Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.898
Filtrar
1.
Elife ; 122024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240259

RESUMO

Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Hormônios de Inseto , Neurônios , Receptores de Esteroides , Comportamento Sexual Animal , Animais , Drosophila melanogaster/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Comportamento Sexual Animal/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/fisiologia , Neurônios/metabolismo , Hormônios de Inseto/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Ecdisona/metabolismo , Metamorfose Biológica/fisiologia , Masculino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas de Insetos
2.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337689

RESUMO

This study aims to investigate the effect of a supraphysiological dose of testosterone on the levels of sex steroid hormones and the expression and distribution of sex steroid receptors in the uterus during the endometrial receptivity development period. In this study, adult female Sprague-Dawley rats (n = 24) were subcutaneously administered 1 mg/kg/day of testosterone alone or in combination with the inhibitors (finasteride or anastrozole or both) from day 1 to day 3 post-coitus, while a group of six untreated rats served as a control group. The rats were sacrificed on the evening of post-coital day 4 of to measure sex steroid hormone levels by ELISA. Meanwhile, gene expression and protein distribution of sex steroid receptors were analysed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), respectively. In this study, treatment with a supraphysiological dose of testosterone led to a significant reduction in oestrogen and progesterone levels compared to the control. The mRNA expression of the androgen receptor increased significantly in all treatment groups, while the mRNA expression of both the progesterone receptor and the oestrogen receptor-α decreased significantly in all treatment groups. The IHC findings of all sex steroid receptors were coherent with all mRNAs involved. This study shows that a supraphysiological dose of testosterone was able to interrupt the short period of the implantation window. This finding could serve as a basis for understanding the role of testosterone in endometrial receptivity in order to develop further therapeutic approaches targeting androgen-mediated disorders of endometrial receptivity.


Assuntos
Endométrio , Ratos Sprague-Dawley , Testosterona , Animais , Feminino , Testosterona/metabolismo , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Ratos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Implantação do Embrião/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Progesterona/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1383917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119292

RESUMO

Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear. Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2. We utilized a combination of biochemical and cellular assays to elucidate the interactions between OSBP and SARS-CoV-2 non-structural proteins (Nsps) and other viral proteins. Results: Our findings demonstrate that OSBP positively regulates coronavirus replication. Moreover, treatment with ZJ-1 resulted in reduced OSBP levels and exhibited potent antiviral effects against multiple coronaviruses. Through our investigation, we identified specific interactions between OSBP and SARS-CoV-2 Nsps, particularly Nsp3, Nsp4, and Nsp6, which are involved in double-membrane vesicle formation-a crucial step in viral replication. Additionally, we observed that Nsp3 a.a.1-1363, Nsp4, and Nsp6 target vesicle-associated membrane protein (VAMP)-associated protein B (VAP-B), which anchors OSBP to the ER membrane. Interestingly, the interaction between OSBP and VAP-B is disrupted by Nsp3 a.a.1-1363 and partially impaired by Nsp6. Furthermore, we identified SARS-CoV-2 orf7a, orf7b, and orf3a as additional OSBP targets, with OSBP contributing to their stabilization. Conclusion: Our study highlights the significance of OSBP in coronavirus replication and identifies it as a promising target for the development of antiviral therapies against SARS-CoV-2 and other coronaviruses. These findings underscore the potential of OSBP-targeted interventions in combating coronavirus infections.


Assuntos
Antivirais , Receptores de Esteroides , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Replicação Viral/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Antivirais/farmacologia , Receptores de Esteroides/metabolismo , Proteínas não Estruturais Virais/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Chlorocebus aethiops , Células Vero , Proteínas Virais/metabolismo , Células HEK293 , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Proteínas Viroporinas/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Ligação Proteica
5.
Cells ; 13(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39195203

RESUMO

Endoplasmic reticulum (ER)-endolysosome interactions regulate cholesterol exchange between the ER and the endolysosome. ER-endolysosome membrane contact sites mediate the ER-endolysosome interaction. VAP-ORP1L (vesicle-associated membrane protein-associated protein- OSBP-related protein 1L) interaction forms the major contact site between the ER and the lysosome, which is regulated by Rab7. RILP (Rab7-interacting lysosomal protein) is the downstream effector of Rab7, but its role in the organelle interaction between the ER and the lysosome is not clear. In this study, we found RILP interacts with ORP1L to competitively inhibit the formation of the VAP-ORP1L contact site. Immunofluorescence microscopy revealed that RILP induces late endosome/lysosome clustering, which reduces the contact of endolysosomes with the ER, interfering with the ER-endolysosome interaction. Further examination demonstrated that over-expression of RILP results in the accumulation of cholesterol in the clustered endolysosomes, which triggers cellular autophagy depending on RILP. Our results suggest that RILP interferes with the ER-endolysosome interaction to inhibit cholesterol flow from the endolysosome to the ER, which feedbacks to trigger autophagy.


Assuntos
Colesterol , Retículo Endoplasmático , Endossomos , Lisossomos , Lisossomos/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Endossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Células HeLa , Receptores de Esteroides/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ligação Proteica , proteínas de unión al GTP Rab7 , Células HEK293
6.
Elife ; 122024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106189

RESUMO

Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.


Assuntos
Retículo Endoplasmático , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielinas/biossíntese , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Multimerização Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Técnicas de Inativação de Genes , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese
7.
Front Endocrinol (Lausanne) ; 15: 1458422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188914

RESUMO

Despite the lack of endogenous synthesis and relevant nuclear receptors, several papers have been published over the decades claiming that the physiology of mollusks is affected by natural and synthetic sex steroids. With scant evidence for the existence of functional steroid nuclear receptors in mollusks, some scientists have speculated that the effects of steroids might be mediated via membrane receptors (i.e. via non-genomic/non-classical actions) - a mechanism that has been well-characterized in vertebrates. However, no study has yet investigated the ligand-binding ability of such receptor candidates in mollusks. The aim of the present study was to further trace the evolution of the endocrine system by investigating the presence of functional membrane sex steroid receptors in a mollusk, the great pond snail (Lymnaea stagnalis). We detected sequences homologous to the known vertebrate membrane sex steroid receptors in the Lymnaea transcriptome and genome data: G protein-coupled estrogen receptor-1 (GPER1); membrane progestin receptors (mPRs); G protein-coupled receptor family C group 6 member A (GPRC6A); and Zrt- and Irt-like protein 9 (ZIP9). Sequence analyses, including conserved domain analysis, phylogenetics, and transmembrane domain prediction, indicated that the mPR and ZIP9 candidates appeared to be homologs, while the GPER1 and GPRC6A candidates seemed to be non-orthologous receptors. All candidates transiently transfected into HEK293MSR cells were found to be localized at the plasma membrane, confirming that they function as membrane receptors. However, the signaling assays revealed that none of the candidates interacted with the main vertebrate steroid ligands. Our findings strongly suggest that functional membrane sex steroid receptors which would be homologous to the vertebrate ones are not present in Lymnaea. Although further experiments are required on other molluscan model species as well, we propose that both classical and non-classical sex steroid signaling for endocrine responses are specific to chordates, confirming that molluscan and vertebrate endocrine systems are fundamentally different.


Assuntos
Sistema Nervoso , Animais , Sistema Nervoso/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Lymnaea/metabolismo , Lymnaea/fisiologia , Moluscos/metabolismo , Sistema Endócrino/metabolismo , Filogenia , Receptores de Estrogênio/metabolismo , Humanos , Receptores de Progesterona/metabolismo , Hormônios Esteroides Gonadais/metabolismo
8.
Environ Int ; 190: 108926, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39098090

RESUMO

Pregnane X receptor (PXR) is a heterologous biosensor that is involved in the metabolic pathway of environmental pollutants, regulating the transcription of genes involved in biotransformation. There are significant differences in the selectivity and specificity of organic pollutants (OPs) toward polar bear PXR (pbPXR) and human PXR (hPXR), but the detailed dynamical characteristics of their interactions are unclear. Homology Modeling, molecular docking, molecular dynamics simulation, and free energy calculation were used to analyze the recognition of pbPXR and hPXR by three OPs: BPA, chlordane and toxaphene. Comparing interaction patterns along with binding free energy of pbPXR and hPXR with these three OPs revealed that although pbPXR and hPXR interact similar with these three OPs, these OPs have different effects on the internal dynamics of pbPXR and hPXR. This results in significant alterations in the interaction of key residues near Leu209, Met243, Phe288, Met323, and His407 with OPs, thereby influencing their binding energy. Non-polar interactions, especially van der Waals interactions, were found to be the dominating factors in interacting of these OPs with PXRs. The region surrounding these key residues facilitates hydrophobic contacts with PXR, which are crucial for the selective activation of PXRs in different species by these three OPs. These findings are of significant guidance in understanding the impacts of environmental endocrine disruptors on different organisms.


Assuntos
Poluentes Ambientais , Receptor de Pregnano X , Receptores de Esteroides , Animais , Humanos , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/química , Ligação Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/química , Ursidae
9.
Sci Total Environ ; 948: 174889, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047839

RESUMO

Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.


Assuntos
Disruptores Endócrinos , Peixes , Receptores de Esteroides , Humanos , Animais , Peixes/metabolismo , Disruptores Endócrinos/toxicidade , Receptores de Esteroides/metabolismo , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
10.
Biochem Pharmacol ; 228: 116416, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986717

RESUMO

The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor signaling potentiates ethanol (EtOH)-induced hepatotoxicity in male mice, however, how PXR signaling modulates EtOH-induced hepatotoxicity in female mice is unknown. Wild type (WT) and Pxr-null mice received 5 % EtOH-containing diets or paired-fed control diets for 8 weeks followed by assessment of liver injury, EtOH elimination rates, histology, and changes in gene and protein expression; microarray and bioinformatic analyses were also employed to identify PXR targets in chronic EtOH-induced hepatotoxicity. In WT females, EtOH ingestion significantly increased serum ethanol and alanine aminotransferase (ALT) levels, hepatic Pxr mRNA, constitutive androstane receptor activation, Cyp2b10 mRNA and protein, oxidative stress, endoplasmic stress (phospho-elF2α) and pro-apoptotic (Bax) protein expression. Unexpectedly, EtOH-fed female Pxr-null mice displayed increased EtOH elimination and elevated levels of hepatic acetaldehyde detoxifying aldehyde dehydrogenase 1a1 (Aldh1a1) mRNA and protein, EtOH-metabolizing alcohol dehydrogenase 1 (ADH1), and lipid suppressing microsomal triglyceride transport protein (MTP) protein, aldo-keto reductase 1b7 (Akr1b7) and Cyp2a5 mRNA, but suppressed CYP2B10 protein levels, with evidence of protection against chronic EtOH-induced oxidative stress and hepatotoxicity. While liver injury was not different between the two WT sexes, female sex may suppress EtOH-induced macrovesicular steatosis in the liver. Several genes and pathways important in retinol and steroid hormone biosynthesis, chemical carcinogenesis, and arachidonic acid metabolism were upregulated by EtOH in a PXR-dependent manner in both sexes. Together, these data establish that female Pxr-null mice are resistant to chronic EtOH-induced hepatotoxicity and unravel the PXR-dependent and -independent mechanisms that contribute to EtOH-induced hepatotoxicity.


Assuntos
Etanol , Camundongos Knockout , Receptor de Pregnano X , Animais , Feminino , Etanol/toxicidade , Camundongos , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Camundongos Endogâmicos C57BL , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
11.
Cell Rep ; 43(7): 114460, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996068

RESUMO

Natural silks are renewable proteins with impressive mechanical properties and biocompatibility that are useful in various fields. However, the cellular and spatial organization of silk-secreting organs remains unclear. Here, we combined single-nucleus and spatially resolved transcriptomics to systematically map the cellular and spatial composition of the silk glands (SGs) of mulberry silkworms late in larval development. This approach allowed us to profile SG cell types and cell state dynamics and identify regulatory networks and cell-cell communication related to efficient silk protein synthesis; key markers were validated via transgenic approaches. Notably, we demonstrated the indispensable role of the ecdysone receptor (ultraspiracle) in regulating endoreplication in SG cells. Our atlas presents the results of spatiotemporal analysis of silk-secreting organ architecture late in larval development; this atlas provides a valuable reference for elucidating the mechanism of efficient silk protein synthesis and developing sustainable products made from natural silk.


Assuntos
Bombyx , Proteínas de Insetos , Larva , Seda , Transcriptoma , Animais , Bombyx/genética , Bombyx/metabolismo , Seda/metabolismo , Larva/metabolismo , Larva/genética , Transcriptoma/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Núcleo Celular/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
12.
Virol J ; 21(1): 161, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039546

RESUMO

Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus and causes primarily acute self-limiting infections. The ORF1 of the HEV genome encodes a polyprotein around 190 kDa, which contains several putative domains, including helicase and RNA-dependent RNA polymerase. The HEV-encoded helicase is a member of the superfamily 1 helicase family and possesses multiple enzymatic functions, such as RNA 5'-triphosphatase, RNA unwinding, and NTPase, which are thought to contribute to viral RNA synthesis. However, the helicase interaction with cellular proteins remains less known. Oxysterol binding protein (OSBP) is a lipid regulator that shuffles between the Golgi apparatus and the endoplasmic reticulum for cholesterol and phosphatidylinositol-4-phosphate exchange and controls the efflux of cholesterol from cells. In this study, the RNAi-mediated silencing of OSBP significantly reduced HEV replication. Further studies indicate that the HEV helicase interacted with OSBP, shown by co-immunoprecipitation and co-localization in co-transfected cells. The presence of helicase blocked OSBP preferential translocation to the Golgi apparatus. These results demonstrate that OSBP contributes to HEV replication and enrich our understanding of the HEV-cell interactions.


Assuntos
Complexo de Golgi , Vírus da Hepatite E , Receptores de Esteroides , Replicação Viral , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Humanos , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Interações Hospedeiro-Patógeno , Linhagem Celular , Ligação Proteica , Hepatite E/virologia , Hepatite E/metabolismo
13.
Front Immunol ; 15: 1419321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081319

RESUMO

Similar to other RNA viruses, grass carp reovirus, the causative agent of the hemorrhagic disease, replicates in cytoplasmic viral inclusion bodies (VIBs), orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of GCRV VIBs are poorly understood. This work demonstrates that GCRV manipulates grass carp oxysterol binding protein 1 (named as gcOSBP1) and vesicle-associated membrane protein-associated protein A/B (named as gcVAP-A/B), 3 components of cholesterol transport pathway, to generate VIBs. By siRNA-mediated knockdown, we demonstrate that gcOSBP1 is an essential host factor for GCRV replication. We reveal that the nonstructural proteins NS80 and NS38 of GCRV interact with gcOSBP1, and that the gcOSBP1 is recruited by NS38 and NS80 for promoting the generation of VIBs. gcOSBP1 increases the expression of gcVAP-A/B and promotes the accumulation of intracellular cholesterol. gcOSBP1 also interacts with gcVAP-A/B for forming gcOSBP1-gcVAP-A/B complexes, which contribute to enhance the accumulation of intracellular cholesterol and gcOSBP1-mediated generation of VIBs. Inhibiting cholesterol accumulation by lovastatin can completely abolish the effects of gcOSBP1 and/or gcVAP-A/B in promoting GCRV infection, suggesting that cholesterol accumulation is vital for gcOSBP1- and/or gcVAP-A/B-mediated GCRV replication. Thus, our results, which highlight that gcOSBP1 functions in the replication of GCRV via its interaction with essential viral proteins for forming VIBs and with host gcVAP-A/B, provide key molecular targets for obtaining anti-hemorrhagic disease grass carp via gene editing technology.


Assuntos
Carpas , Colesterol , Corpos de Inclusão Viral , Receptores de Esteroides , Reoviridae , Replicação Viral , Animais , Reoviridae/fisiologia , Carpas/virologia , Carpas/metabolismo , Corpos de Inclusão Viral/metabolismo , Colesterol/metabolismo , Receptores de Esteroides/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/imunologia , Interações Hospedeiro-Patógeno , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética
14.
Nat Commun ; 15(1): 6008, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019917

RESUMO

The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs. Specifically, through in vivo and in vitro association assays, we found that VAP27 proteins interact with the outer envelope membrane (OEM) of chloroplasts, where they bind to ORP2A. Through lipidomic analyses, we established that VAP27 proteins and ORP2A directly interact with the chloroplast OEM monogalactosyldiacylglycerol (MGDG), and we demonstrated that the loss of the VAP27-ORP2A complex is accompanied by subtle changes in the acyl composition of MGDG and PG. We also found that ORP2A interacts with phytosterols and established that the loss of the VAP27-ORP2A complex alters sterol levels in chloroplasts. We propose that, by interacting directly with OEM lipids, the VAP27-ORP2A complex defines plant-unique MCSs that bridge ER and chloroplasts and are involved in chloroplast lipid homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Retículo Endoplasmático , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Galactolipídeos/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ligação Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
15.
J Agric Food Chem ; 72(28): 15474-15486, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949855

RESUMO

Corn ear rot and fumonisin caused by Fusarium verticillioides pose a serious threat to food security. To find more highly active fungicidal and antitoxic candidates with structure diversity based on naturally occurring lead xanthatin, a series of novel spiropiperidinyl-α-methylene-γ-butyrolactones were rationally designed and synthesized. The in vitro bioassay results indicated that compound 7c showed broad-spectrum in vitro activity with EC50 values falling from 3.51 to 24.10 µg/mL against Rhizoctonia solani and Alternaria solani, which was more active than the positive controls xanthatin and oxathiapiprolin. In addition, compound 7c also showed good antitoxic efficacy against fumonisin with a 48% inhibition rate even at a concentration of 20 µg/mL. Fluorescence quenching and the molecular docking validated both 7c and oxathiapiprolin targeting at FvoshC. RNA sequencing analysis discovered that FUM gene cluster and protein processing in endoplasmic reticulum were downregulated. Our studies have discovered spiropiperidinyl-α-methylene-γ-butyrolactone as a novel FvoshC target-based scaffold for fungicide lead with antitoxin activity.


Assuntos
Alternaria , Fungicidas Industriais , Fusarium , Simulação de Acoplamento Molecular , Rhizoctonia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Alternaria/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Descoberta de Drogas , Zea mays/química , Zea mays/microbiologia , Estrutura Molecular
16.
FASEB J ; 38(14): e23830, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072875

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) and the pregnane X receptor (PXR) are involved in hepatocyte regeneration. It is not clear whether HNF4α is involved in hepatocyte regeneration through the regulation of PXR. This study aims to explore the regulatory relationship between HNF4a and PXR, and whether it affects hepatocyte regeneration. A mouse PXR gene reporter and an HNF4α overexpression plasmid were constructed and transfected into mouse hepatoma cells (Hepa1-6). Overexpression of HNF4α, detection of the PXR gene reporter fluorescence value, PXR gene, and protein expression analysis were conducted to explore the regulatory relationship between HNF4α and PXR. Apoptosis and cell cycle data were measured to verify whether HNF4α is involved in hepatocyte regeneration through PXR. The luciferase gene reporter assay results indicated when HNF4α was overexpressed, the fluorescence value of the PXR gene reporter was higher than that in the control at 24 h. With increasing HNF4α expression, the PXR gene and protein expression increased, indicating that HNF4α binds to the PXR promoter and upregulates PXR expression. Apoptosis and cell cycle analysis results demonstrated that when the expression of HNF4α increased, the expression of PXR increased, the apoptosis rate decreased, and the proliferation rate increased. Meanwhile, when the upward trend of PXR gene expression was inhibited by ketoconazole, the proliferation rate decreased. By inhibiting HNF4α and creating a partial hepatectomy (PHx), we demonstrated that HNF4α can upregulate PXR to promote liver regeneration in vivo. Therefore, HNF4α is shown to improve hepatocyte regeneration by upregulating PXR, which provides a reference for future research on the combined application of drugs for the treatment of liver injury.


Assuntos
Apoptose , Fator 4 Nuclear de Hepatócito , Hepatócitos , Receptor de Pregnano X , Regulação para Cima , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Animais , Hepatócitos/metabolismo , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Camundongos , Regeneração Hepática/genética , Linhagem Celular Tumoral , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Regiões Promotoras Genéticas
17.
Biochim Biophys Acta Biomembr ; 1866(7): 184365, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960299

RESUMO

Membrane contacts sites (MCSs) play important roles in lipid trafficking across cellular compartments and maintain the widespread structural diversity of organelles. We have utilized microsecond long all-atom (AA) molecular dynamics (MD) simulations and enhanced sampling techniques to unravel the MCS structure targeting by yeast oxysterol binding protein (Osh4) in an environment that mimics the interface of membranes with an increased proportion of anionic lipids using CHARMM36m forcefield with additional CUFIX parameters for lipid-protein electrostatic interactions. In a dual-membrane environment, unbiased MD simulations show that Osh4 briefly interacts with both membranes, before aligning itself with a single membrane, adopting a ß-crease-bound conformation similar to observations in a single-membrane scenario. Targeted molecular dynamics simulations followed by microsecond-long AA MD simulations have revealed a distinctive dual-membrane bound state of Osh4 at MCS, wherein the protein interacts with the lower membrane via the ß-crease surface, featuring its PHE-239 residue positioned below the phosphate plane of membrane, while concurrently establishing contact with the opposite membrane through the extended α6-α7 region. Osh4 maintains these dual membrane contacts simultaneously over the course of microsecond-long MD simulations. Moreover, binding energy calculations highlighted the essential roles played by the phenylalanine loop and the α6 helix in dynamically stabilizing dual-membrane bound state of Osh4 at MCS. Our computational findings were corroborated through frequency of contact analysis, showcasing excellent agreement with past experimental cross-linking data. Our computational study reveals a dual-membrane bound conformation of Osh4, providing insights into protein-membrane interactions at membrane contact sites and their relevance to lipid transfer processes.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Membrana Celular/química , Membrana Celular/metabolismo , Ligação Proteica , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Sítios de Ligação , Proteínas de Membrana
18.
Genes Genomics ; 46(8): 977-990, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976216

RESUMO

BACKGROUND: NR4A family genes play crucial roles in cancers. However, the role of NR4A family genes in cancers remains paradoxical as they promote or suppress tumorigenesis. OBJECTIVE: We aimed to conduct comprehensive analyses of the association between the expression of NR4A family genes and tumor microenvironment (TME) based on bioinformatics methods. METHODS: We collected RNA-seq data from 33 cancer types and 20 normal tissue sites from the TCGA and GTEx databases. Expression patterns of NR4A family genes and their associations with DNA methylation, miRNA, overall survival, drug responses, and tumor microenvironment were investigated. RESULTS: Significant downregulation of all NR4A family genes was observed in 15 cancer types. DNA promoter methylation and expression of NR4A family genes were negatively correlated in five cancers. The expression of 10 miRNAs targeting NR4A family genes was negatively correlated with the expression of NR4A family genes. High expression of all NR4A family genes was associated with poor prognosis in stomach adenocarcinoma and increased expressions of NR4A2 and NR4A3 were associated with poor prognosis in adrenocortical carcinoma. In addition, we found an elevated expression of NR4A2, which enhances the response to various chemotherapeutic drugs, whereas NR4A3 decreases drug sensitivity. Interestingly, in breast cancer, NR4A3 was significantly associated with C2 (IFN-γ dominant), C3 (inflammatory), and C6 (TGF-ß dominant) immune subtypes and infiltrated immune cell types, implying both oncogenic and tumor-suppressive functions of NR4A3 in breast cancer. CONCLUSION: The NR4A family genes have the potential to serve as a diagnostic, prognostic, and immunological marker of human cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Neoplasias/genética , Neoplasias/imunologia , Metilação de DNA/genética , MicroRNAs/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
19.
Am J Physiol Renal Physiol ; 327(3): F340-F350, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38961844

RESUMO

Chronic kidney disease (CKD) is associated with renal lipid dysmetabolism among a variety of other pathways. We recently demonstrated that oxysterol-binding protein-like 7 (OSBPL7) modulates the expression and function of ATP-binding cassette subfamily A member 1 (ABCA1) in podocytes, a specialized type of cell essential for kidney filtration. Drugs that target OSBPL7 lead to improved renal outcomes in several experimental models of CKD. However, the role of OSBPL7 in podocyte injury remains unclear. Using mouse models and cellular assays, we investigated the influence of OSBPL7 deficiency on podocytes. We demonstrated that reduced renal OSBPL7 levels as observed in two different models of experimental CKD are linked to increased podocyte apoptosis, primarily mediated by heightened endoplasmic reticulum (ER) stress. Although as expected, the absence of OSBPL7 also resulted in lipid dysregulation (increased lipid droplets and triglycerides content), OSBPL7 deficiency-related lipid dysmetabolism did not contribute to podocyte injury. Similarly, we demonstrated that the decreased autophagic flux we observed in OSBPL7-deficient podocytes was not the mechanistic link between OSBPL7 deficiency and apoptosis. In a complementary zebrafish model, osbpl7 knockdown was sufficient to induce proteinuria and morphological damage to the glomerulus, underscoring its physiological relevance. Our study sheds new light on the mechanistic link between OSBPL7 deficiency and podocyte injury in glomerular diseases associated with CKD, and it strengthens the role of OSBPL7 as a novel therapeutic target.NEW & NOTEWORTHY OSBPL7 and ER stress comprise a central mechanism in glomerular injury. This study highlights a crucial link between OSBPL7 deficiency and ER stress in CKD. OSBPL7 deficiency causes ER stress, leading to podocyte apoptosis. There is a selective effect on lipid homeostasis in that OSBPL7 deficiency affects lipid homeostasis, altering cellular triglyceride but not cholesterol content. The interaction of ER stress and apoptosis supports that ER stress, not reduced autophagy, is the main driver of apoptosis in OSBPL7-deficient podocytes.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Podócitos , Proteinúria , Receptores de Esteroides , Animais , Masculino , Camundongos , Autofagia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/metabolismo , Proteinúria/patologia , Proteinúria/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/deficiência , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Peixe-Zebra
20.
Pharmacol Rep ; 76(4): 895-901, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878234

RESUMO

BACKGROUND: Our recent studies showed that prolonged administration of novel atypical antipsychotics affected the expression and activity of cytochrome P450 (CYP), as demonstrated in vitro on human hepatocytes and in vivo on the rat liver. The aim of the present work was to study the effect of repeated treatment with asenapine, iloperidone, and lurasidone on the expression of transcription factors regulating CYP drug-metabolizing enzymes in rat liver. METHODS: The hepatic mRNA (qRT-PCR) and protein levels (Western blotting) of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPARγ) were measured in male Wistar rats after 2 week-treatment with asenapine, iloperidone or lurasidone. RESULTS: The 2-week treatment with asenapine significantly diminished the AhR and PXR expression (mRNA, protein level), and CAR mRNA level in rat liver. Iloperidone lowered the AhR and CAR expression and PXR protein level. Lurasidone did not affect the expression of AhR and CAR, but increased PXR expression. The antipsychotics did not affect PPARγ. CONCLUSIONS: Prolonged treatment with asenapine, iloperidone, or lurasidone affects the expression of transcription factors regulating the CYP drug-metabolizing enzymes. The changes in the expression of AhR, CAR, and PXR mostly correlate with alterations in the expression and activity of respective CYP enzymes found in our previous studies. Since these transcription factors are also engaged in the expression of phase II drug metabolism and drug transporters, changes in their expression may affect the metabolism of endogenous substrates and pharmacokinetics of concomitantly used drugs.


Assuntos
Antipsicóticos , Sistema Enzimático do Citocromo P-450 , Compostos Heterocíclicos de 4 ou mais Anéis , Isoxazóis , Fígado , Cloridrato de Lurasidona , Receptor de Pregnano X , Ratos Wistar , Receptores Citoplasmáticos e Nucleares , Animais , Antipsicóticos/farmacologia , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Pregnano X/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Cloridrato de Lurasidona/farmacologia , Isoxazóis/farmacologia , Piperidinas/farmacologia , Receptor Constitutivo de Androstano/metabolismo , Dibenzocicloeptenos/farmacologia , Receptores de Esteroides/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...