Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.793
Filtrar
1.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943486

RESUMO

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Assuntos
Espinhas Dendríticas , Giro Denteado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Espinhas Dendríticas/metabolismo , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Giro Denteado/metabolismo , Giro Denteado/citologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Neurônios/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência
2.
J Infect Dev Ctries ; 18(5): 770-778, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865403

RESUMO

INTRODUCTION: Studies in different populations have shown that single-nucleotide polymorphisms (SNPs) of tumor necrosis factor-alpha (TNFα) and TNF receptors 1 and 2 (TNFR1 and TNFR2) may be involved in the pathogenesis of lepromatous leprosy (LL). To further explore the results in a Mexican population, we compared the frequencies of the polymorphisms in - 308 G>A TNFA (rs1800629), - 383 A>C TNFRS1A (rs2234649), and + 196 T >G TNFSR1B (rs1061622) genes in LL patients (n = 133) and healthy subjects (n = 198). METHODOLOGY: The genotyping was performed with the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) technique. Statistical analysis was performed using the χ2 test, within the 95% confidence interval. Odds ratios (OR) were calculated and Hardy-Weinberg equilibrium was verified for all control subjects and patients. RESULTS: We found an association between the TNFSR1 -383 A>C genotype and the risk of lepromatous leprosy when leprosy patients were compared to controls (OR = 1.71, CI: 1.08-2.69, p = 0.02). Furthermore, it was also associated with the risk of LL in a dominant model (AC + CC vs AA, OR: 1.65, 95% CI: 1.05-2.057, p = 0.02). Similar genotype and allele frequencies for the SNPs TNFA - 308 G>A and TNFSR2 + 196 T>G were observed between leprosy patients and healthy subjects. CONCLUSIONS: The TNFSR1 -383 A>C could be a potential marker for the identification of high-risk populations. However, additional studies, using larger samples of different ethnic populations, are required.


Assuntos
Predisposição Genética para Doença , Hanseníase Virchowiana , Polimorfismo de Nucleotídeo Único , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , México , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Hanseníase Virchowiana/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Adulto Jovem , Idoso , Frequência do Gene , Polimorfismo de Fragmento de Restrição , Estudos de Casos e Controles , Genótipo , Adolescente , Reação em Cadeia da Polimerase
3.
Arch Pharm Res ; 47(5): 465-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38734854

RESUMO

Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME.


Assuntos
Neoplasias da Mama , Células Epiteliais , Receptores ErbB , Fenótipo , Receptores Tipo II do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores ErbB/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Movimento Celular/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Microambiente Tumoral , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral
4.
J Transl Med ; 22(1): 407, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689292

RESUMO

BACKGROUND AND OBJECTIVE: Progranulin (PGRN), a multifunctional growth factor, plays indispensable roles in the regulation of cancer, inflammation, metabolic diseases, and neurodegenerative diseases. Nevertheless, its immune regulatory role in periodontitis is insufficiently understood. This study attempts to explore the regulatory effects of PGRN on macrophage polarization in periodontitis microenvironment. METHODS: Immunohistochemical (IHC) and multiplex immunohistochemical (mIHC) stainings were performed to evaluate the expression of macrophage-related markers and PGRN in gingival samples from periodontally healthy subjects and periodontitis subjects. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were polarized towards M1 or M2 macrophages by the addition of LPS or IL-4, respectively, and were treated with or without PGRN. Real-time fluorescence quantitative PCR (qRT-PCR), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), and flow cytometry were used to determine the expressions of M1 and M2 macrophage-related markers. Co-immunoprecipitation was performed to detect the interaction between PGRN and tumor necrosis factor receptor 2 (TNFR2). Neutralizing antibody was used to block TNFR2 to confirm the role of TNFR2 in PGRN-mediated macrophage polarization. RESULTS: The IHC and mIHC staining of human gingival slices showed a significant accumulation of macrophages in the microenvironment of periodontitis, with increased expressions of both M1 and M2 macrophage markers. Meanwhile, PGRN was widely expressed in the gingival tissue of periodontitis and co-expressed mainly with M2 macrophages. In vitro experiments showed that in RAW264.7 cells and BMDMs, M1 markers (CD86, TNF-α, iNOS, and IL-6) substantially decreased and M2 markers (CD206, IL-10, and Arg-1) significantly increased when PGRN was applied to LPS-stimulated macrophages relatively to LPS stimulation alone. Besides, PGRN synergistically promoted IL-4-induced M2 markers expression, such as CD206, IL-10, and Arg1. In addition, the co-immunoprecipitation result showed the direct interaction of PGRN with TNFR2. mIHC staining further revealed the co-localization of PGRN and TNFR2 on M2 macrophages (CD206+). Blocking TNFR2 inhibited the regulation role of PGRN on macrophage M2 polarization. CONCLUSIONS: In summary, PGRN promotes macrophage M2 polarization through binding to TNFR2 in both pro- and anti-inflammatory periodontal microenvironments.


Assuntos
Polaridade Celular , Macrófagos , Periodontite , Progranulinas , Receptores Tipo II do Fator de Necrose Tumoral , Periodontite/metabolismo , Periodontite/patologia , Macrófagos/metabolismo , Humanos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Progranulinas/metabolismo , Camundongos , Células RAW 264.7 , Gengiva/metabolismo , Gengiva/patologia , Masculino , Feminino , Adulto , Ativação de Macrófagos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
5.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592583

RESUMO

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias Pulmonares , Camundongos Knockout , Receptor trkB , Receptores Tipo II do Fator de Necrose Tumoral , Esquizofrenia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
6.
Am J Pathol ; 194(7): 1374-1387, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537932

RESUMO

Clear-cell renal cell carcinoma (ccRCC), a tubular epithelial malignancy, secretes tumor necrosis factor (TNF), which signals ccRCC cells in an autocrine manner via two cell surface receptors, TNFR1 and TNFR2, to activate shared and distinct signaling pathways. Selective ligation of TNFR2 drives cell cycle entry of malignant cells via a signaling pathway involving epithelial tyrosine kinase, vascular endothelial cell growth factor receptor type 2, phosphatidylinositol-3-kinase, Akt, pSer727-Stat3, and mammalian target of rapamycin. In this study, phosphorylated 4E binding protein-1 (4EBP1) serine 65 (pSer65-4EBP1) was identified as a downstream target of this TNFR2 signaling pathway. pSer65-4EBP1 expression was significantly elevated relative to total 4EBP1 in ccRCC tissue compared with that in normal kidneys, with signal intensity increasing with malignant grade. Selective ligation of TNFR2 with the TNFR2-specific mutein increased pSer65-4EBP1 expression in organ cultures that co-localized with internalized TNFR2 in mitochondria and increased expression of mitochondrially encoded COX (cytochrome c oxidase subunit) Cox1, as well as nuclear-encoded Cox4/5b subunits. Pharmacologic inhibition of mammalian target of rapamycin reduced both TNFR2-specific mutein-mediated phosphorylation of 4EBP1 and cell cycle activation in tumor cells while increasing cell death. These results signify the importance of pSer65-4EBP1 in mediating TNFR2-driven cell-cycle entry in tumor cells in ccRCC and implicate a novel relationship between the TNFR2/pSer65-4EBP1/COX axis and mitochondrial function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma de Células Renais , Proteínas de Ciclo Celular , Proliferação de Células , Neoplasias Renais , Mitocôndrias , Receptores Tipo II do Fator de Necrose Tumoral , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética
7.
Cytokine ; 178: 156557, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452440

RESUMO

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.


Assuntos
Pólipos Nasais , Neoplasias , Rinite , Rinossinusite , Sinusite , Humanos , Linfócitos T Reguladores , Receptores Tipo II do Fator de Necrose Tumoral , Inflamação , Fator de Necrose Tumoral alfa , Doença Crônica , Microambiente Tumoral
8.
Oncoimmunology ; 13(1): 2326694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481728

RESUMO

Pancreatic cancer is characterized by extreme therapeutic resistance. In pancreatic cancers harboring high-risk genomes, we describe that cancer cell-neutrophil signaling circuitry provokes neutrophil-derived transmembrane (tm)TNF-TNFR2 interactions that dictate inflammatory polarization in cancer-associated fibroblasts and T-cell dysfunction - two hallmarks of therapeutic resistance. Targeting tmTNF-TNFR2 signaling may sensitize pancreatic cancer to chemo±immunotherapy.


Assuntos
Neoplasias Pancreáticas , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa , Transdução de Sinais
9.
J Nutr Health Aging ; 28(5): 100207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460316

RESUMO

OBJECTIVES: Age-related loss in muscle and cognitive function is common in older adults. Numerous studies have suggested that inflammation contributes to the decline in physical performance and increased frailty in older adults. We sought to investigate the relationship of inflammatory markers, including CRP, IL-6, IL-10, TNF-α, TNFR1, and TNFR2, with muscle and cognitive function in frail early-aging and non-frail late-aging older adults. DESIGN: Secondary analysis of a cross-sectional study. SETTINGS AND PARTICIPANTS: Two hundred community-dwelling older men and women were included. They had been recruited in two groups based on age and functional status: 100 early-agers (age 65-75, who had poor functional status, and more co-morbidities) and 100 late-agers (older than 75 years, who were healthier and had better functional status). MEASUREMENTS: We assessed CRP, IL-6, IL-10, TNF-α, TNFR1, TNFR2, grip strength, Short Physical Performance Battery (SPPB) score, and cognitive function. We used correlation coefficients, partial correlations, and regression modeling adjusted for age, BMI, gender, and exercise frequency. RESULTS: The mean age in the two groups were 70.4 and 83.2, respectively. In regression models adjusting for age, BMI, gender and exercise frequency, early-agers demonstrated significant associations between inflammatory markers and outcomes. Each mg/dl of CRP was associated with (regression coefficient ± standard error) -0.6 ± 0.2 kg in grip strength (p = 0.0023). Similarly, each pg/mL of TNF-α was associated with -1.4 ± 0.7 (p = 0.0454), each 500 pg/mL of TNFR1 was associated with -1.9 ± 0.6 (p = 0.0008), and each 500 pg/mL of TNFR2 was associated with -0.5 ± 0.2 (p = 0.0098) in grip strength. Each 500 pg/mL of TNFR1 was associated with -0.4 ± 0.2 point in SPPB (p = 0.0207) and each pg/mL in IL-10 with 0.2 ± 0.1 point in MoCA (p = 0.0475). In late-agers, no significant correlation was found between any of the inflammatory markers and functional outcomes. CONCLUSION: In early-agers with frailty and more co-morbidities, the inflammatory markers CRP, TNF-α, TNFR1, and TNFR2 were associated with grip strength, TNFR1 was correlated with physical performance, and IL-10 was correlated with cognitive function. However, in healthier late-agers, no relationship was found between inflammatory markers and muscle or cognitive function. Our findings suggest presence of a relationship between inflammation and loss of muscle performance and cognitive function in frailer and sicker individuals, regardless of their chronological age.


Assuntos
Envelhecimento , Biomarcadores , Proteína C-Reativa , Cognição , Força da Mão , Inflamação , Interleucina-10 , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Idoso , Masculino , Feminino , Cognição/fisiologia , Estudos Transversais , Biomarcadores/sangue , Inflamação/sangue , Força da Mão/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Interleucina-10/sangue , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Idoso Fragilizado/estatística & dados numéricos , Interleucina-6/sangue , Fragilidade/sangue , Músculo Esquelético , Vida Independente , Avaliação Geriátrica/métodos
10.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474115

RESUMO

Regulatory T lymphocytes play a critical role in immune regulation and are involved in the aberrant cell elimination by facilitating tumor necrosis factor connection to the TNFR2 receptor, encoded by the TNFRSF1B polymorphic gene. We aimed to examine the effects of single nucleotide variants TNFRSF1B c.587T>G, c.*188A>G, c.*215C>T, and c.*922C>T on the clinicopathological characteristics and survival of cutaneous melanoma (CM) patients. Patients were genotyped using RT-PCR. TNFRSF1B levels were measured using qPCR. Luciferase reporter assay evaluated the interaction of miR-96 and miR-1271 with the 3'-UTR of TNFRSF1B. The c.587TT genotype was more common in patients younger than 54 years old than in older patients. Patients with c.*922CT or TT, c.587TG or GG + c.*922CT or TT genotypes, as well as those with the haplotype TATT, presented a higher risk of tumor progression and death due to the disease effects. Individuals with the c.*922TT genotype had a higher TNFRSF1B expression than those with the CC genotype. miR-1271 had less efficient binding with the 3'-UTR of the T allele when compared with the C allele of the SNV c.*922C>T. Our findings, for the first time, demonstrate that TNFRSF1B c.587T>G and c.*922C>T variants can serve as independent prognostic factors in CM patients.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Idoso , Pessoa de Meia-Idade , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Genótipo , MicroRNAs/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
11.
Sci Rep ; 14(1): 7245, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538662

RESUMO

The association between serum tumor necrosis factor receptor (TNFRs: TNFR1, TNFR2) levels and estimated glomerular filtration rate (eGFR) observed in patients with diabetes has not been comprehensively tested in healthy subjects with normal kidney function. It also remains unclear whether TNFR levels differ by age and sex, and between healthy subjects and diabetics. We measured serum TNFR levels in 413 healthy subjects and 292 patients with type 2 diabetes. In healthy subjects, TNFR levels did not differ between men and women. Additionally, TNFR2, but not TNFR1, levels increased with age. In multivariate analysis, TNFR1 was associated only with cystatin C-based eGFR (eGFR-CysC), whereas TNFR2 was associated with systolic blood pressure in addition to eGFR-CysC. Both TNFRs were associated with lower eGFR (eGFR-Cys < 90 mL/min/1.73 m2) even after adjustment for relevant clinical factors. Upon combining healthy subjects and patients with diabetes, the presence of diabetes and elevated glycated hemoglobin level were significant factors in determining TNFR levels. TNFR levels were associated with eGFR-CysC, but were not affected by age and sex in healthy subjects with normal kidney function. TNFR levels in patients with diabetes appeared to be higher than in healthy subjects.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores Tipo II do Fator de Necrose Tumoral , Masculino , Humanos , Feminino , Receptores Tipo I de Fatores de Necrose Tumoral , Taxa de Filtração Glomerular/fisiologia , Diabetes Mellitus Tipo 2/patologia , Rim/patologia , Biomarcadores
12.
Clin Chim Acta ; 555: 117825, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331209

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) still has a high incidence of varying degrees of heart failure (HF). The aim of this study is to identify new molecular markers for predicting the severity of HF after AMI. METHODS: We analyzed demographic indicators, past medical history, clinical indicators, major adverse cardiac events (MACEs) and molecular markers in patients with different Killip classifications after AMI. Olink proteomics was used to explore new molecular markers for predicting different severity of HF after AMI. RESULTS: Neutrophil count was the independent risk factors for in-hospital MACEs. Nineteen differentially expressed proteins (DEPs) increased significantly with increasing Killip classification. Five DEPs were also found to have an AUC (95 % CI) value greater than 0.8: GDF-15, NT-pro BNP, TNF-R2, TNF-R1 and TFF3. CONCLUSIONS: Neutrophil count, GDF-15, TNF-R2, TNF-R1 and TFF3 were closely related to the Killip classification of HF after AMI, which suggests that the inflammatory response plays an important role in the severity of HF after AMI and that regulating inflammation might become a new target for controlling HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Fator 15 de Diferenciação de Crescimento , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral , Proteômica , Biomarcadores , Infarto do Miocárdio/diagnóstico , Insuficiência Cardíaca/diagnóstico
13.
Arthritis Res Ther ; 26(1): 53, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368390

RESUMO

BACKGROUND: Understanding of pain in osteoarthritis, its genesis, and perception is still in its early stages. Identification of precise ligand-receptor pairs that transduce pain and the cells and tissues in which they reside will elucidate new therapeutic approaches for pain management. Our recent studies had identified an inflammation-amplifying (Inf-A) cell population that is expanded in human OA cartilage and is distinctive in the expression of both IL1R1 and TNF-R2 receptors and active Jnk signaling cascade. METHODS: In this study, we have tested the function of the cartilage-resident IL1R1+TNF-R2+ Inf-A cells in OA. We have identified that the IL1R1+TNF-R2+ Inf-A cells expand in aged mice as well as after anterior cruciate ligament tear upon tibia loading and OA initiation in mice. We targeted and modulated the Jnk signaling cascade in InfA through competitive inhibition of Jnk signaling in mice and human OA explants and tested the effects on joint structure and gait in mice. RESULTS: Modulation of Jnk signaling led to attenuation of inflammatory cytokines CCL2 and CCL7 without showing any structural improvements in the joint architecture. Interestingly, Jnk inhibition and lowered CCL2 and 7 are sufficient to significantly improve the gait parameters in treated PTOA mice demonstrating reduced OA-associated pain. Consistent with the mice data, treatment with JNK inhibitor did not improve human OA cartilage explants. CONCLUSION: These studies demonstrate that Inf-A, an articular-cartilage resident cell population, contributes to pain in OA via secretion of CCL2 and 7 and can be targeted via inhibition of Jnk signaling.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Modelos Animais de Doenças , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Dor/etiologia , Dor/metabolismo , Inflamação/metabolismo
14.
Cytokine ; 177: 156542, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38364458

RESUMO

The COVID-19 patients showed hyperinflammatory response depending on the severity of the disease but little have been reported about this response in oncologic patients that also were infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sixty-five circulating cytokines/chemokines were quantified in 15 oncologic patients, just after SARS-CoV-2 infection and fourteen days later, and their levels were compared in patients who required hospitalisation by COVID-19 versus non-hospitalised patients. A higher median age of 72 years (range 61-83) in oncologic patients after SARS-CoV-2 infection was associated with hospitalisation requirement by COVID-19 versus a median age of 49 years (20-75) observed in the non-hospitalised oncologic patients (p = 0.008). Moreover, oncologic patients at metastatic stage or with lung cancer were significantly associated with hospitalisation by COVID-19 (p = 0.044). None of these hospitalised patients required ICU treatment. Higher basal levels of tumour necrosis factor receptor II (TNF-RII), interferon-γ (IFNγ)-induced protein 10 (IP-10) and hepatocyte growth factor (HGF) in plasma were significantly observed in oncologic patients who required hospitalisation by COVID-19. Higher TNF-RII, IP-10 and HGF levels after the SARS-CoV-2 infection in oncologic patients could be used as biomarkers of COVID-19 severity associated with hospitalisation requirements.


Assuntos
COVID-19 , Neoplasias , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Quimiocina CXCL10/sangue , Quimiocina CXCL10/química , COVID-19/diagnóstico , COVID-19/metabolismo , Fator de Crescimento de Hepatócito/sangue , Fator de Crescimento de Hepatócito/química , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/química , SARS-CoV-2 , Neoplasias/metabolismo
15.
Int Immunopharmacol ; 130: 111701, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38382266

RESUMO

Pregnant women with preeclampsia (PE) present a shift in the immune response to an inflammatory profile. This deviation could be due to the interaction of tumor necrosis factor (TNF) with TNFR1 and TNFR2 receptors, besides the failure in modulation of inflammation regulatory mechanisms. This study evaluated the effects of progesterone on the expression of TNFR1 and TNFR2 by Jurkat cells after stimulation with plasma from PE and normotensive (NT) pregnant women. Jurkat cells were cultured with or without progesterone in a medium containing 20% (v/v) plasma from PE or NT women. The expression of TNF receptors was evaluated by flow cytometry. The concentration of soluble forms of TNF receptors and cytokines was determined in culture supernatant and plasma by ELISA. The plasma of PE women showed significantly higher concentrations of sTNFR1 and TNF and lower concentrations of sTNFR2 compared to the NT group. TNFR1 receptor expression was increased in Jurkat cells, while TNFR2 was decreased after culture with PE plasma when compared with Jurkat cells cultured with progesterone and plasma from NT women. The concentration of sTNFR1, TNF, and IL-10 in the culture supernatant of Jurkat cells was increased after culture with PE plasma, while the sTNFR2 receptor was decreased when compared to the NT group. Results demonstrate that in preeclamptic women a systemic inflammation occurs with an increase of inflammatory molecules, and progesterone may have a modulating effect on the expression of TNF receptors, shifting Jurkat cells towards an anti-inflammatory profile with greater expression of TNFR2.


Assuntos
Pré-Eclâmpsia , Progesterona , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Feminino , Humanos , Gravidez , Células Cultivadas , Inflamação/metabolismo , Células Jurkat , Pré-Eclâmpsia/metabolismo , Gestantes , Progesterona/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341270

RESUMO

Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Linfócitos T Reguladores , Humanos , Antígenos CD28 , Linfócitos , Timo
17.
Theranostics ; 14(2): 496-509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169605

RESUMO

Background: Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8+ T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. Methods: To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter. Results: We identified the domain architecture of the constructs as the pivotal factor enabling FcγR-independent, thus intrinsic TNFR2-agonism. Anti-TNFR2 antibody formats with either TNFR2 binding sites on opposing sites of the antibody scaffold or six or more TNFR2 binding sites in similar orientation regularly showed strong FcγR-independent agonism. The affinity of the TNFR2 binding domain and the epitope recognized in TNFR2, however, were found to be of only secondary importance for agonistic activity. Conclusion: Generic design principles enable the generation of highly active bona fide TNFR2 agonists from nearly any TNFR2-specific antibody.


Assuntos
Receptores de IgG , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores de IgG/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , Anticorpos/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246200

RESUMO

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Masculino , Feminino , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteínas da Mielina , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout
19.
Biochem Biophys Res Commun ; 697: 149498, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38262291

RESUMO

Regulatory T cells (Tregs) are lymphocytes that play a central role in peripheral immune tolerance. Tregs are promising targets for the prevention and suppression of autoimmune diseases, allergies, and graft-versus-host disease, and treatments aimed at regulating their functions are being developed. In this study, we created a new modality consisting of a protein molecule that suppressed excessive immune responses by effectively and preferentially expanding Tregs. Recent studies reported that tumor necrosis factor receptor type 2 (TNFR2) expressed on Tregs is involved in the proliferation and activation of Tregs. Therefore, we created a functional immunocytokine, named TNFR2-ICK-Ig, consisting of a fusion protein of an anti-TNFR2 single-chain Fv (scFv) and a TNFR2 agonist TNF-α mutant protein, as a new modality that strongly enhances TNFR2 signaling. The formation of agonist-receptor multimerization (TNFR2 cluster) is effective for the induction of a strong TNFR2 signal, similar to the TNFR2 signaling mechanism exhibited by membrane-bound TNF. TNFR2-ICK-Ig improved the TNFR2 signaling activity and promoted TNFR2 cluster formation compared to a TNFR2 agonist TNF-α mutant protein that did not have an immunocytokine structure. Furthermore, the Treg expansion efficiency was enhanced. TNFR2-ICK-Ig promotes its effects via scFv, which crosslinks receptors whereas the agonists transmit stimulatory signals. Therefore, this novel molecule expands Tregs via strong TNFR2 signaling by the formation of TNFR2 clustering.


Assuntos
Anticorpos de Cadeia Única , Linfócitos T Reguladores , Proteínas de Transporte/metabolismo , Proteínas Mutantes/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Animais , Camundongos
20.
Diabetes Metab Res Rev ; 40(3): e3753, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050450

RESUMO

AIMS: Inflammation and angiogenesis play an important role in the development of early diabetic kidney disease. We investigated the association of soluble Tumour Necrosis Factor Receptor 1 (sTNF-R1), sTNF-R2 and endostatin with new onset microalbuminuria in normoalbuminuric patients with diabetes mellitus type 2. METHODS: We conducted a case control study to assess serum levels of sTNF-R1, sTNF-R2 and endostatin in 169 patients with new onset microalbuminuria and in 188 matched normoalbuminuric, diabetic controls. Baseline serum samples from participants of the ROADMAP (Randomized Olmesartan and Diabetes Microalbuminuria Prevention) and observational follow-up (ROADMAP-OFU) studies were used. RESULTS: Endostatin and sTNF-R1 but not sTNF-R2 were increased at baseline in patients with future microalbuminuria. In the multivariate analysis, each log2 increment in endostatin levels was associated with an increase of only 6% in the risk of development of microalbuminuria (adjusted HR (95% CI) 1.006 (1.001-1011). sTNF-R1 and sTNF-R2 levels were conversely associated with microalbuminuria, but the results did not reach statistical significance. The respective adjusted HRs (95% CI) were 1.305 (0.928-1.774) and 0.874 (0.711-1.074). CONCLUSIONS: sTNF-R1 and sTNF-R2 failed to predict the occurrence of microalbuminuria in normoalbuminuric patients with type 2 diabetes. Likewise, the utility of endostatin in predicting new onset proteinuria is limited.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Receptores Tipo II do Fator de Necrose Tumoral , Endostatinas , Diabetes Mellitus Tipo 2/complicações , Estudos de Casos e Controles , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...