOSKO + NS (1.4 ±â€…0.2%) than in both WT + NS and WT + HS mice. CONCLUSIONS: These data indicate that TNFR1 activity is downregulated in NO deficient conditions, which facilitates salt retention leading to augmented hypertension during HS intake.


Assuntos
Hipertensão , Rim , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster , Óxido Nítrico , Receptores Tipo I de Fatores de Necrose Tumoral , Cloreto de Sódio na Dieta , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Camundongos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Masculino , Pressão Sanguínea/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Immunity ; 57(7): 1497-1513.e6, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38744293

RESUMO

RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in Ripk1R588E/R588E cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Inflamação , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Inflamação/metabolismo , Inflamação/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Morte Celular , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Domínios Proteicos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Apoptose , Mutação , Proteína de Domínio de Morte Associada a Receptor de TNF
11.
Cell Death Differ ; 31(5): 672-682, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548850

RESUMO

Necroptosis is a lytic form of cell death that is mediated by the kinase RIPK3 and the pseudokinase MLKL when caspase-8 is inhibited downstream of death receptors, toll-like receptor 3 (TLR3), TLR4, and the intracellular Z-form nucleic acid sensor ZBP1. Oligomerization and activation of RIPK3 is driven by interactions with the kinase RIPK1, the TLR adaptor TRIF, or ZBP1. In this study, we use immunohistochemistry (IHC) and in situ hybridization (ISH) assays to generate a tissue atlas characterizing RIPK1, RIPK3, Mlkl, and ZBP1 expression in mouse tissues. RIPK1, RIPK3, and Mlkl were co-expressed in most immune cell populations, endothelial cells, and many barrier epithelia. ZBP1 was expressed in many immune populations, but had more variable expression in epithelia compared to RIPK1, RIPK3, and Mlkl. Intriguingly, expression of ZBP1 was elevated in Casp8-/- Tnfr1-/- embryos prior to their succumbing to aberrant necroptosis around embryonic day 15 (E15). ZBP1 contributed to this embryonic lethality because rare Casp8-/- Tnfr1-/- Zbp1-/- mice survived until after birth. Necroptosis mediated by TRIF contributed to the demise of Casp8-/- Tnfr1-/- Zbp1-/- pups in the perinatal period. Of note, Casp8-/- Tnfr1-/- Trif-/- Zbp1-/- mice exhibited autoinflammation and morbidity, typically within 5-7 weeks of being born, which is not seen in Casp8-/- Ripk1-/- Trif-/- Zbp1-/-, Casp8-/- Ripk3-/-, or Casp8-/- Mlkl-/- mice. Therefore, after birth, loss of caspase-8 probably unleashes RIPK1-dependent necroptosis driven by death receptors other than TNFR1.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Caspase 8 , Camundongos Knockout , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Caspase 8/metabolismo , Caspase 8/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492783

RESUMO

Lymphotoxin α (LTα) is a soluble factor produced by activated lymphocytes which is cytotoxic to tumor cells. Although a promising candidate in cancer therapy, the application of recombinant LTα has been limited by its instability and toxicity by systemic administration. Secreted LTα interacts with several distinct receptors for its biological activities. Here, we report a TNFR1-selective human LTα mutant (LTα Q107E) with potent antitumor activity. Recombinant LTα Q107E with N-terminal 23 and 27 aa deletion (named LTα Q1 and Q2, respectively) showed selectivity to TNFR1 in both binding and NF-κB pathway activation assays. To test the therapeutic potential, we constructed an oncolytic adenovirus (oAd) harboring LTα Q107E Q2 mutant (named oAdQ2) and assessed the antitumor effect in mouse xenograft models. Intratumoral delivery of oAdQ2 inhibited tumor growth. In addition, oAdQ2 treatment enhanced T cell and IFNγ-positive CD8 T lymphocyte infiltration in a human PBMC reconstituted-SCID mouse xenograft model. This study provides evidence that reengineering of bioactive cytokines with tissue or cell specific properties may potentiate their therapeutic potential of cytokines with multiple receptors.


Assuntos
Adenoviridae , Imunoterapia , Linfotoxina-alfa , Camundongos SCID , Terapia Viral Oncolítica , Receptores Tipo I de Fatores de Necrose Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Animais , Camundongos , Linfotoxina-alfa/genética , Adenoviridae/genética , Terapia Viral Oncolítica/métodos , Imunoterapia/métodos , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Mutação , Linfócitos T CD8-Positivos/imunologia , NF-kappa B/metabolismo
13.
Toxicol Appl Pharmacol ; 484: 116872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428465

RESUMO

Previous studies have demonstrated that tetramethylpyrazine (TMP) can enhance the recovery of motor function in spinal cord injury (SCI) rats. However, the underlying mechanism involved in this therapeutic effect remains to be elucidated. We conducted RNA sequencing with a network pharmacology strategy to predict the targets and mechanism of TMP for SCI. The modified Allen's weight-drop method was used to construct an SCI rat model. The results indicated that the nuclear transfer factor-κB (NF-κB) pathway was identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and an inflammatory response was identified through the Gene Ontology (GO) enrichment analysis. Tumor necrosis factor (TNF) was identified as a crucial target. Western blotting revealed that TMP decreased the protein expression of TNF superfamily receptor 1 (TNFR1), inhibitor κB-α (IκB-α), and NF-κB p65 in spinal cord tissues. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) demonstrated that TMP inhibited TNF-α, interleukin-1ß (IL-1ß), reactive oxygen species (ROS), and malondialdehyde (MDA) expression and enhanced superoxide dismutase (SOD) expression. Histopathological observation and behavior assessments showed that TMP improved morphology and motor function. In conclusion, TMP inhibits inflammatory response and oxidative stress, thereby exerting a neuroprotective effect that may be related to the regulation of the TNFR1/IκB-α/NF-κB p65 signaling pathway.


Assuntos
NF-kappa B , Pirazinas , Traumatismos da Medula Espinal , Animais , Ratos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Pirazinas/farmacologia , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Yonsei Med J ; 65(4): 241-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515362

RESUMO

Tumor necrosis factor receptor-associated periodic syndrome (TRAPS, OMIM: #142680) is a rare autoinflammatory disease (AID) with recurrent febrile episodes. To our knowledge, we report herein the first case of a patient with TRAPS in South Korea whose symptoms included fever, arthralgia, abdominal pain, rash, myalgia, cough, and lymphadenopathy. A pathogenic de novo mutation, c.175T>C (p.Cys59Arg), in the tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) gene, was confirmed by gene sequencing. The patient has been with tocilizumab (an interleukin-6 inhibitor); tocilizumab administration every other week has completely alleviated the patient's symptoms. Our report further expands the clinical spectrum of patients with TRAPS and reaffirms the use of tocilizumab as a viable alternative treatment option for those patients who are unsatisfactorily responsive to other commonly used biologics, such as canakinumab, anakinra, infliximab, and etanercept. Furthermore, our report may aid in increasing awareness about the existence of mutation-confirmed TRAPS in South Korea in addition to emphasizing the importance of actively pursuing genetic testing to correctly diagnose rare AID.


Assuntos
Febre , Doenças Hereditárias Autoinflamatórias , Humanos , Febre/complicações , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Mutação , Etanercepte/uso terapêutico
16.
Front Immunol ; 15: 1354836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404573

RESUMO

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Assuntos
Doença Granulomatosa Crônica , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Doença Granulomatosa Crônica/terapia , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Nat Commun ; 15(1): 1282, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346956

RESUMO

TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases.


Assuntos
Colite , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Intestinos/patologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Apoptose , Colite/patologia , Inflamação/patologia , Fatores de Despolimerização de Actina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
18.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339126

RESUMO

Borna disease virus 1 (BoDV1) causes a persistent infection in the mammalian brain. Peroxisomes and mitochondria play essential roles in the cellular antiviral immune response, but the effect of BoDV1 infection on peroxisomal and mitochondrial dynamics and their respective antioxidant capacities is still not clear. Using different mouse lines-i.e., tumor necrosis factor-α transgenic (TNFTg; to pro-inflammatory status), TNF receptor-1 knockout (TNFR1ko), and TNFR2ko mice in comparison to wild-type (Wt) mice-we analyzed the abundances of both organelles and their main antioxidant enzymes, catalase and superoxide dismutase 2 (SOD2), in neurons of the hippocampal, cerebral, and cerebellar cortices. In TNFTg mice, a strong increase in mitochondrial (6.9-fold) and SOD2 (12.1-fold) abundances was detected; meanwhile, peroxisomal abundance increased slightly (1.5-fold), but that of catalase decreased (2.9-fold). After BoDV1 infection, a strong decrease in mitochondrial (2.1-6.5-fold), SOD2 (2.7-9.1-fold), and catalase (2.7-10.3-fold) abundances, but a slight increase in peroxisomes (1.3-1.6-fold), were detected in Wt and TNFR2ko mice, whereas no changes occurred in TNFR1ko mice. Our data suggest that the TNF system plays a crucial role in the biogenesis of both subcellular organelles. Moreover, TNFR1 signaling mediated the changes in peroxisomal and mitochondrial dynamics after BoDV1 infection, highlighting new mechanisms by which BoDV1 may achieve immune evasion and viral persistence.


Assuntos
Vírus da Doença de Borna , Receptores Tipo I de Fatores de Necrose Tumoral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/fisiologia , Catalase/genética , Antioxidantes , Dinâmica Mitocondrial , Camundongos Knockout , Neurônios , Camundongos Endogâmicos C57BL , Mamíferos
19.
Cancer Biomark ; 39(4): 299-312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250759

RESUMO

BACKGROUND: Osteosarcoma (OS) is a relatively rare malignant bone tumor in teenagers; however, its molecular mechanisms are not yet understood comprehensively. OBJECTIVE: The study aimed to use necroptosis-related genes (NRGs) and their relationships with immune-related genes to construct a prognostic signature for OS. METHODS: TARGET-OS was used as the training dataset, and GSE 16091 and GSE 21257 were used as the validation datasets. Univariate regression, survival analysis, and Kaplan-Meier curves were used to screen for hub genes. The immune-related targets were screened using immune infiltration assays and immune checkpoints. The results were validated using nomogram and decision curve analyses (DCA). RESULTS: Using univariate Cox regression analysis, TNFRSF1A was screened from 14 NRGs as an OS prognostic signature. Functional enrichment was analyzed based on the median expression of TNFRSF1A. The prognosis of the TNFRSF1A low-expression group in the Kaplan-Meier curve was notably worse. Immunohistochemistry analysis showed that the number of activated T cells and tumor purity increased considerably. Furthermore, the immune checkpoint lymphocyte activation gene 3 (LAG-3) is a possible target for intervention. The nomogram accurately predicted 1-, 3-, and 5-year survival rates. DCA validated the model (C = 0.669). Conclusion: TNFRSF1A can be used to elucidate the potential relationship between the immune microenvironment and NRGs in OS pathogenesis.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas , Osteossarcoma , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Osteossarcoma/genética , Osteossarcoma/mortalidade , Osteossarcoma/imunologia , Osteossarcoma/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/imunologia , Prognóstico , Feminino , Masculino , Nomogramas , Adolescente , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
20.
J Biomed Sci ; 30(1): 93, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037106

RESUMO

BACKGROUND: Patients with metastatic triple-negative breast cancer (mTNBC) have a higher probability of developing visceral metastasis within 5 years after the initial diagnosis. Therefore, a deeper understanding of the progression and spread of mTNBC is urgently needed. METHODS: The isobaric tag for relative and absolute quantitation (iTRAQ)-based LC-MS/MS proteomic approach was applied to identify novel membrane-associated proteins in the lung-tropic metastatic cells. Public domain datasets were used to assess the clinical relevance of the candidate proteins. Cell-based and mouse models were used for biochemical and functional characterization of the protein molecule Sciellin (SCEL) identified by iTRAQ to elucidate its role and underlying mechanism in promoting lung colonization of TNBC cells. RESULTS: The iTRAQ-based LC-MS/MS proteomic approach identified a membrane-associated protein SCEL that was overexpressed in the lung-tropic metastatic cells, and its high expression was significantly correlated with the late-stage TNBC and the shorter survival of the patients. Downregulation of SCEL expression significantly impaired the 3D colony-forming ability but not the migration and invasion ability of the lung colonization (LC) cells. Knockdown of SCEL reduced TNF-α-induced activation of the NF-κB/c-FLIP pro-survival and Akt/Erk1/2 growth signaling pathways in the LC cells. Specifically, knockdown of SCEL expression switched TNF-α-mediated cell survival to the caspase 3-dependent apoptosis. Conversely, ectopic expression of SCEL promoted TNF-α-induced activation of NF-κB/c-FLIP pro-survival and Akt/Erk1/2 pro-growth signaling pathway. The result of co-immunoprecipitation (Co-IP) and GST pull-down assay showed that SCEL could interact with TNFR1 to promote its protein stability. The xenograft mouse model experiments revealed that knockdown of SCEL resulted in increase of caspase-3 activity, and decrease of ki67 and TNFR1 expression as well as increase of tumor-associated macrophages in the metastatic lung lesions. Clinically, SCEL expression was found to be positively correlated with TNFR1 in TNBC tissues. Lastly, we showed that blocking TNF-α-mediated cell survival signaling by adalimumab effectively suppressed the lung colonization of the SCEL-positive, but not the SCEL-downregulated LC cells in the tail-vein injection model. CONCLUSIONS: Our findings indicate that SCEL plays an essential role in the metastatic lung colonization of TNBC by promoting the TNF-α/TNFR1/NF-κB/c-FLIP survival and Akt/Erk1/2 proliferation signaling. Thus, SCEL may serve as a biomarker for adalimumab treatment of TNBC patients.


Assuntos
NF-kappa B , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adalimumab/metabolismo , Adalimumab/farmacologia , Cromatografia Líquida , Proteômica , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Apoptose/genética , Pulmão/metabolismo , Proteínas de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...