Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.825
Filtrar
2.
Elife ; 132024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146380

RESUMO

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.


Assuntos
Actinas , Dendritos , Hipocampo , Plasticidade Neuronal , Polimerização , Receptores de AMPA , Animais , Receptores de AMPA/metabolismo , Actinas/metabolismo , Ratos , Plasticidade Neuronal/fisiologia , Dendritos/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Transporte Proteico , Neurônios/metabolismo , Células Cultivadas , Exocitose
3.
J Pak Med Assoc ; 74(8): 1514-1517, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160724

RESUMO

A rare subtype of autoimmune encephalitis consists of antibodies targetting the alpha-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid receptor in the central nervous system. We describe the clinical presentation and autoimmune profile of the first case of alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor encephalitis with concurrent anti-acetylcholine receptor antibodies in Pakistan. The patient was a 58-year-old male who presented with the characteristic symptoms of limbic encephalitis with memory loss, irritability, agitation, and confusion. Antibodies against the alpha-amino-3-hydroxy- 5-methyl-4-isoxazolepropionic acid receptor were detected in both serum and cerebrospinal fluid by indirect immunofluorescence. Computerised tomography of the chest showed an anterior mediastinal mass. The patient was treated with high dose Methylprednisolone and five sessions of plasma exchange. There was a short period of improvement; however, the patient now continues to exhibit irritability, aphasia, confusion, and memory loss. Video-assisted thoracoscopic surgery for mediastinal mass resection and histological testing was planned, however after review by the interventional radiologist the associated risks were deemed too high to proceed with the procedure and biopsy was not done.


Assuntos
Miastenia Gravis , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/diagnóstico , Miastenia Gravis/complicações , Receptores de AMPA/imunologia , Autoanticorpos/sangue , Encefalite/imunologia , Encefalite/diagnóstico , Metilprednisolona/uso terapêutico , Metilprednisolona/administração & dosagem , Encefalite Límbica/imunologia
4.
PLoS Biol ; 22(8): e3002768, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163472

RESUMO

According to the synaptic homeostasis hypothesis (SHY), sleep serves to renormalize synaptic connections that have been potentiated during the prior wake phase due to ongoing encoding of information. SHY focuses on glutamatergic synaptic strength and has been supported by numerous studies examining synaptic structure and function in neocortical and hippocampal networks. However, it is unknown whether synaptic down-regulation during sleep occurs in the hypothalamus, i.e., a pivotal center of homeostatic regulation of bodily functions including sleep itself. We show that sleep, in parallel with the synaptic down-regulation in neocortical networks, down-regulates the levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the hypothalamus of rats. Most robust decreases after sleep were observed at both sites for AMPARs containing the GluA1 subunit. Comparing the effects of selective rapid eye movement (REM) sleep and total sleep deprivation, we moreover provide experimental evidence that slow-wave sleep (SWS) is the driving force of the down-regulation of AMPARs in hypothalamus and neocortex, with no additional contributions of REM sleep or the circadian rhythm. SWS-dependent synaptic down-regulation was not linked to EEG slow-wave activity. However, spindle density during SWS predicted relatively increased GluA1 subunit levels in hypothalamic synapses, which is consistent with the role of spindles in the consolidation of memory. Our findings identify SWS as the main driver of the renormalization of synaptic strength during sleep and suggest that SWS-dependent synaptic renormalization is also implicated in homeostatic control processes in the hypothalamus.


Assuntos
Hipotálamo , Receptores de AMPA , Sono de Ondas Lentas , Sinapses , Animais , Receptores de AMPA/metabolismo , Hipotálamo/metabolismo , Masculino , Sinapses/metabolismo , Sinapses/fisiologia , Ratos , Sono de Ondas Lentas/fisiologia , Sono REM/fisiologia , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sono/fisiologia , Neocórtex/metabolismo , Homeostase , Ratos Sprague-Dawley , Regulação para Baixo , Ratos Wistar
5.
Neuropharmacology ; 258: 110097, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094831

RESUMO

Aging is characterized by a functional decline in several physiological systems. α-Klotho-hypomorphic mice (Kl-/-) exhibit accelerated aging and cognitive decline. We evaluated whether male and female α-Klotho-hypomorphic mice show changes in the expression of synaptic proteins, N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, postsynaptic density protein 95 (PSD-95), synaptophysin and synapsin, and the activity of Na+, K+-ATPase (NaK) isoforms in the cerebellum and hippocampus. In this study, we demonstrated that in the cerebellum, Kl-/- male mice have reduced expression of GluA1 (AMPA) compared to wild-type (Kl+/+) males and Kl-/- females. Also, Kl-/- male and female mice show reduced ɑ2/ɑ3-NaK and Mg2+-ATPase activities in the cerebellum, respectively, and sex-based differences in NaK and Mg2+-ATPase activities in both the regions. Our findings suggest that α-Klotho could influence the expression of AMPAR and the activity of NaK isoforms in the cerebellum in a sex-dependent manner, and these changes may contribute, in part, to cognitive decline.


Assuntos
Cerebelo , Hipocampo , Proteínas Klotho , Receptores de AMPA , Caracteres Sexuais , ATPase Trocadora de Sódio-Potássio , Animais , Cerebelo/metabolismo , Masculino , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Feminino , Hipocampo/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Proteínas Klotho/metabolismo , Camundongos , Sinaptofisina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Camundongos Knockout , Sinapsinas/metabolismo , Sinapsinas/genética , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética
6.
Nat Commun ; 15(1): 7257, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179578

RESUMO

Depression is associated with dysregulated circadian rhythms, but the role of intrinsic clocks in mood-controlling brain regions remains poorly understood. We found increased circadian negative loop and decreased positive clock regulators expression in the medial prefrontal cortex (mPFC) of a mouse model of depression, and a subsequent clock countermodulation by the rapid antidepressant ketamine. Selective Bmal1KO in CaMK2a excitatory neurons revealed that the functional mPFC clock is an essential factor for the development of a depression-like phenotype and ketamine effects. Per2 silencing in mPFC produced antidepressant-like effects, while REV-ERB agonism enhanced the depression-like phenotype and suppressed ketamine action. Pharmacological potentiation of clock positive modulator ROR elicited antidepressant-like effects, upregulating plasticity protein Homer1a, synaptic AMPA receptors expression and plasticity-related slow wave activity specifically in the mPFC. Our data demonstrate a critical role for mPFC molecular clock in regulating depression-like behavior and the therapeutic potential of clock pharmacological manipulations influencing glutamatergic-dependent plasticity.


Assuntos
Fatores de Transcrição ARNTL , Antidepressivos , Depressão , Ketamina , Camundongos Knockout , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/genética , Camundongos , Antidepressivos/farmacologia , Masculino , Ketamina/farmacologia , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Modelos Animais de Doenças , Fenótipo , Plasticidade Neuronal/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
7.
Neuropharmacology ; 259: 110108, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128582

RESUMO

Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice. Our findings reveal that SOLF has a detrimental impact on spatial memory and synaptic plasticity mechanisms, such as long-term potentiation (LTP), and downregulates Gria1 expression specifically in males. In females, SOLF downregulates the gene expression of Gria1/2/3 and Grin1/2A/2B glutamate receptor subunits as well as some proinflammatory interleukins. These findings highlight the importance of considering sex-specific factors when assessing the long-term effects of high-fat diets on cognition and brain plasticity.


Assuntos
Dieta Hiperlipídica , Hipocampo , Caracteres Sexuais , Animais , Masculino , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Receptores de AMPA/metabolismo , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Gorduras na Dieta/farmacologia
8.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
9.
J Cardiovasc Pharmacol ; 84(2): 227-238, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39115721

RESUMO

ABSTRACT: Previous studies have found that anxiety disorders may increase the incidence of atrial fibrillation (AF). More and more studies have shown that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are involved in the occurrence and development of cardiovascular diseases. However, the role of AMPARs in AF associated with anxiety disorder remains unclear. The aim of this study was to investigate the effect of AMPARs on AF susceptibility in rats with anxiety disorder and its possible mechanism. The anxiety disorder rat model was established by unpredictable empty bottle stimulation and was treated with AMPARs agonist and antagonist. Our results showed that AMPARs antagonist treatment significantly reduced sympathetic activity, improved heart rate variability, shortened action potential duration, prolonged effective refractory period, reduced AF induction rate, and improved cardiac electrical remodeling and the expression of inflammatory factors. In addition, inhibition of AMPARs reduced the phosphorylation of IκBα and p65. Our experimental results suggest that inhibition of AMPARs can reduce autonomic remodeling, improve atrial electrical remodeling, and suppress myocardial inflammation, which provides a potential therapeutic strategy for the treatment of AF associated with anxiety disorder.


Assuntos
Transtornos de Ansiedade , Fibrilação Atrial , Modelos Animais de Doenças , Átrios do Coração , Ratos Sprague-Dawley , Receptores de AMPA , Animais , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Masculino , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Receptores de AMPA/metabolismo , Remodelamento Atrial/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Potenciais de Ação/efeitos dos fármacos , Fosforilação , Transdução de Sinais , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Fator de Transcrição RelA/metabolismo , Ratos , Anti-Inflamatórios/farmacologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo
10.
J Physiol Pharmacol ; 75(3)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39042386

RESUMO

Suicide is a significant public health challenge worldwide. Statistical data confirm a strong relationship between suicidal behavior and depressive disorders (DDs), but the molecular mechanisms of these diseases are still poorly understood. A growing body of research suggests that the Klotho-mediated pathway may be a novel intracellular target for the development of suicide-related disorders (including DDs). To verify this hypothesis, the link between α-Klotho levels, Nrf2-related inflammatory status (IL-1α, IL-1ß, Keap1, NFκB p65), AMPA (GluA1, GluA2, p-S831-GluA1, p-S845-GluA1) receptor subunit trafficking and AMPK (AMPKα1/2; pT172-AMPKα1) signalling pathways in the brain of suicide victims as compared to controls were investigated. Commercially available enzyme-linked immunoassay (ELISA) and Western blot analysis were performed in the hippocampus (HP) and frontal cortex (FCx) of suicide victims and matched controls. Group differences were assessed using an unpaired Student's t-test. A statistically significant decrease in the level of α-Klotho (HP: p=0.001; FCx: p=0.012) with an increase in IL-1ß (HP: p=0.0108) and IL-1α (FCx: p=0.009) concentrations were shown. These alterations were associated with increased Keap1 (FCx: p=0.023) and NF-κB-p65 (HP: p=0.039; FCx: p=0.013 nuclear fraction) protein levels. Furthermore, a significant reduction in p-S831-GluA1 (HP: p=0.029; FCx=0.002) and p-S845-GluA1 (HP: p=0.0012) proteins was observed. Similarly, the level of GluA2 (HP: p=0.011; FCx: p=0.002) and in p-T172-AMPKα1 (HP: p=0.0288; FCx: p=0.0338) protein were statistically decreased. Our findings demonstrate that a reduction in α-Klotho levels in brain structures related to mood disorders (HP, FCx) correlates with suicidal behavior. Moreover, our study provides novel insights into the molecular mechanisms underlying suicide-related disorders, highlighting the role of α-Klotho, Nrf2-related inflammatory status, AMPA receptor trafficking, and AMPK signaling pathways in the pathophysiology of suicidal behavior. These results may have implications for the development of targeted interventions for individuals at risk of suicide.


Assuntos
Glucuronidase , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Klotho , Fator 2 Relacionado a NF-E2 , Receptores de AMPA , Transdução de Sinais , Suicídio , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/metabolismo , Lobo Frontal/metabolismo , Glucuronidase/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transporte Proteico , Receptores de AMPA/metabolismo , Suicídio/psicologia
11.
Mol Nutr Food Res ; 68(15): e2300883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38984736

RESUMO

SCOPE: Polar lipids, such as gangliosides and phospholipids, are fundamental structural components that play critical roles in the development and maturation of neurons in the brain. Recent evidence has demonstrated that dietary intakes of polar lipids in early life are associated with improved cognitive outcomes during infancy and adolescence. However, the specific mechanisms through which these lipids impact cognition remain unclear. METHODS AND RESULTS: This study examines the direct physiological impact of polar lipid supplementation, in the form of buttermilk powder, on primary cortical neuron growth and maturation. The changes are measured with postsynaptic current response recordings, immunohistochemical examination of functional synapse localization and numbers, and the biochemical quantification of receptors responsible for neuronal synaptic neurotransmission. Chronic exposure to polar lipids increases primary mouse cortical neuron basal excitatory synapse response strength attributed to enhanced dendritic complexity and an altered expression of the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit 2 (GluR2). CONCLUSION: The present finding suggests that dietary polar lipids improve human cognition through an enhancement of neuronal maturation and/or function.


Assuntos
Suplementos Nutricionais , Neurônios , Transmissão Sináptica , Animais , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células Cultivadas , Leitelho , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL
12.
Neuropharmacology ; 258: 110081, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002853

RESUMO

Synaptic plasticity in the mesolimbic dopamine (DA) system contributes to the neural adaptations underlying addictive behaviors and relapse. However, the specific behavioral relevance of glutamatergic excitatory drive onto dopamine D1 receptor (D1R)-expressing neurons in mediating the reinforcing effect of cocaine remains unclear. Here, we investigated how midbrain AMPAR and NMDAR function modulate cocaine reward-related behavior using mutant mouse lines lacking the glutamate receptor genes Gria1 or Grin1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2, respectively). We found that conditional genetic deletion of either GluA1 or GluN1 within this neuronal sub-population did not impact the ability of acute cocaine injection to increase intracranial self-stimulation (ICSS) ratio or reduced brain reward threshold compared to littermate controls. Additionally, our data demonstrate that deletion of GluA1 and GluN1 receptor subunits within D1R-expressing neurons did not affect cocaine reinforcement in an operant self-administration paradigm, as mutant mice showed comparable cocaine responses and intake to controls. Given the pivotal role of glutamate receptors in mediating relapse behavior, we further explored the impact of genetic deletion of AMPAR and NMDAR onto D1R-expressing neurons on cue-induced reinstatement following extinction. Surprisingly, deletion of AMPAR and NMDAR onto these neurons did not impair cue-induced reinstatement of cocaine-seeking behavior. These findings suggest that glutamatergic activity via NMDAR and AMPAR in D1R-expressing neurons may not exclusively mediate the reinforcing effects of cocaine and cue-induced reinstatement.


Assuntos
Cocaína , Receptores de AMPA , Receptores de Dopamina D1 , Receptores de N-Metil-D-Aspartato , Recompensa , Autoadministração , Animais , Cocaína/farmacologia , Cocaína/administração & dosagem , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Camundongos , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Knockout , Inibidores da Captação de Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Reforço Psicológico , Proteínas do Tecido Nervoso
13.
J Neurol Sci ; 463: 123142, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053342

RESUMO

Patients with amyotrophic lateral sclerosis (ALS) do not develop oculomotor disturbances and vesicorectal dysfunction until end-stage disease owing to the survival of certain motor neurons (MNs), including oculomotor neurons and MNs within Onuf's nucleus. In sporadic ALS, adenosine deaminase acting on RNA 2 (ADAR2)-mediated editing of GluA2 mRNA at the Q/R site is compromised in lower MNs. We previously developed genetically modified mice with a conditional knockout of ADAR2 in cholinergic neurons (ADAR2flox/flox/VAChT-Cre, Fast; AR2). These mice displayed slow and progressive lower motor neuron death with TAR DNA-binding protein 43 (TDP-43) pathology, attributable to insufficient editing at the GluA2 Q/R site due to ADAR2 deficiency. MN death was more common in fast-fatigable MNs owing to differential vulnerability under conditions of ADAR2 deficiency. Although facial and hypoglossal nerves were impaired in AR2 mice, cell death did not occur within the oculomotor nerve nucleus, as observed in patients with sporadic ALS. Since the basis for avoiding cystorectal damage in ALS is unknown, we compared the features of Onuf's nucleus MNs in 12-month-old AR2 mice with those in age-matched wild-type mice. Although the number of MNs was not significantly lower in AR2 mice, the neurons exhibited a shrunken morphology and TDP-43 pathology. Onuf's nucleus MNs could survive in an ADAR2-deficient state and mainly included fast fatigue-resistant (FR) and slow (S) MNs. In summary, FR and S MNs show increased resilience to ADAR2 deficiency, potentially participating in an important neuronal death avoidance mechanism in ALS.


Assuntos
Adenosina Desaminase , Esclerose Lateral Amiotrófica , Camundongos Knockout , Neurônios Motores , Proteínas de Ligação a RNA , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Adenosina Desaminase/genética , Adenosina Desaminase/deficiência , Adenosina Desaminase/metabolismo , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Camundongos Transgênicos
14.
Eur J Neurosci ; 60(2): 3961-3972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973508

RESUMO

Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)). We previously found that, in the rat cortex and hippocampus, these markers are lower after 6-8 h of sleep than after the same time spent awake. Here, we measure GluA1 and p-GluA1(845) levels in synaptosomes of mouse cortex after 5 h of either sleep, sleep deprivation, recovery sleep after sleep deprivation or selective REM sleep deprivation (32 C57BL/B6 adult mice, 16 females). We find that relative to after sleep deprivation, these synaptic markers are lower after sleep independent of whether the mice were allowed to enter REM sleep. Moreover, 5 h of recovery sleep following acute sleep deprivation is enough to renormalize their expression. Thus, the renormalization of GluA1 and p-GluA1(845) expression crucially relies on NREM sleep and can occur in a few hours of sleep after acute sleep deprivation.


Assuntos
Córtex Cerebral , Receptores de AMPA , Privação do Sono , Sinapses , Animais , Feminino , Masculino , Camundongos , Córtex Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de AMPA/metabolismo , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sinapses/metabolismo , Sinapses/fisiologia , Sinaptossomos/metabolismo
15.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961250

RESUMO

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Assuntos
Cerebelo , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Cerebelo/metabolismo , Cerebelo/fisiologia , Cerebelo/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Camundongos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
16.
Transl Psychiatry ; 14(1): 269, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956048

RESUMO

Addiction is a complex behavioral disorder characterized by compulsive drug-seeking and drug use despite harmful consequences. The prefrontal cortex (PFC) plays a crucial role in cocaine addiction, involving decision-making, impulse control, memory, and emotional regulation. The PFC interacts with the brain's reward system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc). The PFC also projects to the lateral habenula (LHb), a brain region critical for encoding negative reward and regulating the reward system. In the current study, we examined the role of PFC-LHb projections in regulating cocaine reward-related behaviors. We found that optogenetic stimulation of the PFC-LHb circuit during cocaine conditioning abolished cocaine preference without causing aversion. In addition, increased c-fos expression in LHb neurons was observed in animals that received optic stimulation during cocaine conditioning, supporting the circuit's involvement in cocaine preference regulation. Molecular analysis in animals that received optic stimulation revealed that cocaine-induced alterations in the expression of GluA1 subunit of AMPA receptor was normalized to saline levels in a region-specific manner. Moreover, GluA1 serine phosphorylation on S845 and S831 were differentially altered in LHb and VTA but not in the PFC. Together these findings highlight the critical role of the PFC-LHb circuit in controlling cocaine reward-related behaviors and shed light on the underlying mechanisms. Understanding this circuit's function may provide valuable insights into addiction and contribute to developing targeted treatments for substance use disorders.


Assuntos
Cocaína , Habenula , Neurônios , Optogenética , Córtex Pré-Frontal , Receptores de AMPA , Recompensa , Animais , Córtex Pré-Frontal/metabolismo , Cocaína/farmacologia , Masculino , Habenula/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Vias Neurais , Ratos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fosforilação , Área Tegmentar Ventral/metabolismo , Comportamento Animal
17.
J Chem Inf Model ; 64(13): 5140-5150, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973304

RESUMO

Beta-N-methylamino-l-alanine (BMAA) is a potential neurotoxic nonprotein amino acid, which can reach the human body through the food chain. When BMAA interacts with bicarbonate in the human body, carbamate adducts are produced, which share a high structural similarity with the neurotransmitter glutamate. It is believed that BMAA and its l-carbamate adducts bind in the glutamate binding site of ionotropic glutamate receptor 2 (GluR2). Chronic exposure to BMAA and its adducts could cause neurological illness such as neurodegenerative diseases. However, the mechanism of BMAA action and its carbamate adducts bound to GluR2 has not yet been elucidated. Here, we investigate the binding modes and the affinity of BMAA and its carbamate adducts to GluR2 in comparison to the natural agonist, glutamate, to understand whether these can act as GluR2 modulators. Initially, we perform molecular dynamics simulations of BMAA and its carbamate adducts bound to GluR2 to examine the stability of the ligands in the S1/S2 ligand-binding core of the receptor. In addition, we utilize alchemical free energy calculations to compute the difference in the free energy of binding of the beta-carbamate adduct of BMAA to GluR2 compared to that of glutamate. Our findings indicate that carbamate adducts of BMAA and glutamate remain stable in the binding site of the GluR2 compared to BMAA. Additionally, alchemical free energy results reveal that glutamate and the beta-carbamate adduct of BMAA have comparable binding affinity to the GluR2. These results provide a rationale that BMAA carbamate adducts may be, in fact, the modulators of GluR2 and not BMAA itself.


Assuntos
Diamino Aminoácidos , Carbamatos , Toxinas de Cianobactérias , Receptores de AMPA , Receptores de AMPA/metabolismo , Receptores de AMPA/química , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Simulação de Dinâmica Molecular , Humanos , Sítios de Ligação , Ligação Proteica , Ácido Glutâmico/metabolismo , Ácido Glutâmico/química , Ligantes
18.
Sci Rep ; 14(1): 15855, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982271

RESUMO

Dendritic spines are the postsynaptic compartments of excitatory synapses, however, a substantial subset of spines additionally receives inhibitory input. In such dually innervated spines (DiSs), excitatory long-term potentiation (LTP) mechanisms are suppressed, but can be enabled by blocking tonic inhibitory GABAB receptor signaling. Here we show that LTP mechanisms at DiSs are also enabled by two other excitatory LTP stimuli. In hippocampal neurons, these chemical LTP (cLTP) stimuli induced robust movement of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to DiSs. Such synaptic CaMKII accumulation is an essential LTP mechanism at singly innervated spines (SiSs). Indeed, CaMKII accumulation at DiSs was also accompanied by other readouts for successful LTP induction: spine growth and surface insertion of GluA1. Thus, DiSs are capable of the same LTP mechanisms as SiSs, although induction of these mechanism additionally requires either reduced inhibitory signaling or increased excitatory stimulation. This additional regulation may provide further computational control.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Espinhas Dendríticas , Potenciação de Longa Duração , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Sinapses/fisiologia , Sinapses/metabolismo , Receptores de AMPA/metabolismo , Ratos , Neurônios/metabolismo , Neurônios/fisiologia
19.
Proc Natl Acad Sci U S A ; 121(28): e2317833121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968112

RESUMO

Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs in dorsomedial striatum to favor the incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D1R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD.


Assuntos
Corpo Estriado , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Transporte Proteico , Receptores de AMPA , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação de Sentido Incorreto , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Sinapses/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
20.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999182

RESUMO

An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer's, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure-activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology.


Assuntos
Fármacos Neuroprotetores , Receptores de AMPA , Tiazóis , Humanos , Receptores de AMPA/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Tiazóis/química , Tiazóis/farmacologia , Células HEK293 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...