Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10573, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719983

RESUMO

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.


Assuntos
Esclerose Múltipla , Receptores de Ácidos Lisofosfatídicos , Remielinização , Animais , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Remielinização/efeitos dos fármacos , Humanos , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
2.
Pharmacol Res ; 203: 107172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583685

RESUMO

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Assuntos
Aquaporinas , Doença de Crohn , Via de Sinalização Hippo , Lisofosfolipídeos , Macrófagos , Animais , Humanos , Masculino , Camundongos , Aquaporinas/metabolismo , Aquaporinas/genética , Aquaporinas/antagonistas & inibidores , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Citocinas/metabolismo , Via de Sinalização Hippo/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
3.
Eur J Med Chem ; 243: 114741, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126387

RESUMO

Blockade of lysophosphatidic acid receptor 5 (LPA5) by a recently reported antagonist AS2717638 (2) attenuated inflammatory and neuropathic pains, although it showed moderate in vivo efficacy and its structure-activity relationships and the ADME properties are little studied. We therefore designed and synthesized a series of isoquinolone derivatives and evaluated their potency in LPA5 calcium mobilization and cAMP assays. Our results show that substituted phenyl groups or bicyclic aromatic rings such as benzothiophenes or benzofurans are tolerated at the 2-position, 4-substituted piperidines are favored at the 4-position, and methoxy groups at the 6- and 7-positions are essential for activity. Compounds 65 and 66 showed comparable in vitro potency, excellent selectivity against LPA1-LPA4 and >50 other GPCRs, moderate metabolic stability, and high aqueous solubility and brain permeability. Both 65 and 66 significantly attenuated nociceptive hypersensitivity at lower doses than 2 and had longer-lasting effects in an inflammatory pain model, and 66 also dose-dependently reduced mechanical allodynia in the chronic constriction injury model and opioid-induced hyperalgesia at doses that had no effect on the locomotion in rats. These results suggest that these isoquinolone derivatives as LPA5 antagonists are of promise as potential analgesics.


Assuntos
Isoquinolinas , Neuralgia , Receptores de Ácidos Lisofosfatídicos , Animais , Ratos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Relação Estrutura-Atividade , Isoquinolinas/química , Isoquinolinas/farmacologia
4.
J Med Chem ; 65(16): 10956-10974, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35948083

RESUMO

Spinal cord injuries (SCIs) irreversibly disrupt spinal connectivity, leading to permanent neurological disabilities. Current medical treatments for reducing the secondary damage that follows the initial injury are limited to surgical decompression and anti-inflammatory drugs, so there is a pressing need for new therapeutic strategies. Inhibition of the type 2 lysophosphatidic acid receptor (LPA2) has recently emerged as a new potential pharmacological approach to decrease SCI-associated damage. Toward validating this receptor as a target in SCI, we have developed a new series of LPA2 antagonists, among which compound 54 (UCM-14216) stands out as a potent and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 µM, KD = 1.3 nM; inactive at LPA1,3-6 receptors). This compound shows efficacy in an in vivo mouse model of SCI in an LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI.


Assuntos
Receptores de Ácidos Lisofosfatídicos , Traumatismos da Medula Espinal , Animais , Camundongos , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
5.
Respir Res ; 23(1): 61, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303880

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease with limited treatment options. A phase 2 trial (NCT01766817) showed that twice-daily treatment with BMS-986020, a lysophosphatidic acid receptor 1 (LPA1) antagonist, significantly decreased the slope of forced vital capacity (FVC) decline over 26 weeks compared with placebo in patients with IPF. This analysis aimed to better understand the impact of LPA1 antagonism on extracellular matrix (ECM)-neoepitope biomarkers and lung function through a post hoc analysis of the phase 2 study, along with an in vitro fibrogenesis model. METHODS: Serum levels of nine ECM-neoepitope biomarkers were measured in patients with IPF. The association of biomarkers with baseline and change from baseline FVC and quantitative lung fibrosis as measured with high-resolution computed tomography, and differences between treatment arms using linear mixed models, were assessed. The Scar-in-a-Jar in vitro fibrogenesis model was used to further elucidate the antifibrotic mechanism of BMS-986020. RESULTS: In 140 patients with IPF, baseline ECM-neoepitope biomarker levels did not predict FVC progression but was significantly correlated with baseline FVC and lung fibrosis measurements. Most serum ECM-neoepitope biomarker levels were significantly reduced following BMS-986020 treatment compared with placebo, and several of the reductions correlated with FVC and/or lung fibrosis improvement. In the Scar-in-a-Jar in vitro model, BMS-986020 potently inhibited LPA1-induced fibrogenesis. CONCLUSIONS: BMS-986020 reduced serum ECM-neoepitope biomarkers, which were previously associated with IPF prognosis. In vitro, LPA promoted fibrogenesis, which was LPA1 dependent and inhibited by BMS-986020. Together these data elucidate a novel antifibrotic mechanism of action for pharmacological LPA1 blockade. Trial registration ClinicalTrials.gov identifier: NCT01766817; First posted: January 11, 2013; https://clinicaltrials.gov/ct2/show/NCT01766817 .


Assuntos
Colágeno/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Medicamentos para o Sistema Respiratório/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Colágeno/metabolismo , Epitopos/sangue , Feminino , Humanos , Fibrose Pulmonar Idiopática/patologia , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Capacidade Vital/efeitos dos fármacos
6.
FASEB J ; 36(4): e22236, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218596

RESUMO

Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1  signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1  signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1  signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1  mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.


Assuntos
Isoxazóis/farmacologia , Lisofosfolipídeos/metabolismo , Neuroglia/efeitos dos fármacos , Dor Nociceptiva/prevenção & controle , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Gânglios Espinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Dor Nociceptiva/etiologia , Dor Nociceptiva/metabolismo , Dor Nociceptiva/patologia , Fosforilação , Transdução de Sinais
7.
Toxicol Appl Pharmacol ; 438: 115846, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974053

RESUMO

BMS-986020, BMS-986234 and BMS-986278, are three lysophosphatidic acid receptor 1 (LPA1) antagonists that were or are being investigated for treatment of idiopathic pulmonary fibrosis (IPF). Hepatobiliary toxicity (elevated serum AST, ALT, and ALP, plasma bile acids [BAs], and cholecystitis) was observed in a Phase 2 clinical trial with BMS-986020, and development was discontinued. In dogs and rats, the species used for the pivotal toxicology studies, there was no evidence of hepatobiliary toxicity in the dog while findings in the rat were limited to increased plasma BAs levels (6.1× control), ALT (2.9×) and bilirubin (3.4×) with no histopathologic correlates. Since neither rats nor dogs predicted clinical toxicity, follow-up studies in cynomolgus monkeys revealed hepatobiliary toxicity that included increased ALT (2.0× control) and GLDH (4.9×), bile duct hyperplasia, cholangitis, cholestasis, and cholecystitis at clinically relevant BMS-986020 exposures with no changes in plasma or liver BAs. This confirmed monkey as a relevant species for identifying hepatobiliary toxicity with BMS-986020. In order to assess whether the toxicity was compound-specific or related to LPA1 antagonism, two structurally distinct LPA1 antagonists (BMS-986234 and BMS-986278), were evaluated in rat and monkey. There were no clinical or anatomic pathology changes indicative of hepatobiliary toxicity. Mixed effects on plasma BAs in both rat and monkey has made this biomarker not a useful predictor of the hepatobiliary toxicity. In conclusion, the nonclinical data indicate the hepatobiliary toxicity observed clinically and in monkeys administered BMS-986020 is compound specific and not mediated via antagonism of LPA1.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doenças do Sistema Digestório/induzido quimicamente , Fígado/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Ácidos e Sais Biliares/sangue , Bilirrubina/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doenças do Sistema Digestório/sangue , Doenças do Sistema Digestório/metabolismo , Cães , Feminino , Haplorrinos , Fígado/metabolismo , Hepatopatias/sangue , Hepatopatias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
8.
Toxicol Appl Pharmacol ; 438: 115885, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090952

RESUMO

In a Phase 2 clinical trial, BMS-986020, a lysophosphatidic acid receptor-1 (LPA1) antagonist, produced hepatobiliary toxicity (increased ALT, AST, and ALP; cholecystitis) and increases in plasma bile acids (BA). Nonclinical investigations conducted to identify a potential mechanism(s) for this toxicity examined BMS-986020 and two LPA1 antagonists structurally distinct from BMS-986020 (BMS-986234 and BMS-986278). BMS-986020 inhibited hepatic BA efflux transporters BSEP (IC50 1.8 µM), MRP3 (IC50 22 µM), and MRP4 (IC50 6.2 µM) and inhibited BA canalicular efflux in human hepatocytes (68% at 10 µM). BMS-986020 inhibited mitochondrial function (basal and maximal respiration, ATP production, and spare capacity) in human hepatocytes and cholangiocytes at ≥10 µM and inhibited phospholipid efflux in human hepatocytes (MDR3 IC50 7.5 µM). A quantitative systems toxicology analysis (DILIsym®), considering pharmacokinetics, BA homeostasis, mitochondrial function, oxidative phosphorylation, and reactive intermediates performed for BMS-986020 recapitulated clinical findings ascribing the effects to BA transporter and mitochondrial electron transport chain inhibition. BMS-986234 and BMS-986278 minimally inhibited hepatic BA transporters (IC50 ≥20 µM) and did not inhibit MDR3 activity (IC50 >100 µM), nor did BMS-986234 inhibit BA efflux (≤50 µM) or mitochondrial function (≤30 µM) (BMS-986278 not evaluated). Multiple mechanisms may be involved in the clinical toxicity observed with BMS-986020. The data indicate that this toxicity was unrelated to LPA1 antagonism since the mechanisms that likely influenced the adverse clinical outcome of BMS-986020 were not observed with equipotent LPA1 antagonists BMS-986234 and BMS-986278. This conclusion is consistent with the lack of hepatobiliary toxicity in nonclinical and clinical safety studies with BMS-986278.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doenças do Sistema Digestório/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fígado/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Transporte de Elétrons/fisiologia , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos
9.
J Neuroinflammation ; 18(1): 293, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920725

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a pleiotropic lipid messenger that addresses at least six specific G-protein coupled receptors. Accumulating evidence indicates a significant involvement of LPA in immune cell regulation as well as Schwann cell physiology, with potential relevance for the pathophysiology of peripheral neuroinflammation. However, the role of LPA signaling in inflammatory neuropathies has remained completely undefined. Given the broad expression of LPA receptors on both Schwann cells and cells of the innate and adaptive immune system, we hypothesized that inhibition of LPA signaling may ameliorate the course of disease in experimental autoimmune neuritis (EAN). METHODS: We induced active EAN by inoculation of myelin protein 2 peptide (P255-78) in female Lewis rats. Animals received the orally available LPA receptor antagonist AM095, specifically targeting the LPA1 receptor subtype. AM095 was administered daily via oral gavage in a therapeutic regimen from 10 until 28 days post-immunization (dpi). Analyses were based on clinical testing, hemogram profiles, immunohistochemistry and morphometric assessment of myelination. RESULTS: Lewis rats treated with AM095 displayed a significant improvement in clinical scores, most notably during the remission phase. Cellular infiltration of sciatic nerve was only discretely affected by AM095. Hemogram profiles indicated no impact on circulating leukocytes. However, sciatic nerve immunohistochemistry revealed a reduction in the number of Schwann cells expressing the dedifferentiation marker Sox2 paralleled by a corresponding increase in differentiating Sox10-positive Schwann cells. In line with this, morphometric analysis of sciatic nerve semi-thin sections identified a significant increase in large-caliber myelinated axons at 28 dpi. Myelin thickness was unaffected by AM095. CONCLUSION: Thus, LPA1 signaling may present a novel therapeutic target for the treatment of inflammatory neuropathies, potentially affecting regenerative responses in the peripheral nerve by modulating Schwann cell differentiation.


Assuntos
Desdiferenciação Celular/fisiologia , Neurite Autoimune Experimental/imunologia , Receptores de Ácidos Lisofosfatídicos/imunologia , Células de Schwann/imunologia , Transdução de Sinais/fisiologia , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Desdiferenciação Celular/efeitos dos fármacos , Feminino , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Neuroinflammation ; 18(1): 240, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666785

RESUMO

BACKGROUND: Lysophosphatidic acid receptors (LPARs) are G-protein-coupled receptors involved in many physiological functions in the central nervous system. However, the role of the LPARs in multiple sclerosis (MS) has not been clearly defined yet. METHODS: Here, we investigated the roles of LPARs in myelin oligodendrocyte glycoprotein peptides-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. RESULTS: Pre-inhibition with LPAR1-3 antagonist Ki16425 deteriorated motor disability of EAElow. Specifically, LPAR1-3 antagonist (intraperitoneal) deteriorated symptoms of EAElow associated with increased demyelination, chemokine expression, cellular infiltration, and immune cell activation (microglia and macrophage) in spinal cords of mice compared to the sham group. This LPAR1-3 antagonist also increased the infiltration of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells into spinal cords of EAElow mice along with upregulated mRNA expression of IFN-γ and IL-17 and impaired blood-brain barrier (BBB) in the spinal cord. The underlying mechanism for negative effects of LPAR1-3 antagonist was associated with the overproduction of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 2 and NOX3. Interestingly, LPAR1/2 agonist 1-oleoyl-LPA (LPA 18:1) (intraperitoneal) ameliorated symptoms of EAEhigh and improved representative pathological features of spinal cords of EAEhigh mice. CONCLUSIONS: Our findings strongly suggest that some agents that can stimulate LPARs might have potential therapeutic implications for autoimmune demyelinating diseases such as MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Isoxazóis/toxicidade , Estresse Oxidativo/fisiologia , Propionatos/toxicidade , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores
11.
Bioorg Chem ; 117: 105386, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695732

RESUMO

Lysophosphatidic acids (LPAs) are bioactive phospholipids implicated in a wide range of cellular activities that regulate a diverse array of biological functions. They recognize two types of G protein-coupled receptors (LPARs): LPA1-3 receptors and LPA4-6 receptors that belong to the endothelial gene (EDG) family and non-endothelial gene family, respectively. In recent years, the LPA signaling pathway has captured an increasing amount of attention because of its involvement in various diseases, such as idiopathic pulmonary fibrosis, cancers, cardiovascular diseases and neuropathic pain, making it a promising target for drug development. While no drugs targeting LPARs have been approved by the FDA thus far, at least three antagonists have entered phase Ⅱ clinical trials for idiopathic pulmonary fibrosis (BMS-986020 and BMS-986278) and systemic sclerosis (SAR100842), and one radioligand (BMT-136088/18F-BMS-986327) has entered phase Ⅰ clinical trials for positron emission tomography (PET) imaging of idiopathic pulmonary fibrosis. This article provides an extensive review on the current status of ligand development targeting LPA receptors to modulate LPA signaling and their therapeutic potential in various diseases.


Assuntos
Desenvolvimento de Medicamentos , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos/métodos , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
12.
J Med Chem ; 64(21): 15549-15581, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709814

RESUMO

The oxycyclohexyl acid BMS-986278 (33) is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA1 antagonist clinical compound BMS-986020 (1), which culminated in the discovery of 33, are discussed. The detailed in vitro and in vivo preclinical pharmacology profiles of 33, as well as its pharmacokinetics/metabolism profile, are described. On the basis of its in vivo efficacy in rodent chronic lung fibrosis models and excellent overall ADME (absorption, distribution, metabolism, excretion) properties in multiple preclinical species, 33 was advanced into clinical trials, including an ongoing Phase 2 clinical trial in patients with lung fibrosis (NCT04308681).


Assuntos
Descoberta de Drogas , Fibrose Pulmonar/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Estrutura Molecular , Fibrose Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Ácidos Lisofosfatídicos/metabolismo , Relação Estrutura-Atividade
13.
J Am Heart Assoc ; 10(18): e021511, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34514847

RESUMO

Background The loss of endothelial integrity increases the risk of intracerebral hemorrhage during ischemic stroke. Adjunct therapeutic targets for reperfusion in ischemic stroke are in need to prevent blood-brain barrier disruption. Recently, we have shown that endothelial permeability is mediated by lysophosphatidic acid (LPA), but the role of autotaxin, which produces LPA, remains unclear in stroke. We investigate whether autotaxin/LPA axis regulates blood-brain barrier integrity after cerebral ischemia. Methods and Results Ischemic stroke was induced in mice by middle cerebral artery occlusion for 90 minutes, followed by 24-hour reperfusion. The therapeutic efficacy of autotaxin/LPA receptor blockade was evaluated using triphenyl tetrazolium chloride staining, Evans blue permeability, infrared imaging, mass spectrometry, and XF24 analyzer to evaluate blood-brain barrier integrity, autotaxin activity, and mitochondrial bioenergetics. In our mouse model of ischemic stroke, the mRNA levels of autotaxin were elevated 1.7-fold following the cerebral ischemia and reperfusion (I/R) group compared with the sham. The enzymatic activity of autotaxin was augmented by 4-fold in the I/R group compared with the sham. Plasma and brain tissues in I/R group showed elevated LPA levels. The I/R group also demonstrated mitochondrial dysfunction, as evidenced by decreased (P<0.01) basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity. Treatment with autotaxin inhibitors (HA130 or PF8380) or autotaxin/LPA receptor inhibitor (BrP-LPA) rescued endothelial permeability and mitochondrial dysfunction in I/R group. Conclusions Autotaxin-LPA signaling blockade attenuates blood-brain barrier disruption and mitochondrial function following I/R, suggesting targeting this axis could be a new therapeutic approach toward treating ischemic stroke.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica , AVC Isquêmico , Lisofosfolipídeos/metabolismo , Mitocôndrias/patologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Camundongos , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores
14.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445223

RESUMO

Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1ß, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1ß was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.


Assuntos
Benzoxazóis/farmacologia , Encéfalo/metabolismo , Endotoxemia , Isoquinolinas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores de Ácidos Lisofosfatídicos , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo
15.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209775

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases, idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with various diseases, including cancer.


Assuntos
Ensaios Clínicos como Assunto , Neoplasias/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/complicações , Neuralgia/etiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais
16.
Eur J Med Chem ; 222: 113574, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126459

RESUMO

Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.


Assuntos
Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Estrutura Molecular , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
17.
ChemMedChem ; 16(13): 2121-2129, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831272

RESUMO

Despite the increasing incidence of hepatocellular carcinoma (HCC) worldwide, current pharmacological treatments are still unsatisfactory. We have previously shown that lysophosphatidic acid receptor 6 (LPAR6) supports HCC growth and that 9-xanthenylacetic acid (XAA) acts as an LPAR6 antagonist inhibiting HCC growth without toxicity. Here, we synthesized four novel XAA derivatives, (±)-2-(9H-xanthen-9-yl)propanoic acid (compound 4 - MC9), (±)-2-(9H-xanthen-9-yl)butanoic acid (compound 5 - MC6), (±)-2-(9H-xanthen-9-yl)hexanoic acid (compound 7 - MC11), and (±)-2-(9H-xanthen-9-yl)octanoic acid (compound 8 - MC12, sodium salt) by introducing alkyl groups of increasing length at the acetic α-carbon atom. Two of these compounds were characterized by X-ray powder diffraction and quantum mechanical calculations, while molecular docking simulations suggested their enantioselectivity for LPAR6. Biological data showed anti-HCC activity for all XAA derivatives, with the maximum effect observed for MC11. Our findings support the view that increasing the length of the alkyl group improves the inhibitory action of XAA and that enantioselectivity can be exploited for designing novel and more effective XAA-based LPAR6 antagonists.


Assuntos
Ácido Acético/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Xantenos/farmacologia , Ácido Acético/síntese química , Ácido Acético/química , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Receptores de Ácidos Lisofosfatídicos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Xantenos/síntese química , Xantenos/química
18.
Ther Adv Respir Dis ; 15: 17534666211004238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781141

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease characterized by worsening dyspnea and lung function and has a median survival of 2-3 years. Forced vital capacity (FVC) is the primary endpoint used most commonly in IPF clinical trials as it is the best surrogate for mortality. This study assessed quantitative scores from high-resolution computed tomography (HRCT) developed by machine learning as a secondary efficacy endpoint in a 26-week phase II study of BMS-986020 - an LPA1 receptor antagonist - in patients with IPF. METHODS: HRCT scans from 96% (137/142) of randomized subjects were utilized. Quantitative lung fibrosis (QLF) scores were calculated from the HRCT images. QLF improvement was defined as ⩾2% reduction in QLF score from baseline to week 26. RESULTS: In the placebo arm, 5% of patients demonstrated an improvement in QLF score at week 26 compared with 15% and 27% of patients in the BMS-986020 600 mg once daily (QD) and twice daily (BID) arms, respectively [versus placebo: p = 0.08 (600 mg QD); p = 0.0098 (600 mg BID)]. Significant correlations were found between changes in QLF and changes in percent predicted FVC, diffusing capacity for carbon monoxide (DLCO), and shortness of breath at week 26 (ρ = -0.41, ρ = -0.22, and ρ = 0.27, respectively; all p < 0.01). CONCLUSIONS: This study demonstrated the utility of quantitative HRCT as an efficacy endpoint for IPF in a double-blind, placebo-controlled clinical trial setting.The reviews of this paper are available via the supplemental material section.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Tomografia Computadorizada por Raios X/métodos , Idoso , Monóxido de Carbono/metabolismo , Método Duplo-Cego , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/fisiopatologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Capacidade Vital
19.
J Physiol Biochem ; 77(2): 321-329, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33704695

RESUMO

Lysophosphatidic acid (LPA) acts through the activation of G protein-coupled receptors, in a Ca2+-dependent manner. We show the effects of LPA on the plasma membrane Ca2+-ATPase (PMCA) from kidney proximal tubule cells. The Ca2+-ATPase activity was inhibited by nanomolar concentrations of LPA, with maximal inhibition (~50%) obtained with 20 nM LPA. This inhibitory action on PMCA activity was blocked by Ki16425, an antagonist for LPA receptors, indicating that this lipid acts via LPA1 and/or LPA3 receptor. This effect is PKC-dependent, since it is abolished by calphostin C and U73122, PKC, and PLC inhibitors, respectively. Furthermore, the addition of 10-8 M PMA, a well-known PKC activator, mimicked PMCA modulation by LPA. We also demonstrated that the PKC activation leads to an increase in PMCA phosphorylation. These results indicate that LPA triggers LPA1 and/or LPA3 receptors at the BLM, inducing PKC-dependent phosphorylation with further inhibition of PMCA. Thus, LPA is part of the regulatory lipid network present at the BLM and plays an important role in the regulation of intracellular Ca2+ concentration that may result in significant physiological alterations in other Ca2+-dependent events ascribed to the renal tissue.


Assuntos
Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Fracionamento Celular , Membrana Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Estrenos/farmacologia , Regulação da Expressão Gênica , Transporte de Íons/efeitos dos fármacos , Isoxazóis/farmacologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Naftalenos/farmacologia , Fosforilação/efeitos dos fármacos , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Cultura Primária de Células , Propionatos/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Pirrolidinonas/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Suínos , Acetato de Tetradecanoilforbol/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
20.
Biochem Biophys Res Commun ; 548: 91-97, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636640

RESUMO

Autotaxin (ATX) and its product lysophosphatidic acid (LPA) have been implicated in lung fibrosis and cancer. We have studied their roles in DNA damage induced by carcinogenic crystalline silica particles (CSi). In an earlier study on bronchial epithelia, we concluded that ATX, via paracrine signaling, amplifies DNA damage. This effect was seen at 6-16 h. A succeeding study showed that CSi induced NLRP3 phosphorylation, mitochondrial depolarization, double strand breaks (DSBs), and NHEJ repair enzymes within minutes. In the current study we hypothesized a role for the ATX-LPA axis also in this rapid DNA damage. Using 16HBE human bronchial epithelial cells, we show ATX secretion at 3 min, and that ATX inhibitors (HA130 and PF8380) prevented both CSi-induced mitochondrial depolarization and DNA damage (detected by γH2AX and Comet assay analysis). Experiments with added LPA gave similar rapid effects as CSi. Furthermore, Rac1 was activated at 3 min, and a Rac1 inhibitor (NSC23766) prevented mitochondrial depolarization and genotoxicity. In mice the bronchial epithelia exhibited histological signs of ATX activation and signs of DSBs (53BP1 positive nuclei) minutes after a single inhalation of CSi. Our data indicate that CSi rapidly activate the ATX-LPA axis and within minutes this leads to DNA damage in bronchial epithelial cells. Thus, ATX mediates very rapid DNA damaging effects of inhaled particles.


Assuntos
Dano ao DNA , Diester Fosfórico Hidrolases/metabolismo , Mucosa Respiratória/patologia , Dióxido de Silício/química , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Cristalização , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Isoxazóis/farmacologia , Lisofosfolipídeos/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA