Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.439
Filtrar
1.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735637

RESUMO

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Assuntos
Corpo Estriado , Extinção Psicológica , Medo , Receptores de Dopamina D1 , Animais , Medo/fisiologia , Medo/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Ratos Long-Evans , Dopamina/metabolismo , Dopamina/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38729234

RESUMO

Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 µg/0.5 µl, Saline) as a D1R antagonist before ICV injection of CBD (10 µg/5 µl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 µg/0.5 µl) before CBD injection (50 µg/5 µl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 µg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 µg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.


Assuntos
Benzazepinas , Canabidiol , Extinção Psicológica , Metanfetamina , Ratos Wistar , Receptores de Dopamina D1 , Animais , Metanfetamina/farmacologia , Canabidiol/farmacologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Receptores de Dopamina D1/antagonistas & inibidores , Benzazepinas/farmacologia , Ratos , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Antagonistas de Dopamina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos
3.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705568

RESUMO

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Assuntos
Dopamina , Etanol , Núcleo Accumbens , Ocitocina , Receptores de Dopamina D1 , Receptores de Ocitocina , Recompensa , Animais , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Masculino , Etanol/farmacologia , Etanol/administração & dosagem , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Dopamina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Meio Ambiente , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Predomínio Social , Comportamento Social , Motivação/fisiologia , Motivação/efeitos dos fármacos
4.
Psychopharmacology (Berl) ; 241(6): 1111-1124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702473

RESUMO

RATIONALE: Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES: The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS: The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.


Assuntos
Dopamina , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Dopamina/metabolismo , Animais , Humanos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Fatores de Tempo , Antagonistas de Dopamina/farmacologia , Recompensa , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/administração & dosagem
5.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661668

RESUMO

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Percepção do Tempo , Feminino , Masculino , Animais , Percepção do Tempo/fisiologia , Percepção do Tempo/efeitos dos fármacos , Humanos , Caracteres Sexuais , Dopamina/metabolismo , Ratos , Receptores de Dopamina D2/metabolismo , Sulpirida/farmacologia , Quimpirol/farmacologia , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/administração & dosagem , Adulto , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Benzazepinas/farmacologia , Adulto Jovem , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Memória de Curto Prazo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos
6.
Arch Pharm Res ; 47(4): 360-376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38551761

RESUMO

Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.


Assuntos
Núcleo Accumbens , Psicotrópicos , Receptores de Dopamina D1 , Recompensa , Transdução de Sinais , Animais , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/agonistas , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Psicotrópicos/farmacologia , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Fenetilaminas/farmacologia , Autoadministração , Dopamina/metabolismo
7.
J Exp Clin Cancer Res ; 43(1): 25, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246990

RESUMO

BACKGROUND: Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS: GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS: Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS: DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.


Assuntos
Antagonistas de Dopamina , Glioblastoma , Glioma , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Encéfalo , Proteínas Estimuladoras de Ligação a CCAAT/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dopamina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos Nus , Família Multigênica , Receptores de Dopamina D1/antagonistas & inibidores , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Proteínas Proto-Oncogênicas c-myc/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo
8.
J Med Chem ; 65(5): 3786-3797, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35175768

RESUMO

Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.


Assuntos
Citocromo P-450 CYP3A , Fármacos Neuroprotetores , Receptores de Dopamina D1/antagonistas & inibidores , Regulação Alostérica , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Interações Medicamentosas , Humanos , Receptores de Dopamina D1/metabolismo
9.
Am J Physiol Cell Physiol ; 322(3): C327-C337, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986020

RESUMO

In vivo administration of dopamine (DA) receptor (DR)-related drugs modulate gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.


Assuntos
Celulas Principais Gástricas/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Pepsinogênio A/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D2/agonistas , Células Secretoras de Somatostatina/efeitos dos fármacos , Somatostatina/metabolismo , Animais , Celulas Principais Gástricas/metabolismo , Antagonistas de Dopamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Via Secretória , Células Secretoras de Somatostatina/metabolismo
10.
Brain Res Bull ; 181: 121-128, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077843

RESUMO

Beta band (12-30 Hz) hypersynchrony within the basal ganglia-thalamocortical network has been suggested as a hallmark of Parkinson's disease (PD) pathophysiology. Abnormal beta band oscillations are found in the pedunculopontine nucleus (PPN) and primary motor cortex (M1) and are correlated with dopamine depletion. Dopamine acts locomotion and motor performance mainly through dopamine receptors (D1 and D2). However, the precise mechanism by which dopamine receptors regulate beta band electrophysiological activities between the PPN and M1 is still unknown. Here, we recorded the neuronal activity of the PPN and M1 simultaneously by the administration of the drug (SCH23390 and raclopride), selectively blocking the dopamine D1 receptor and D2 receptor. We discovered that the increased coherent activity of the beta band (12-30 Hz) between M1 and PPN in the lesioned group could be reduced and restored by injecting raclopride in the resting and wheel running states. Our studies revealed the unique role of D2 dopamine receptor signaling in regulating ß band oscillatory activity in M1 and PPN and their relationship after the loss of dopamine, which contributes to elucidating the underlying mechanism of the pathophysiology of PD.


Assuntos
Ritmo beta/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Córtex Motor/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Modelos Animais de Doenças , Racloprida/farmacologia , Ratos
11.
Nutr Neurosci ; 25(1): 137-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32050863

RESUMO

Objectives: Inbred mouse strains differ in the pharmacology mediating sugar and fat intake and conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice are differentially sensitive to dopamine (DA) D1, opioid and muscarinic receptor antagonism of sucrose, saccharin or fat intake, and to DA, opioid, muscarinic and N-methyl-D-aspartate (NMDA) receptor antagonism of acquisition of sucrose-CFP. DA D1, opioid and NMDA receptor antagonists differentially alter fat (Intralipid)-CFP in BALB/c and SWR mice. The present study examined whether naltrexone, SCH23390 or MK-801 altered acquisition and expression of Intralipid-CFP in C57BL/6 mice.Methods: In acquisition, groups of male food-restricted C57BL/6 mice received vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 µg/kg) before 10 training sessions in which mice alternately consumed two novel-flavored 5% (CS+) and 0.5% (CS-) Intralipid solutions. Six two-bottle CS choice tests followed with both flavors mixed in 0.5% Intralipid without injections. In expression, C57BL/6 mice underwent the 10 training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 µg/kg).Results: Fat-CFP acquisition in C57BL/6 mice was significantly though marginally reduced following naltrexone, SCH23390 and MK-801. Fat-CFP expression was similarly reduced by naltrexone, SCH23390 and MK-801 in C57BL/6 mice. Discussion: C57BL/6 mice were more sensitive to DA D1, opioid and NMDA antagonists in the expression of fat-CFP relative to sugar-CFP, but were less sensitive to DA D1 and NMDA antagonists in the acquisition of fat-CFP relative to sugar-CFP.


Assuntos
Gorduras na Dieta , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Paladar/fisiologia , Animais , Benzazepinas/farmacologia , Condicionamento Clássico , Maleato de Dizocilpina/farmacologia , Emulsões , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Fosfolipídeos , Receptores Opioides , Óleo de Soja , Paladar/efeitos dos fármacos
12.
Behav Brain Res ; 417: 113583, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34530043

RESUMO

Chronic stress exposure causes increased vulnerability to future relapse-like behavior in male, but not female, rats with a history of palatable food self-administration. These effects are mediated by dopamine D1-like receptors, but the anatomical location of chronic stress' dopaminergic mechanism is not known. Thus, male rats were trained to respond for palatable food pellets in daily sessions. During subsequent forced abstinence from food self-administration, stress was manipulated (0 or 3 h restraint/day for 7 days). Rats also received bilateral microinjections of the D1-like receptor antagonist SCH-23390 (0.25 µg/0.5 µl/side) or vehicle (0.5 µl/side) delivered to either prelimbic or infralimbic medial prefrontal cortex prior to daily treatments. Relapse tests in the presence of food-associated cues were conducted 7 days after the last treatment. Stress caused an increase and a decrease in responding during relapse tests in rats that received prelimbic vehicle and SCH-23390 infusions, respectively, relative to unstressed rats. In rats receiving IL infusions, however, stress caused an increase in responding regardless of whether the infusion was vehicle or SCH-23390. These results establish a specific role for prelimbic D1-like receptors in chronic stress-potentiated relapse.


Assuntos
Benzazepinas/antagonistas & inibidores , Sinais (Psicologia) , Sistema Límbico/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Estresse Psicológico , Animais , Condicionamento Clássico , Comportamento Alimentar , Masculino , Microinjeções , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Recidiva , Restrição Física , Autoadministração
13.
Behav Brain Res ; 419: 113669, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800548

RESUMO

The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.


Assuntos
Antagonistas de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Consolidação da Memória/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Neostriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Percepção do Tempo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Masculino , Antagonistas Muscarínicos/administração & dosagem , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
14.
Phytochemistry ; 194: 113015, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34798412

RESUMO

A phytochemical investigation on chemical constituents from the rhizomes of Menispermum dauricum DC. identified eight undescribed dimeric alkaloids with structurally diverse monomeric isoquinoline. Alkaloid structures were elucidated by a combination of spectroscopic data analyses and time-dependent density functional theory (TDDFT) ECD calculation. The isolates were evaluated for inhibitory effect on dopamine D1 receptor and compound 1 exhibited potent D1 receptor antagonistic activity with an IC50 value of 8.4 ± 2.0 µM.


Assuntos
Alcaloides , Isoquinolinas , Menispermum , Receptores de Dopamina D1/antagonistas & inibidores , Alcaloides/farmacologia , Isoquinolinas/farmacologia , Menispermum/química , Compostos Fitoquímicos/farmacologia
15.
Ann Clin Transl Neurol ; 8(12): 2302-2308, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802187

RESUMO

The primary dystonia DYT6 is caused by mutations in the transcription factor Thanatos-associated protein 1 (THAP1). To understand THAP1's functions, we generated mice lacking THAP1 in the nervous system. THAP1 loss causes locomotor deficits associated with transcriptional changes. Since many of the genes misregulated involve dopaminergic signaling, we pharmacologically challenged the two striatal canonical dopamine pathways: the direct, regulated by the D1 receptor, and the indirect, regulated by the D2 receptor. We discovered that depleting THAP1 specifically interferes with the D2 receptor responses, pointing to a selective misregulation of the indirect pathway in DYT6 with implications for pathogenesis and treatment.


Assuntos
Proteínas de Ligação a DNA , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Distonia Muscular Deformante/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Distonia Muscular Deformante/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos
16.
Med Sci Monit ; 27: e933278, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34657931

RESUMO

BACKGROUND Sodium salicylate (SS) induces excitotoxicity of spiral ganglion neurons (SGNs) by inhibiting the response of γ-aminobutyric acid type A receptors (GABAARs). Our previous studies have shown that SS can increase the internalization of GABAARs on SGNs, which involves dopamine D1-like receptors (D1Rs) and related signaling pathways. In this study, we aimed to explore the role of D1Rs and their downstream molecule protein kinase C (PKC) in the process of SS inhibiting GABAARs. MATERIAL AND METHODS The expression of D1Rs and GABARγ2 on rat cochlear SGNs cultured in vitro was tested by immunofluorescence. Then, the SGNs were exposed to SS, D1R agonist (SKF38393), D1R antagonist (SCH23390), clathrin/dynamin-mediated endocytosis inhibitor (dynasore), and PKC inhibitor (Bisindolylmaleimide I). Western blotting and whole-cell patch clamp technique were used to assess the changes of surface and total protein of GABARγ2 and GABA-activated currents. RESULTS Immunofluorescence showed that D1 receptors (DRD1) were expressed on SGNs. Data from western blotting showed that SS promoted the internalization of cell surface GABAARs, and activating D1Rs had the same result. Inhibiting D1Rs and PKC decreased the internalization of GABAARs. Meanwhile, the phosphorylation level of GABAARγ2 S327 affected by PKC was positively correlated with the degree of internalization of GABAARs. Moreover, whole-cell patch clamp recording showed that inhibition of D1Rs or co-inhibition of D1Rs and PKC attenuated the inhibitory effect of SS on GABA-activated currents. CONCLUSIONS D1Rs mediate the GABAAR internalization induced by SS via a PKC-dependent manner and participate in the excitotoxic process of SGNs.


Assuntos
Ototoxicidade/patologia , Proteína Quinase C/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de GABA-A/metabolismo , Salicilato de Sódio/efeitos adversos , Gânglio Espiral da Cóclea/patologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Hidrazonas/farmacologia , Masculino , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ototoxicidade/etiologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/efeitos dos fármacos
17.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34556558

RESUMO

Dopaminergic modulation is essential for the control of voluntary movement; however, the role of dopamine in regulating the neural excitability of the primary motor cortex (M1) is not well understood. Here, we investigated two modes by which dopamine influences the input/output function of M1 neurons. To test the direct regulation of M1 neurons by dopamine, we performed whole-cell recordings of excitatory neurons and measured excitability before and after local, acute dopamine receptor blockade. We then determined whether chronic depletion of dopaminergic input to the entire motor circuit, via a mouse model of Parkinson's disease, was sufficient to shift M1 neuron excitability. We show that D1 receptor (D1R) and D2R antagonism altered subthreshold and suprathreshold properties of M1 pyramidal neurons in a layer-specific fashion. The effects of D1R antagonism were primarily driven by changes to intrinsic properties, while the excitability shifts following D2R antagonism relied on synaptic transmission. In contrast, chronic depletion of dopamine to the motor circuit with 6-hydroxydopamine induced layer-specific synaptic transmission-dependent shifts in M1 neuron excitability that only partially overlapped with the effects of acute D1R antagonism. These results suggest that while acute and chronic changes in dopamine modulate the input/output function of M1 neurons, the mechanisms engaged are distinct depending on the duration and origin of the manipulation. Our study highlights the broad influence of dopamine on M1 excitability by demonstrating the consequences of local and global dopamine depletion on neuronal input/output function.


Assuntos
Dopamina , Córtex Motor , Animais , Antagonistas dos Receptores de Dopamina D2 , Camundongos , Córtex Motor/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
18.
Mol Neurobiol ; 58(11): 5667-5681, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387814

RESUMO

The activity of the midbrain dopamine system reflects the valence of environmental events and modulates various brain structures to modify an organism's behavior. A series of recent studies reported that the direct and indirect pathways in the striatum are critical for instrumental learning, but the dynamic changes in dopamine neuron activity that occur during negative reinforcement learning are still largely unclear. In the present study, by using a negative reinforcement learning paradigm employing foot shocks as aversive stimuli, bidirectional changes in substantia nigra pars compacta (SNc) dopamine neuron activity in the learning and habituation phases were observed. The results showed that in the learning phase, before mice had mastered the skill of escaping foot shocks, the presence of foot shocks induced a transient reduction in the activity of SNc dopamine neurons; however, in the habituation phase, in which the learned skill was automated, it induced a transient increase. Microinjection of a dopamine D1 receptor (D1R) or D2 receptor (D2R) antagonist into the dorsomedial striatum (DMS) significantly impaired learning behavior, suggesting that the modulatory effects of dopamine on both the direct and indirect pathways are required. Moreover, during the learning phase, excitatory synaptic transmission to DMS D2R-expressing medium spiny neurons (D2-MSNs) was potentiated. However, upon completion of the learning and habituation phases, the synapses onto D1R-expressing medium spiny neurons (D1-MSNs) were potentiated, and those onto D2-MSNs were restored to normal levels. The bidirectional changes in both SNc dopamine neuron activity and DMS synaptic plasticity might be the critical neural correlates for negative reinforcement learning.


Assuntos
Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/fisiologia , Reforço Psicológico , Animais , Benzazepinas/farmacologia , Corpo Estriado/fisiologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Eletrochoque , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Ácido Glutâmico/metabolismo , Habituação Psicofisiológica/efeitos dos fármacos , Habituação Psicofisiológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Proteínas Recombinantes/metabolismo , Análise de Célula Única , Sacarose , Transmissão Sináptica
19.
Neuropharmacology ; 197: 108747, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364897

RESUMO

Antipsychotic treatment can produce a dopamine-supersensitive state, potentiating the response to dopamine receptor stimulation. In both schizophrenia patients and rats, this is linked to tolerance to ongoing antipsychotic treatment. In rodents, dopamine supersensitivity is often confirmed by an exaggerated psychomotor response to d-amphetamine after discontinuation of antipsychotic exposure. Here we examined in rats the dopaminergic mechanisms mediating this enhanced behavioural response, as this could uncover pathophysiological processes underlying the expression of antipsychotic-evoked dopamine supersensitivity. Rats received 0.5 mg/kg/day haloperidol via osmotic minipump for 2 weeks, before treatment was discontinued. After cessation of antipsychotic treatment, rats showed a supersensitive psychomotor response to the D2 agonist quinpirole, but not to the D1 partial agonist SKF38393 or the dopamine reuptake blocker GBR12783. Furthermore, acute D1 receptor blockade (using SCH39166) decreased the exaggerated psychomotor response to d-amphetamine in haloperidol-pretreated rats, whereas acute D2 receptor blockade (using sulpiride) enhanced it. Thus, after discontinuation of antipsychotic treatment, D1- and D2-mediated transmission differentially modulate the expression of a supersensitive response to d-amphetamine. This supersensitive behavioural response was accompanied by enhanced GSK3ß activity and suppressed ERK1/2 activity in the nucleus accumbens (but not caudate-putamen), suggesting increased mesolimbic D2 transmission. Finally, after discontinuing haloperidol treatment, neither increasing ventral midbrain dopamine impulse flow nor infusing d-amphetamine into the cerebral ventricles triggered the expression of already established dopamine supersensitivity, suggesting that peripheral effects are required. Thus, while dopamine receptor-mediated signalling regulates the expression of antipsychotic-evoked dopamine supersensitivity, a simple increase in central dopamine neurotransmission is insufficient to trigger this supersensitivity.


Assuntos
Antipsicóticos/efeitos adversos , Dopamina/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Dextroanfetamina/farmacologia , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Haloperidol/farmacologia , Sistema Límbico/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos
20.
Behav Pharmacol ; 32(6): 524-532, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397448

RESUMO

3,4-Methylenedioxypyrovalerone (MDPV), one of several synthetic cathinones, is a popular constituent of illicit 'bath salts'. In preclinical studies utilizing drug discrimination methods with male rodents, MDPV has been characterized as similar to both cocaine and 3,4-methylenedioxymethamphetamine-hydrochloride (MDMA). Whereas few drug discrimination studies have utilized female rats, the current study evaluated the discriminative stimulus effects of MDPV in 12 adult female Sprague-Dawley rats trained to discriminate 0.5 mg/kg MDPV from saline under a fixed ratio 20 schedule of food reinforcement. Stimulus substitution was assessed with MDPV and its enantiomers, other synthetic cathinones [alpha pyrrolidinopentiophenone-hydrochloride(α-PVP), 4-methylmethcathinone (4-MMC)], other dopamine agonists (cocaine, [+)-methamphetamine] and serotonin agonists [MDMA, lysergic acid diethylamide (LSD)] Stimulus antagonism was assessed with the dopamine D1 receptor antagonist, Sch 23390 and the D2 receptor antagonist, haloperidol. Cocaine and (+)-methamphetamine engendered full stimulus generalization to MDPV with minimal effects on response rate. LSD produced partial substitution, whereas MDMA and 4-MMC produced complete substitution, and all these serotonergic compounds produced dose-dependent response suppression. (S)-MDPV and α-PVP engendered full substitution with similar potency to the racemate, while (R)-MDPV failed to substitute up to 5 mg/kg. Both Sch 23390 and haloperidol attenuated the discrimination of low MDPV doses and essentially shifted the dose-response curve to the right but failed to block discrimination of the training dose. These findings are generally consistent with previous reports based exclusively on male rodents. Moreover, they confirm the contribution of dopaminergic mechanisms but do not rule out the possible contribution of other neurotransmitter actions to the interoceptive stimulus effects of MDPV.


Assuntos
Benzodioxóis/farmacologia , Pirrolidinas/farmacologia , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Benzazepinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Alucinógenos/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/análise , Receptores de Dopamina D2/metabolismo , Fatores Sexuais , Transmissão Sináptica/fisiologia , Catinona Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...