Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.557
Filtrar
1.
Cell Biol Toxicol ; 40(1): 71, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147926

RESUMO

The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.


Assuntos
Cocaína , DNA Mitocondrial , Hipuratos , Hepatopatias Alcoólicas , Proteínas de Membrana , Transdução de Sinais , Animais , Cocaína/farmacologia , Cocaína/toxicidade , Transdução de Sinais/efeitos dos fármacos , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Camundongos , Hipuratos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Etanol/toxicidade , Camundongos Endogâmicos C57BL , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
3.
Cell Death Dis ; 15(7): 479, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965211

RESUMO

TLR4 and TNFR1 signalling promotes potent proinflammatory signal transduction events, thus, are often hijacked by pathogenic microorganisms. We recently reported that myeloid cells retaliate Yersinia blockade of TAK1/IKK signalling by triggering RIPK1-dependent caspase-8 activation that promotes downstream GSDMD and GSDME-mediated pyroptosis in macrophages and neutrophils respectively. However, the upstream signalling events for RIPK1 activation in these cells are not well defined. Here, we demonstrate that unlike in macrophages, RIPK1-driven pyroptosis and cytokine priming in neutrophils are driven through TNFR1 signalling, while TLR4-TRIF signalling is dispensable. Furthermore, we demonstrate that activation of RIPK1-dependent pyroptosis in neutrophils during Yersinia infection requires IFN-γ priming, which serves to induce surface TNFR1 expression and amplify soluble TNF secretion. In contrast, macrophages utilise both TNFR1 and TLR4-TRIF signalling to trigger cell death, but only require TRIF but not autocrine TNFR1 for cytokine production. Together, these data highlight the emerging theme of cell type-specific regulation in cell death and immune signalling in myeloid cells.


Assuntos
Macrófagos , Neutrófilos , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais , Receptor 4 Toll-Like , Macrófagos/metabolismo , Neutrófilos/metabolismo , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Camundongos , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Camundongos Knockout
4.
Int Immunopharmacol ; 139: 112676, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39053230

RESUMO

Accumulation of alpha-synuclein (α-syn) is a key pathological hallmark of synucleinopathies and has been shown to negatively impact neuronal function and activity. α-syn is an important factor contributing to astrocyte overactivation, though the effect of astrocyte overactivation on neurons remains unclear. Single-cell RNA sequencing data of mouse brain frontal cortex and midbrain from Hua-Syn (A53T) and wild type mice were utilized from the GEO database. Enrichment analysis, protein-protein interaction networks, and cell-cell interaction networks all indicated enhanced communication between astrocytes and neurons, along with the involvement of TNF and inflammation-related signaling pathways. In vitro experiments were performed to further explore the mechanism of neurotoxicity in astrocyte-neuron crosstalk. Astrocytes were treated by α-syn, neuronal TNFR1 receptors were antagonized by R-7050, and the cells were co-cultured after 24 h treatment. ELISA results revealed that cytokines such as TNF-α and IL-6 were significantly upregulated in astrocytes following the endocytosis of α-syn. Immunofluorescence (IF) showed neuronal dendritic reduction, axon elongation and increased co-localisation of TNFR1 receptor expression. Western blot showed up-regulation of PKR, P-eIF2α and ATF4 protein expression. Conversely, after antagonizing neuronal TNFR1 receptors with the R-7050 chemical inhibitor, neuronal synaptic structure was significantly restored and the expression of PKR, P-eIF2α and ATF4 was down-regulated. In summary, TNF-α acts as a signaling molecule mediating the up-regulated astrocyte-neuron crosstalk, providing new insights into the pathogenesis of α-syn-related neurological disorders.


Assuntos
Astrócitos , Comunicação Celular , Neurônios , Receptores Tipo I de Fatores de Necrose Tumoral , Análise de Célula Única , alfa-Sinucleína , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Técnicas de Cocultura , Células Cultivadas , Análise de Sequência de RNA , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Camundongos Transgênicos
5.
J Ethnopharmacol ; 334: 118579, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39025165

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dingxian Pill (DXP), a famous traditional Chinese medicine prescription, and has been widely proven to have positive therapeutic effects on "Xianzheng" (the name of epilepsy in ancient China). However, the anti-epileptic molecular mechanisms of DXP are not yet fully understood and remain to be further investigated. AIM OF THE STUDY: To elucidate the molecular mechanism of DXP's improvement in epileptic neuronal loss, damage and apoptosis by regulating TNF-α/TNFR1 signaling pathway. MATERIALS AND METHODS: Sixty Kunming mice were randomly divided in 6 groups: control group (equal volume of normal saline), model group (180 mg kg-1 pilocarpine hydrochloride - used to establish the epilepsy animal model), carbamazepine group (30 mg kg-1), and low, medium, and high-dose Dingxian Pill groups (4.08, 8.16, and 16.32 g kg-1, respectively - oral administration once daily for 2 weeks). Successful establishment of the epileptic mouse model was monitored with electroencephalography. Pathological changes in hippocampal tissue were analyzed with hematoxylin-eosin staining. Hippocampal neuronal apoptosis was analyzed with TUNEL staining. TNF-α, TNFR1, TRADD, FADD, and caspase-8 mRNA and protein expression levels in hippocampal tissue were analyzed with real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot, respectively. Cleaved caspase-8 protein levels in hippocampal tissue were measured with immunohistochemistry and Western blot. RESULTS: Compared to control, the model group showed an increase in continuous epileptic discharge waves on EEG, a damaged hippocampal neuron morphological structure, increased hippocampal neuronal apoptosis, and significantly increased TNF-α, TNFR1, TRADD, FADD, and caspase-8 mRNA and protein levels, and increased caspase-8 cleavage (P < 0.05). Compared to the model group, the carbamazepine group as well as the low-, medium-, and high-dose Dingxian Pill groups showed decreased epileptic discharges on EEG, an obvious hippocampal neuron morphological structure restoration, varying degrees of attenuated hippocampal neuronal apoptosis, and significantly decreased TNF-α, TNFR1, TRADD, FADD, and caspase-8 mRNA and protein levels as well as decreased caspase-8 cleavage (P < 0.05). CONCLUSIONS: Dingxian Pill exerts an anti-epileptic effect through inhibition of TNF-α/TNFR1 signaling pathway-mediated apoptosis in hippocampal neurons.


Assuntos
Anticonvulsivantes , Apoptose , Medicamentos de Ervas Chinesas , Epilepsia , Hipocampo , Neurônios , Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais , Fator de Necrose Tumoral alfa , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Apoptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Epilepsia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Camundongos , Anticonvulsivantes/farmacologia , Pilocarpina/toxicidade , Modelos Animais de Doenças , Animais não Endogâmicos
6.
Nature ; 632(8024): 419-428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020166

RESUMO

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Transformação Celular Neoplásica , Evolução Clonal , Células Clonais , Análise de Célula Única , Fatores de Necrose Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Evolução Clonal/genética , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Mutação , Invasividade Neoplásica/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Comunicação Autócrina , Análise de Sobrevida
7.
J Neuroinflammation ; 21(1): 179, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044282

RESUMO

BACKGROUND: Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS: A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS: TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION: These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.


Assuntos
Craniotomia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Estafilocócicas , Staphylococcus aureus , Fator de Necrose Tumoral alfa , Animais , Camundongos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Leucócitos/metabolismo , Modelos Animais de Doenças , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo
8.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943486

RESUMO

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Assuntos
Espinhas Dendríticas , Giro Denteado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Espinhas Dendríticas/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Giro Denteado/metabolismo , Giro Denteado/citologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Neurônios/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência
9.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928339

RESUMO

Receptors of cytokines are major regulators of the immune response. In this work, we have discovered two new ligands that can activate the TNFR1 (tumor necrosis factor receptor 1) receptor. Earlier, we found that the peptide of the Tag (PGLYRP1) protein designated 17.1 can interact with the TNFR1 receptor. Here, we have found that the Mts1 (S100A4) protein interacts with this peptide with a high affinity (Kd = 1.28 × 10-8 M), and that this complex is cytotoxic to cancer cells that have the TNFR1 receptor on their surface. This complex induces both apoptosis and necroptosis in cancer cells with the involvement of mitochondria and lysosomes in cell death signal transduction. Moreover, we have succeeded in locating the Mts1 fragment that is responsible for protein-peptide interaction, which highly specifically interacts with the Tag7 protein (Kd = 2.96 nM). The isolated Mts1 peptide M7 also forms a complex with 17.1, and this peptide-peptide complex also induces the TNFR1 receptor-dependent cell death. Molecular docking and molecular dynamics experiments show the amino acids involved in peptide binding and that may be used for peptidomimetics' development. Thus, two new cytotoxic complexes were created that were able to induce the death of tumor cells via the TNFR1 receptor. These results may be used in therapy for both cancer and autoimmune diseases.


Assuntos
Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/química , Apoptose/efeitos dos fármacos , Ligação Proteica , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Simulação de Dinâmica Molecular , Transdução de Sinais/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Citocinas
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167315, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897255

RESUMO

Anti-ganglioside antibodies (anti-Gg Abs) have been linked to delayed/poor clinical recovery in both axonal and demyelinating forms of Guillain-Barrè Syndrome (GBS). In many instances, the incomplete recovery is attributed to the peripheral nervous system's failure to regenerate. The cross-linking of cell surface gangliosides by anti-Gg Abs triggers inhibition of nerve repair in both in vitro and in vivo axon regeneration paradigms. This mechanism involves the activation of the small GTPase RhoA, which negatively modulates the growth cone cytoskeleton. At present, the identity/es of the receptor/s responsible for transducing the signal that ultimately leads to RhoA activation remains poorly understood. The aim of this work was to identify the transducer molecule responsible for the inhibitory effect of anti-Gg Abs on nerve repair. Putative candidate molecules were identified through proteomic mass spectrometry of ganglioside affinity-captured proteins from rat cerebellar granule neurons (Prendergast et al., 2014). These candidates were evaluated using an in vitro model of neurite outgrowth with primary cultured dorsal root ganglion neurons (DRGn) and an in vivo model of axon regeneration. Using an shRNA-strategy to silence putative candidates on DRGn, we identified tumor necrosis factor receptor 1A protein (TNFR1A) as a transducer molecule for the inhibitory effect on neurite outgrowth from rat/mouse DRGn cultures of a well characterized mAb targeting the related gangliosides GD1a and GT1b. Interestingly, lack of TNFr1A expression on DRGn abolished the inhibitory effect on neurite outgrowth caused by anti-GD1a but not anti-GT1b specific mAbs, suggesting specificity of GD1a/transducer signaling. Similar results were obtained using primary DRGn cultures from TNFR1a-null mice, which did not activate RhoA after exposure to anti-GD1a mAbs. Generation of single point mutants at the stalk region of TNFR1A identified a critical amino acid for transducing GD1a signaling, suggesting a direct interaction. Finally, passive immunization with an anti-GD1a/GT1b mAb in an in vivo model of axon regeneration exhibited reduced inhibitory activity in TNFR1a-null mice compared to wild type mice. In conclusion, these findings identify TNFR1A as a novel transducer receptor for the inhibitory effect exerted by anti-GD1a Abs on nerve repair, representing a significant step forward toward understanding the factors contributing to poor clinical recovery in GBS associated with anti-Gg Abs.


Assuntos
Axônios , Gangliosídeos , Imunoglobulina G , Regeneração Nervosa , Receptores Tipo I de Fatores de Necrose Tumoral , Proteína rhoA de Ligação ao GTP , Animais , Camundongos , Ratos , Axônios/metabolismo , Axônios/imunologia , Células Cultivadas , Gangliosídeos/metabolismo , Gangliosídeos/imunologia , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Camundongos Knockout , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/imunologia , Transdução de Sinais
11.
Cell Death Differ ; 31(7): 938-953, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849574

RESUMO

Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.


Assuntos
Apoptose , Caspase 8 , Inflamação , Queratinócitos , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Caspase 8/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Queratinócitos/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Transdução de Sinais , Humanos , Proteínas Quinases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Cell Death Differ ; 31(6): 820-832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734851

RESUMO

The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of Ripk1 in conventional T cells (Ripk1ΔCD4) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4+, naive CD8+, and FoxP3+ regulatory T cells. Interestingly, peripheral naive CD8+ T cells in Ripk1ΔCD4 mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4+ T cells. Ripk1K45A mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of Ripk1ΔCD4 naive T cells expressed the proliferation marker Ki-67+ despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore, Ripk1ΔCD4Casp8 ΔCD4 and Ripk1ΔCD4Tnfr1-/- double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4+ and CD8+ cells and FoxP3+ regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.


Assuntos
Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Receptores Tipo I de Fatores de Necrose Tumoral , Linfócitos T Reguladores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Camundongos Knockout , Caspase 8/metabolismo , Linfopenia/patologia , Linfopenia/imunologia
13.
Am J Hypertens ; 37(9): 717-725, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38780971

RESUMO

BACKGROUND: High salt (HS) intake induces an augmented hypertensive response to nitric oxide (NO) inhibition, though it causes minimal changes in blood pressure (BP) in NO intact condition. The cause of such augmentation is not known. HS induces tumor necrosis factor-alpha (TNFα) production that causes natriuresis via activation of its receptor type 1 (TNFR1). We hypothesized that NO deficiency reduces renal TNFR1 activity, leading to enhanced sodium retention and hypertension. METHODS: We examined the changes in renal TNFR1 protein expression (Immunohistochemistry analyses) after HS (4% NaCl) intake in wild-type mice (WT, C57BL6) treated with a NO synthase (NOS) inhibitor, nitro-l-arginine methyl ester (L-NAME; 0.05 mg/min/g; osmotic mini-pump), as well as in endothelial NOS knockout mice (eNOSKO) and compared the responses in WT mice with normal salt (NS; 0.3% NaCl) intake. BP was measured with tail-cuff plethysmography and 24-hour urine collections were made using metabolic cages. RESULTS: HS alone did not alter mean BP in untreated mice (76 ±â€…3 to 77 ±â€…1 mm Hg) but induced an augmented response in L-NAME treated (106 ±â€…1 vs. 97 ±â€…2 mm Hg) and in eNOSKO (107 ±â€…2 vs. 89 ±â€…3 mm Hg) mice. The percentage area of TNFR1 expression in renal tissue was higher in WT + HS (4.1 + 0.5%) than in WT + NS mice (2.7 ±â€…0.6%). However, TNFR1 expression was significantly lower in L-NAME treated WT + NS (0.9 ±â€…0.1%) and in eNOSKO + NS (1.4 ±â€…0.2%) than in both WT + NS and WT + HS mice. CONCLUSIONS: These data indicate that TNFR1 activity is downregulated in NO deficient conditions, which facilitates salt retention leading to augmented hypertension during HS intake.


Assuntos
Hipertensão , Rim , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster , Óxido Nítrico , Receptores Tipo I de Fatores de Necrose Tumoral , Cloreto de Sódio na Dieta , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Camundongos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Masculino , Pressão Sanguínea/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Immunity ; 57(7): 1497-1513.e6, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38744293

RESUMO

RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in Ripk1R588E/R588E cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Inflamação , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Inflamação/metabolismo , Inflamação/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Morte Celular , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Domínios Proteicos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Apoptose , Mutação , Proteína de Domínio de Morte Associada a Receptor de TNF
15.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675685

RESUMO

Alantolactone is a eudesmane-type sesquiterpene lactone containing an α-methylene-γ-lactone moiety. Previous studies showed that alantolactone inhibits the nuclear factor κB (NF-κB) signaling pathway by targeting the inhibitor of NF-κB (IκB) kinase. However, in the present study, we demonstrated that alantolactone selectively down-regulated the expression of tumor necrosis factor (TNF) receptor 1 (TNF-R1) in human lung adenocarcinoma A549 cells. Alantolactone did not affect the expression of three adaptor proteins recruited to TNF-R1. The down-regulation of TNF-R1 expression by alantolactone was suppressed by an inhibitor of TNF-α-converting enzyme. Alantolactone increased the soluble forms of TNF-R1 that were released into the culture medium as an ectodomain. The structure-activity relationship of eight eudesmane derivatives revealed that an α-methylene-γ-lactone moiety was needed to promote TNF-R1 ectodomain shedding. In addition, parthenolide and costunolide, two sesquiterpene lactones with an α-methylene-γ-lactone moiety, increased the amount of soluble TNF-R1. Therefore, the present results demonstrate that sesquiterpene lactones with an α-methylene-γ-lactone moiety can down-regulate the expression of TNF-R1 by promoting its ectodomain shedding in A549 cells.


Assuntos
Regulação para Baixo , Lactonas , Receptores Tipo I de Fatores de Necrose Tumoral , Sesquiterpenos , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Brain Behav Immun ; 119: 261-271, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570102

RESUMO

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.


Assuntos
Dor Crônica , Estrogênios , Neuralgia , Neurônios , Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais , Animais , Neuralgia/metabolismo , Masculino , Feminino , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Neurônios/metabolismo , Dor Crônica/metabolismo , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hiperalgesia/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell Death Differ ; 31(5): 672-682, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548850

RESUMO

Necroptosis is a lytic form of cell death that is mediated by the kinase RIPK3 and the pseudokinase MLKL when caspase-8 is inhibited downstream of death receptors, toll-like receptor 3 (TLR3), TLR4, and the intracellular Z-form nucleic acid sensor ZBP1. Oligomerization and activation of RIPK3 is driven by interactions with the kinase RIPK1, the TLR adaptor TRIF, or ZBP1. In this study, we use immunohistochemistry (IHC) and in situ hybridization (ISH) assays to generate a tissue atlas characterizing RIPK1, RIPK3, Mlkl, and ZBP1 expression in mouse tissues. RIPK1, RIPK3, and Mlkl were co-expressed in most immune cell populations, endothelial cells, and many barrier epithelia. ZBP1 was expressed in many immune populations, but had more variable expression in epithelia compared to RIPK1, RIPK3, and Mlkl. Intriguingly, expression of ZBP1 was elevated in Casp8-/- Tnfr1-/- embryos prior to their succumbing to aberrant necroptosis around embryonic day 15 (E15). ZBP1 contributed to this embryonic lethality because rare Casp8-/- Tnfr1-/- Zbp1-/- mice survived until after birth. Necroptosis mediated by TRIF contributed to the demise of Casp8-/- Tnfr1-/- Zbp1-/- pups in the perinatal period. Of note, Casp8-/- Tnfr1-/- Trif-/- Zbp1-/- mice exhibited autoinflammation and morbidity, typically within 5-7 weeks of being born, which is not seen in Casp8-/- Ripk1-/- Trif-/- Zbp1-/-, Casp8-/- Ripk3-/-, or Casp8-/- Mlkl-/- mice. Therefore, after birth, loss of caspase-8 probably unleashes RIPK1-dependent necroptosis driven by death receptors other than TNFR1.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Caspase 8 , Camundongos Knockout , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Caspase 8/metabolismo , Caspase 8/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
18.
Cell Death Dis ; 15(3): 202, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467621

RESUMO

Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Apoptose
19.
Front Immunol ; 15: 1354836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404573

RESUMO

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Assuntos
Doença Granulomatosa Crônica , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Doença Granulomatosa Crônica/terapia , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Front Immunol ; 15: 1340013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384465

RESUMO

Background: Neurological dysfunction and glial activation are common in severe infections such as sepsis. There is a sexual dimorphism in the response to systemic inflammation in both patients and animal models, but there are few comparative studies. Here, we investigate the effect of systemic inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) on the retina of male and female mice and determine whether antagonism of the NLRP3 inflammasome and the extrinsic pathway of apoptosis have protective effects on the retina. Methods: A single intraperitoneal injection of LPS (5 mg/kg) was administered to two months old C57BL/6J male and female mice. Retinas were examined longitudinally in vivo using electroretinography and spectral domain optical coherence tomography. Retinal ganglion cell (RGC) survival and microglial activation were analysed in flat-mounts. Retinal extracts were used for flow cytometric analysis of CD45 and CD11b positive cells. Matched plasma and retinal levels of proinflammatory cytokines were measured by ELISA. Retinal function and RGC survival were assessed in animals treated with P2X7R and TNFR1 antagonists alone or in combination. Results: In LPS-treated animals of both sexes, there was transient retinal dysfunction, loss of vision-forming but not non-vision forming RGCs, retinal swelling, microglial activation, cell infiltration, and increases in TNF and IL-1ß. Compared to females, males showed higher vision-forming RGC death, slower functional recovery, and overexpression of lymphotoxin alpha in their retinas. P2X7R and TNFR1 antagonism, alone or in combination, rescued vision-forming RGCs. P2X7R antagonism also rescued retinal function. Response to treatment was better in females than in males. Conclusions: Systemic LPS has neuronal and sex-specific adverse effects in the mouse retina, which are counteracted by targeting the NLRP3 inflammasome and the extrinsic pathway of apoptosis. Our results highlight the need to analyse males and females in preclinical studies of inflammatory diseases affecting the central nervous system.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...