Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.515
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273179

RESUMO

Autoantibody production is a hallmark of systemic sclerosis (SSc) and the most extensively studied role of B cells in the pathogenesis of the disease. However, the potential involvement of innate immune molecules in B-cell dysfunction in SSc is less understood. B-cell activation is an early event in the pathogenesis of SSc and is influenced by complement receptors (CRs) and Toll-like receptors (TLRs), shaping antibody responses. CR2 and CR1 modulate B-cell activation, and the roles of CR3 and CR4 are associated with autoimmune conditions. We investigated the expression of CRs in B cells from patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and the effect of TLR CD180 ligation on their expression. We found no significant difference in the basal expression of CD21 and CD11c in B cells between dcSSc and healthy controls (HCs). However, reduced basal CD11b expression in B cells in dcSSc compared to HCs, accompanied by a decrease in CD35 and an increase in CD11c expression following CD180 ligation may promote plasma cell formation and autoantibody production. Additionally, we searched for correlations between dcSSc-associated anti-DNA topoisomerase I (Scl-70) autoantibody, anti-citrate synthase (CS) natural autoantibody and complement component 3 (C3) levels and found a negative correlation between C3 and anti-CS autoantibody in dcSSc but not in HCs, supporting the hypothesis that natural autoantibodies could activate the complement system contributing to tissue injury in SSc.


Assuntos
Autoanticorpos , Linfócitos B , Receptores de Complemento , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Pessoa de Meia-Idade , Masculino , Autoanticorpos/imunologia , Adulto , Receptores de Complemento/metabolismo , Esclerodermia Difusa/imunologia , Esclerodermia Difusa/metabolismo , Idoso , Antígenos CD/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/imunologia , Receptores Toll-Like/metabolismo
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 603-609, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39223025

RESUMO

Kupffer cells (KC),an important subset of immune cells in the liver,are essential for maintaining tissue homeostasis and responding quickly to liver damage.The complement receptor of the immunoglobulin superfamily (CRIg) is a receptor protein on the KC membrane.CRIg can not only capture pathogens in the blood flowing through the liver by complement binding but also mediate immune responses by regulating immune cells in the liver.Recent studies have confirmed the role of CRIg in regulating liver immunity.This article reviews the main modes of action of CRIg and the research progress of CRIg in regulating liver immunity.


Assuntos
Células de Kupffer , Fígado , Receptores de Complemento , Humanos , Fígado/imunologia , Fígado/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo , Animais
3.
J Neuroinflammation ; 21(1): 227, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285282

RESUMO

Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.


Assuntos
Complemento C3 , Modelos Animais de Doenças , Transtornos da Memória , Camundongos Knockout , Microglia , Animais , Camundongos , Microglia/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Complemento C3/metabolismo , Complemento C3/genética , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Receptores de Complemento/metabolismo , Receptores de Complemento/genética , Masculino , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Sinapses/metabolismo , Sinapses/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
4.
Neurosci Biobehav Rev ; 165: 105868, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218048

RESUMO

As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing ß-amyloid protein (Aß). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aß, leading to the deposition of Aß and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aß and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.


Assuntos
Doença de Alzheimer , Complemento C3a , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Complemento , Sinapses , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Sinapses/metabolismo , Sinapses/patologia , Animais , Mitocôndrias/metabolismo , Receptores de Complemento/metabolismo , Complemento C3a/metabolismo , Progressão da Doença , Complemento C3/metabolismo
5.
J Cancer Res Clin Oncol ; 150(8): 400, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190192

RESUMO

AIMS: CD93 was recently identified as a promising therapeutic target for angiogenesis blockade in various tumors. Herein, we aimed to investigate the expression and clinicopathological significance of CD93 in gastric adenocarcinoma. METHODS: The gene expression of CD93 gastric adenocarcinoma was assessed using The Cancer Genome Atlas (TCGA) dataset. We then analyzed CD93 expression in 404 cases of gastric adenocarcinoma using immunohistochemistry. Clinicopathological associations and prognostic implications of CD93 expression were further investigated. RESULTS: Using the TCGA dataset, we observed a significantly elevated CD93 gene expression in gastric adenocarcinoma compared to normal gastric tissues. The immunohistochemistry assay revealed a highly variable CD93 expression among patients with gastric adenocarcinoma, consistently demonstrating higher intratumor expression than in adjacent normal tissues. Notably, CD93 was predominantly expressed on the membrane of CD31+ vascular endothelial cells. Furthermore, patients with higher CD93 expression demonstrated significantly poorer overall survival. Accordingly, higher CD93 expression was associated with deeper invasion and a higher possibility of lymph node metastasis and developing tumor thrombus. Cox proportional hazards regression suggested CD93 expression was an independent predictor for the prognosis of patients with gastric adenocarcinoma. CONCLUSIONS: Our study revealed a significantly higher CD93 expression in gastric adenocarcinoma when compared with adjacent normal gastric tissues, and demonstrated its predominant expression on vascular endothelial cells. Our findings also highlighted the clinicopathological significance of CD93 in gastric adenocarcinoma, shedding light on a potential therapeutic target.


Assuntos
Adenocarcinoma , Receptores de Complemento , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Metástase Linfática , Imuno-Histoquímica , Glicoproteínas de Membrana
6.
J Cell Mol Med ; 28(14): e18552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054581

RESUMO

Acute myeloid leukaemia (AML) is a biologically heterogeneous haematological malignancy. This study was performed to identify the potential biomarkers for the prognosis and treatment of AML. We applied weighted gene co-expression network analysis to identify key modules and hub genes related to the prognosis of AML using data from The Cancer Genome Atlas (TCGA). In total, 1581 differentially expressed genes (1096 upregulated and 485 downregulated) were identified between AML patients and healthy controls, with the blue module being the most significant among 14 modules associated with AML morphology. Through functional enrichment analysis, we identified 217 genes in the blue module significantly enriched in 'neutrophil degranulation' and 'neutrophil activation involved in immune response' pathways. The survival analysis revealed six genes (S100A9, S100A8, HK3, CD93, CXCR2 and FGL2) located in the significantly enriched pathway that were notably related to AML survival. We validated the expression of these six genes at gene and single-cell levels and identified methylation loci of each gene, except for S100A8. Finally, in vitro experiments were performed to demonstrate whether the identified hub genes were associated with AML survival. After knockdown of CD93 and FGL2, cell proliferation was significantly reduced in U937 cell line over 5 days. In summary, we identified CD93 and FGL2 as key hub genes related to AML survival, with FGL2 being a novel biomarker for the prognosis and treatment of AML.


Assuntos
Biomarcadores Tumorais , Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Receptores de Complemento , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Leucêmica da Expressão Gênica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Metilação de DNA/genética , Análise de Sobrevida , Fibrinogênio
7.
Exp Neurol ; 379: 114853, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866102

RESUMO

The activation of glial cells is intimately associated with the pathophysiology of neuroinflammation and white matter injury (WMI) during both acute and chronic phases following subarachnoid hemorrhage (SAH). The complement C3a receptor (C3aR) has a dual role in modulating inflammation and contributes to neurodevelopment, neuroplasticity, and neurodegeneration. However, its impact on WMI in the context of SAH remains unclear. In this study, 175 male C57BL/6J mice underwent SAH through endovascular perforation. Oxyhemoglobin (oxy-Hb) was employed to simulate SAH in vitro. A suite of techniques, including immunohistochemistry, transcriptomic sequencing, and a range of molecular biotechnologies, were utilized to evaluate the activation of the C3-C3aR pathway on microglial polarization and WMI. Results revealed that post-SAH abnormal activation of microglia was accompanied by upregulation of complement C3 and C3aR. The inhibition of C3aR decreased abnormal microglial activation, attenuated neuroinflammation, and ameliorated WMI and cognitive deficits following SAH. RNA-Seq indicated that C3aR inhibition downregulated several immune and inflammatory pathways and mitigated cellular injury by reducing p53-induced death domain protein 1 (Pidd1) and Protein kinase RNA-like ER kinase (Perk) expression, two factors mainly function in sensing and responding to cellular stress and endoplasmic reticulum (ER) stress. The deleterious effects of the C3-C3aR axis in the context of SAH may be related to endoplasmic reticulum (ER) stress-dependent cellular injury and inflammasome formation. Agonists of Perk can exacerbate the cellular injury and neuroinflammation, which was attenuated by C3aR inhibition after SAH. Additionally, intranasal administration of C3a during the subacute phase of SAH was found to decrease astrocyte reactivity and alleviate cognitive deficits post-SAH. This research deepens our understanding of the complex pathophysiology of WMI following SAH and underscores the therapeutic potential of C3a treatment in promoting white matter repair and enhancing functional recovery prognosis. These insights pave the way for future clinical application of C3a-based therapies, promising significant benefits in the treatment of SAH and its related complications.


Assuntos
Complemento C3 , Camundongos Endogâmicos C57BL , Microglia , Hemorragia Subaracnóidea , Substância Branca , Animais , Masculino , Camundongos , Complemento C3/metabolismo , Microglia/metabolismo , Microglia/patologia , Receptores de Complemento/metabolismo , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/metabolismo , Substância Branca/patologia , Substância Branca/metabolismo
8.
JCI Insight ; 9(11)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713526

RESUMO

Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and noncanonical effects on nonimmune cells. The adipsin/C3a/C3a receptor 1 (C3aR1) pathway stimulates insulin secretion and sustains pancreatic ß cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that male Adipsin/Cfd-knockout mice exhibited increased energy expenditure and white adipose tissue (WAT) browning. In addition, male adipocyte-specific C3aR1-knockout mice exhibited enhanced WAT thermogenesis and increased respiration. In stark contrast, female adipocyte-specific C3aR1-knockout mice displayed decreased brown fat thermogenesis and were cold intolerant. Female mice expressed lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 was also lower in female subcutaneous adipose tissue than in males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis and defense against cold stress. Our findings establish a potentially new role of the alternative complement pathway in adaptive thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.


Assuntos
Tecido Adiposo Marrom , Fator D do Complemento , Camundongos Knockout , Receptores de Complemento , Termogênese , Animais , Termogênese/genética , Fator D do Complemento/metabolismo , Fator D do Complemento/genética , Feminino , Masculino , Camundongos , Receptores de Complemento/metabolismo , Receptores de Complemento/genética , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Tecido Adiposo Branco/metabolismo , Adipócitos/metabolismo , Caracteres Sexuais , Fatores Sexuais
9.
Eur J Immunol ; 54(8): e2350815, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38778507

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid ß plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.


Assuntos
Doença de Alzheimer , Receptores de Complemento , Transdução de Sinais , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Humanos , Animais , Transdução de Sinais/imunologia , Receptores de Complemento/metabolismo , Receptores de Complemento/imunologia , Camundongos , Imunidade Inata , Modelos Animais de Doenças
10.
Brain Res Bull ; 213: 110986, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810789

RESUMO

Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.


Assuntos
Infarto da Artéria Cerebral Média , Camundongos Knockout , Doenças Neuroinflamatórias , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Camundongos Endogâmicos C57BL , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptores de Complemento/antagonistas & inibidores , Receptores de Complemento/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
11.
Front Immunol ; 15: 1351656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711524

RESUMO

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.


Assuntos
Proteínas de Transporte , Complemento C1q , Inibidores de Checkpoint Imunológico , Glicoproteínas de Membrana , Proteínas Mitocondriais , Neoplasias , Receptores de Complemento , Humanos , Complemento C1q/metabolismo , Complemento C1q/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Complemento/metabolismo , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Microambiente Tumoral/imunologia
12.
Prog Neurobiol ; 236: 102614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641040

RESUMO

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Assuntos
Depressão , Lipopolissacarídeos , Camundongos Knockout , Neurônios , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Depressão/metabolismo , Depressão/induzido quimicamente , Receptores de Complemento/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Ácido Glutâmico/metabolismo
13.
J Biochem Mol Toxicol ; 38(4): e23688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511888

RESUMO

In women, breast cancer (BC) accounts for 7%-10% of all cancer cases and is one of the most common cancers. To identify a new method for treating BC, the role of CD93 and its underlying mechanism were explored. MDA-MB-231 cells were used in this study and transfected with si-CD93, si-MMRN2, oe-CD93, si-integrin ß1, or oe-SP2 lentivirus. After MDA-MB-231 cells were transfected with si-NC or si-CD93, they were injected into nude mice by subcutaneous injection at a dose of 5 × 106/mouse to construct a BC animal model. The expression of genes and proteins and cell migration, invasion and vasculogenic mimicry were detected by RT‒qPCR, western blot, immunohistochemistry, immunofluorescence, Transwell, and angiogenesis assays. In pathological samples and BC cell lines, CD93 was highly expressed. Functionally, CD93 promoted the proliferation, migration, and vasculogenic mimicry of MDA-MB-231 cells. Moreover, CD93 interacts with MMRN2 and integrin ß1. Knockdown of CD93 and MMRN2 can inhibit the activation of integrin ß1, thereby inhibiting the PI3K/AKT/SP2 signaling pathway and inhibiting BC growth and vasculogenic mimicry. In conclusion, the binding of CD93 to MMRN2 can activate integrin ß1, thereby activating the PI3K/AKT/SP2 signaling pathway and subsequently promoting BC growth and vasculogenic mimicry.


Assuntos
Neoplasias da Mama , Integrina beta1 , Glicoproteínas de Membrana , Receptores de Complemento , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores de Complemento/metabolismo , Glicoproteínas de Membrana/metabolismo
14.
Int Immunopharmacol ; 131: 111802, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467082

RESUMO

Acute lung injury (ALI) is an acute respiratory-related progressive disorder, which lacks specific pharmacotherapy. Icariin (ICA) has been shown to be effective in treating ALI. However, the targets and pharmacological mechanisms underlying the effects of ICA in the treatment of ALI are relatively lacking. Based on network pharmacology and molecular docking analyses, the gene functions and potential target pathways of ICA in the treatment of ALI were determined. In addition, the underlying mechanisms of ICA were verified by immunohistochemistry, immunofluorescence, quantitative Real-time PCR, and Western blot in LPS-induced ALI mice. The biological processes targeted by ICA in the treatment of ALI included the pathological changes, inflammatory response, and cell signal transduction. Network pharmacology, molecular docking, and in vivo experimental results revealed that ICA inhibited the complement C5a-C5aR1 axis, TLR4 mediated NF-κB, MAPK, and JAK2-STAT3 signaling pathways related gene and protein expressions, and decreased inflammatory cytokine, chemokine, adhesion molecule expressions, and mitochondrial apoptosis in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Complemento C5a , Flavonoides , Lipopolissacarídeos , Receptores de Complemento , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Complemento C5a/metabolismo , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptores de Complemento/metabolismo
15.
Int J Biol Macromol ; 260(Pt 2): 129357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216011

RESUMO

Osteoporosis is a prevalent systemic skeletal disorder, particularly affecting postmenopausal women, primarily due to excessive production and activation of osteoclasts. However, the current anti-osteoporotic drugs utilized in clinical practice may lead to certain side effects. Therefore, it is necessary to further unravel the potential mechanisms regulating the osteoclast differentiation and to identify novel targets for osteoporosis treatment. This study revealed the most significant decline in VSIG4 expression among the VSIG family members. VSIG4 overexpression significantly inhibited RANKL-induced osteoclastogenesis and bone resorption function. Mechanistically, both western blot and immunofluorescence assay results demonstrated that VSIG4 overexpression attenuated the expression of osteoclast marker genes and dampened the activation of MAPK and NF-κB signaling pathways. Furthermore, VSIG4 overexpression could inhibit the generation of reactive oxygen species (ROS) and stimulate the expression of Nrf2 along with its downstream antioxidant enzymes via interaction with Keap1. Notably, a potent Nrf2 inhibitor, ML385, could reverse the inhibitory effect of VSIG4 on osteoclast differentiation. In line with these findings, VSIG4 overexpression also mitigated bone loss induced by OVX and attenuated the activation of osteoclasts in vivo. In conclusion, our results suggest that VSIG4 holds promise as a novel target for addressing postmenopausal osteoporosis. This is achieved by suppressing osteoclast formation via enhancing Nrf2-dependent antioxidant response against reactive oxygen species production.


Assuntos
Osteogênese , Osteoporose , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos , NF-kappa B/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Diferenciação Celular , Receptores de Complemento/metabolismo , Receptores de Complemento/uso terapêutico
16.
Structure ; 32(3): 282-291.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38218180

RESUMO

The CD93/IGFBP7 axis proteins are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Their upregulation contributes to tumor vascular abnormality and a blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, the interactions of these proteins with each other remain unclear. In this study, we determined a partial structure of the human CD93-IGFBP7 complex comprising the EGF1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides leads for the development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.


Assuntos
Células Endoteliais , Neoplasias , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Transdução de Sinais , Microambiente Tumoral
17.
Trends Biochem Sci ; 49(4): 280-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233283

RESUMO

Recent advances in cryo-electron microscopy (Cryo-EM) have revolutionized our understanding of the complement C5a/C3a receptors that are crucial in inflammation. A recent report by Yadav et al. has elucidated the activation, ligand binding, selectivity, and signaling bias of these receptors, thereby enhancing structure-guided drug discovery. This paves the way for more effective anti-inflammatory therapies that target these receptors with unprecedented precision.


Assuntos
Anafilatoxinas , Complemento C5a , Anafilatoxinas/química , Anafilatoxinas/metabolismo , Complemento C5a/metabolismo , Complemento C3a/metabolismo , Microscopia Crioeletrônica , Receptores de Complemento/metabolismo
18.
Hypertension ; 81(1): 138-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909169

RESUMO

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Assuntos
Complemento C3a , Hipertensão , Animais , Humanos , Camundongos , Anafilatoxinas , Angiotensina II , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Fatores de Transcrição Forkhead , Hipertensão/genética , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
19.
Tissue Cell ; 86: 102285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113649

RESUMO

Inflammatory bowel disease (IBD) is one of the most common diseases in the digestive system related to aberrant inflammation. V-set and immunoglobulin domain-containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, has been reported to exert anti-inflammatory activity in immune-related diseases, which has been not explored in IBD yet. This study aims to explore the role and the potential mechanism of VSIG4 in IBD. Clinical samples were obtained from IBD patients and were examined by immunohistochemical staining. THP-1 cells were differentiated into macrophages, and then stimulated with IL-4 plus IL-13 or LPS to induce pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. Cell transfection was conducted to overexpress VSIG4. Western blot and immunofluorescence assays were performed to assess NLRP3 inflammasome- and pyroptosis-related proteins. Cytokines were measured using ELISA. A cell co-culture model of Caco-2 cells and VSIG4-mediated macrophages were established. Cell viability and apoptosis was examined by CCK-8 and flow cytometry assays, respectively. VSIG4 was downregulated in IBD and was negatively correlated with NLRP3 inflammasome. M1 macrophages exhibited higher levels of NLRP3 inflammasome, pyroptosis and inflammatory response than M2 macrophages, while VSIG4 overexpression efficiently reversed these changes in M1 macrophages. In addition, VSIG4 overexpression partly abolished M1 macrophages-induced cell viability loss, inflammatory response, apoptosis and pyroptosis in Caco-2 cells. Collectively, VSIG4 might alleviate intestinal inflammation through regulating M1/M2 macrophages, providing novel insights for the treatment of human IBD.


Assuntos
Inflamassomos , Doenças Inflamatórias Intestinais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Células CACO-2 , Macrófagos/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Anti-Inflamatórios/farmacologia , Receptores de Complemento/metabolismo
20.
STAR Protoc ; 4(4): 102758, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38032798

RESUMO

The complement receptors C3aR and C5aR1 are promising therapeutic targets. Here, we present a protocol to screen the effects of different agonists and antagonists on these receptors in vitro, using phosphorylated extracellular signal-regulated kinase (ERK) as a readout. We describe steps for isolating human monocyte-derived macrophages, culturing and preparing Chinese hamster ovary cells stably expressing human C5aR1 or C3aR, performing pharmacological assays, and detecting phospho-ERK1/2 in the cell lysate. This protocol can also be performed using other cell lines. For complete details on the use and execution of this protocol, please refer to Li et al. (2020)1 and Li et al.2.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores de Complemento , Cricetinae , Animais , Humanos , Fosforilação , Células CHO , Cricetulus , Receptores de Complemento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...