Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.415
Filtrar
1.
Nat Commun ; 15(1): 7795, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242530

RESUMO

ρ-type γ-aminobutyric acid-A (GABAA) receptors are widely distributed in the retina and brain, and are potential drug targets for the treatment of visual, sleep and cognitive disorders. Endogenous neuroactive steroids including ß-estradiol and pregnenolone sulfate negatively modulate the function of ρ1 GABAA receptors, but their inhibitory mechanisms are not clear. By combining five cryo-EM structures with electrophysiology and molecular dynamics simulations, we characterize binding sites and negative modulation mechanisms of ß-estradiol and pregnenolone sulfate at the human ρ1 GABAA receptor. ß-estradiol binds in a pocket at the interface between extracellular and transmembrane domains, apparently specific to the ρ subfamily, and disturbs allosteric conformational transitions linking GABA binding to pore opening. In contrast, pregnenolone sulfate binds inside the pore to block ion permeation, with a preference for activated structures. These results illuminate contrasting mechanisms of ρ1 inhibition by two different neuroactive steroids, with potential implications for subtype-specific gating and pharmacological design.


Assuntos
Microscopia Crioeletrônica , Estradiol , Simulação de Dinâmica Molecular , Pregnenolona , Receptores de GABA-A , Humanos , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Pregnenolona/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/química , Sítios de Ligação , Estradiol/metabolismo , Estradiol/farmacologia , Células HEK293
2.
J Mol Neurosci ; 74(3): 83, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230641

RESUMO

The soy isoflavone daidzin (DZN) has been considered a hopeful bioactive compound having diverse biological activities, including anxiolytic, memory-enhancing, and antiepileptic effects, in experimental animals. However, its sedative and hypnotic effects are yet to be discovered. This study aimed to evaluate its sedative/hypnotic effect on Swiss mice. Additionally, in silico studies were also performed to see the possible molecular mechanisms behind the tested neurological effect. For this, male Swiss albino mice were treated with DZN (5, 10, or 20 mg/kg) intraperitoneally (i.p.) with or without the standard GABAergic medication diazepam (DZP) and/or flumazenil (FLU) and checked for the onset and duration of sleeping time using thiopental sodium-induced as well as DZP-induced sleeping tests. A molecular docking study was also performed to check its interaction capacity with the α1 and ß2 subunits of the GABAA receptor. Findings suggest that DZN dose-dependently and significantly reduced the latency while increasing the duration of sleep in animals. In combination therapy, DZN shows synergistic effects with the DZP-2 and DZP-2 + FLU-0.01 groups, resulting in significantly (p < 0.05) reduced latency and increased sleep duration. Further, molecular docking studies demonstrate that DZN has a strong binding affinity of - 7.2 kcal/mol, which is closer to the standard ligand DZP (- 8.3 kcal/mol) against the GABAA (6X3X) receptor. Molecular dynamic simulations indicated stability and similar binding locations for DZP and DZN with 6X3X. In conclusion, DZN shows sedative effects on Swiss mice, possibly through the GABAA receptor interaction pathway.


Assuntos
Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Camundongos , Masculino , Hipnóticos e Sedativos/farmacologia , Sono/efeitos dos fármacos , Flumazenil/farmacologia , Diazepam/farmacologia , Simulação de Dinâmica Molecular
3.
Autism Res ; 17(8): 1534-1544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39169698

RESUMO

Autism spectrum disorders (ASDs) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in rats exposed to valproic acid (VPA) in utero, an established risk factor for autism. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. SH-053-2'F-R-CH3 was administered intraperitoneally 30 min before each behavioral test and electrophysiology. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Adult male and female VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate that α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Receptores de GABA-A , Comportamento Social , Ácido Valproico , Animais , Feminino , Ácido Valproico/farmacologia , Ratos , Masculino , Gravidez , Receptores de GABA-A/efeitos dos fármacos , Dopamina/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiopatologia , Ratos Sprague-Dawley , Regulação Alostérica/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia
4.
Drug Dev Res ; 85(6): e22250, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154218

RESUMO

Insomnia is a sleep disorder in which you have trouble falling and/or staying asleep. This research aims to evaluate the sedative effects of fraxin (FX) on sleeping mice induced by thiopental sodium (TS). In addition, a molecular docking study was conducted to investigate the molecular processes underlying these effects. The study used adult male Swiss albino mice and administered FX (10 and 20 mg/kg, i.p.) and diazepam (DZP) (2 mg/kg) either separately or in combination within the different groups to examine their modulatory effects. After a period of 30 min, the mice that had been treated were administered (TS: 20 mg/kg, i.p.) to induce sleep. The onset of sleep for the mice and the length of their sleep were manually recorded. Additionally, a computational analysis was conducted to predict the role of gamma-aminobutyric acid (GABA) receptors in the sleep process and evaluate their pharmacokinetics and toxicity. The outcomes indicated that FX extended the length of sleep and reduced the time it took to fall asleep. When the combined treatment of FX and DZP showed synergistic sedative action. Also, FX had a binding affinity of -7.2 kcal/mol, while DZP showed -8.4 kcal/mol. The pharmacokinetic investigation of FX demonstrated favorable drug-likeness and strong pharmacokinetic characteristics. Ultimately, FX demonstrated a strong sedative impact in the mouse model, likely via interacting with the GABAA receptor pathways.


Assuntos
Diazepam , Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Sono , Animais , Masculino , Camundongos , Hipnóticos e Sedativos/farmacologia , Diazepam/farmacologia , Sono/efeitos dos fármacos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
5.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39190555

RESUMO

Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurônios Motores , Fatores de Transcrição , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ácido gama-Aminobutírico/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso , Neurotransmissores/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Sinapses/metabolismo , Transmissão Sináptica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
6.
J Physiol ; 602(17): 4195-4213, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39141819

RESUMO

The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of µ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a µ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic µ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.


Assuntos
Parvalbuminas , Células Piramidais , Somatostatina , Animais , Células Piramidais/fisiologia , Camundongos , Somatostatina/metabolismo , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Potenciais Pós-Sinápticos Inibidores , Masculino , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Hipocampo/fisiologia , Hipocampo/citologia , Optogenética , Receptores Opioides mu/metabolismo , Receptores Opioides mu/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia
7.
PLoS One ; 19(8): e0307668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39186592

RESUMO

The majority of somatosensory DRG neurons express GABAA receptors (GABAAR) and depolarise in response to its activation based on the high intracellular chloride concentration maintained by the Na-K-Cl cotransporter type 1 (NKCC1). The translation of this response to peripheral nerve terminals in people is so far unclear. We show here that GABA (EC50 = 16.67µM) acting via GABAAR produces an influx of extracellular calcium in approximately 20% (336/1720) of isolated mouse DRG neurons. In contrast, upon injection into forearm skin of healthy volunteers GABA (1mM, 100µl) did not induce any overt sensations nor a specific flare response and did not sensitize C-nociceptors to slow depolarizing electrical sinusoidal stimuli. Block of the inward chloride transporter NKCC1 by furosemide (1mg/100µl) did not reduce electrically evoked pain ratings nor did repetitive GABA stimulation in combination with an inhibited NKCC1 driven chloride replenishment by furosemide. Finally, we generated a sustained period of C-fiber firing by iontophoretically delivering codeine or histamine to induce tonic itch. Neither the intensity nor the duration of histamine or codeine itch was affected by prior injection of furosemide. We conclude that although GABA can evoke calcium transients in a proportion of isolated mouse DRG neurons, it does not induce or modify pain or itch ratings in healthy human skin even when chloride gradients are altered by inhibition of the sodium coupled NKCC1 transporter.


Assuntos
Furosemida , Gânglios Espinais , Voluntários Saudáveis , Hiperalgesia , Membro 2 da Família 12 de Carreador de Soluto , Ácido gama-Aminobutírico , Humanos , Animais , Camundongos , Ácido gama-Aminobutírico/metabolismo , Masculino , Adulto , Furosemida/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Feminino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Dor Aguda/metabolismo , Dor Aguda/fisiopatologia , Cálcio/metabolismo , Receptores de GABA-A/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Prurido/fisiopatologia , Adulto Jovem
8.
J Transl Med ; 22(1): 767, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143639

RESUMO

Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.


Assuntos
Mutação , Receptores de GABA-A , Convulsões Febris , Humanos , Receptores de GABA-A/genética , Convulsões Febris/genética , Mutação/genética , Epilepsia/genética , Animais
9.
Proc Natl Acad Sci U S A ; 121(33): e2400420121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106304

RESUMO

Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1ß2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.


Assuntos
Doença de Alzheimer , Cognição , Modelos Animais de Doenças , Ritmo Gama , Animais , Doença de Alzheimer/tratamento farmacológico , Camundongos , Cognição/efeitos dos fármacos , Ritmo Gama/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Camundongos Transgênicos , Humanos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Alanina/análogos & derivados , Azepinas
10.
Brain Behav ; 14(7): e3621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38970239

RESUMO

INTRODUCTION: Hepatic encephalopathy (HE) is a severe neuropsychiatric complication of liver diseases characterized by neuroinflammation. The efficacies of nonabsorbable rifaximin (RIF) and lactulose (LAC) have been well documented in the treatment of HE. [18F]PBR146 is a translocator protein (TSPO) radiotracer used for in vivo neuroinflammation imaging. This study investigated anti-neuroinflammation effect of RIF or/and LAC in chronic HE rats by [18F]PBR146 micro-PET/CT. METHODS: Bile duct ligation (BDL) operation induced chronic HE models, and this study included Sham+normal saline (NS), BDL+NS, BDL+RIF, BDL+LAC, and BDL+RIF+LAC groups. Behavioral assessment was performed to analyze the motor function, and fecal samples were collected after successfully established the chronic HE model (more than 28 days post-surgery). In addition, fecal samples collection and micro-PET/CT scans were performed sequentially. And we also collected the blood plasma, liver, intestinal, and brain samples after sacrificing the rats for further biochemical and pathological analyses. RESULTS: The RIF- and/or LAC-treated BDL rats showed similar behavioral results with Sham+NS group, while the treatment could not reverse the biliary obstruction resulting in sustained liver injury. The RIF or/and LAC treatments can inhibit IFN-γ and IL-10 productions. The global brain uptake values of [18F]PBR146 in BDL+NS group was significantly higher than other groups (p < .0001). The brain regions analysis showed that the basal ganglia, hippocampus, and cingulate cortex had radiotracer uptake differences among groups (all p < .05), which were consistent with the brain immunohistochemistry results. Sham+NS group was mainly enriched in Christensenella, Coprobacillus, and Pseudoflavonifractor. BDL+NS group was mainly enriched in Barnesiella, Alloprevotella, Enterococcus, and Enterorhabdus. BDL+RIF+LAC group was enriched in Parabacteroides, Bacteroides, Allobaculum, Bifidobacterium, and Parasutterella. CONCLUSIONS: RIF or/and LAC had anti-neuroinflammation in BDL-induced chronic HE rats with gut microbiota alterations. The [18F]PBR146 could be used for monitoring RIF or/and LAC treatment efficacy of chronic HE rats.


Assuntos
Encefalopatia Hepática , Lactulose , Ratos Sprague-Dawley , Rifaximina , Animais , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/diagnóstico por imagem , Encefalopatia Hepática/metabolismo , Rifaximina/farmacologia , Ratos , Masculino , Lactulose/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Modelos Animais de Doenças , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/diagnóstico por imagem , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Radioisótopos de Flúor , Proteínas de Transporte , Receptores de GABA-A
11.
J Med Chem ; 67(14): 12349-12365, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39013072

RESUMO

Multitarget strategies are essential in addressing complex diseases, yet developing multitarget-directed ligands (MTDLs) is particularly challenging when aiming to engage multiple therapeutic targets across different tissues. Here, we present a molecular transformer strategy, enhancing traditional MTDLs. By utilizing esterase-driven hydrolysis, this approach mimics the adaptive nature of transformers for enabling molecules to modify their pharmacological effects in response to the biological milieu. By virtual screening and biological evaluation, we identified KGP-25, a novel compound initially targeting the voltage-gated sodium channel 1.8 (Nav1.8) in the peripheral nervous system (PNS) for analgesia, and later the γ-aminobutyric acid subtype A receptor (GABAA) in the central nervous system (CNS) for general anesthesia. Our findings confirm KGP-25's dual efficacy in cellular and animal models, effectively reducing opioid-related side effects. This study validates the molecular transformer approach in drug design and highlights its potential to overcome the limitations of conventional MTDLs, paving new avenues in innovative therapeutic strategies.


Assuntos
Analgésicos , Esterases , Ligantes , Analgésicos/farmacologia , Analgésicos/química , Animais , Humanos , Esterases/metabolismo , Anestésicos/farmacologia , Anestésicos/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/química , Desenho de Fármacos , Camundongos , Masculino
12.
J Neurophysiol ; 132(2): 501-513, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958282

RESUMO

Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive nonimage-forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine [via the D1-type dopamine receptor (D1R)]) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both nonimage-forming and image-forming visual functions.NEW & NOTEWORTHY Neuromodulators such as dopamine are important regulators of retinal function. Here, we demonstrate that dopamine increases inhibitory inputs to intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to its previously established effect on intrinsic light responsiveness. This indicates that dopamine, in addition to its ability to intrinsically modulate ipRGC activity, can also affect synaptic inputs to ipRGCs, thereby tuning retina circuits involved in nonimage-forming visual functions.


Assuntos
Dopamina , Receptores de GABA-A , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Receptores de GABA-A/metabolismo , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Receptores Opioides mu/metabolismo , Masculino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Feminino , Agonistas de Dopamina/farmacologia
13.
Eur J Med Chem ; 276: 116602, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971049

RESUMO

Zuranolone (SAGE-217) is a neuroactive steroid (γ-aminobutyric acid)A (GABAA) receptor positive allosteric modulator (PAM) as the first oral drug approved by the FDA in 2023, which is used to treat patients with postpartum depression (PPD). SAGE-217 has a "black box" warning with impairing ability to drive or engage in other potentially hazardous activities. In addition, SAGE-217 can cause CNS depressant effects such as somnolence and confusion, suicidal thoughts and behavior and embryo-fetal toxicity. Based on the structure-activity relationship (SAR) of SAGE-217, a total of 28 neuroactive steroids with novel pharmacophore at C-21 modulated SAGE-217 derivatives were designed and synthesized. The biological activities were evaluated by both synaptic α1ß2γ2 GABAA receptor and extrasynaptic α4ß3δ GABAA receptor cell assays. The optimal compound S28 exhibited much more potent potency and similar efficacy at extrasynaptic GABAA receptor than SAGE-217. Different from above, compound S28 exhibited similar potency and lower efficacy at synaptic GABAA receptor than SAGE-217, which were consistent with the analysis of molecular docking and dynamics simulation results. The appropriate lower efficacy at synaptic GABAA receptor of compound S28 might contribute to reduce the side effects of excessive sedation. Furthermore, compound S28 was demonstrated to have excellent in vivo pharmacokinetic (PK) parameters, robust in vivo pharmacodynamic (PD) effects and good safety profiles. Therefore, compound S28 represents a potentially promising treatment of PPD candidate that warrants further investigation.


Assuntos
Receptores de GABA-A , Receptores de GABA-A/metabolismo , Relação Estrutura-Atividade , Humanos , Animais , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos , Neuroesteroides/farmacologia , Neuroesteroides/metabolismo , Neuroesteroides/síntese química , Neuroesteroides/química , Simulação de Acoplamento Molecular , Regulação Alostérica/efeitos dos fármacos , Masculino , Moduladores GABAérgicos/farmacologia , Moduladores GABAérgicos/síntese química , Moduladores GABAérgicos/química , Farmacóforo , Pregnanolona , Pirazóis
14.
Thorac Cancer ; 15(24): 1822-1824, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38984426

RESUMO

Anti-gamma-aminobutyric acid receptor type A (GABAA) encephalitis is a relatively rare autoimmune encephalitis, and often associated with thymoma. Here, a 44-year-old female was diagnosed as having a thymoma with autoimmune encephalitis. At 4-month follow-up she was without recurrence of symptoms after treatment with methylprednisolone pulse therapy and immunotherapy. This case report provides a reference for the identification of this type of paraneoplastic encephalitis and for a therapeutic schedule. It also highlights that conservative treatment may be effective for patients with a tumor and GABAA encephalitis.


Assuntos
Timoma , Humanos , Feminino , Adulto , Timoma/complicações , Timoma/tratamento farmacológico , Encefalite/tratamento farmacológico , Tratamento Conservador/métodos , Receptores de GABA-A/metabolismo , Neoplasias do Timo/complicações , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/patologia
15.
Pestic Biochem Physiol ; 203: 105972, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084765

RESUMO

The Drosophila melanogaster MD-RR strain contains an Rdl mutation (A301S) resulting in resistance to several insecticide classes viz. phenyl pyrazoles (e.g., fipronil), cyclodienes (e.g., dieldrin), and chlorinated aliphatic hydrocarbons (e.g., lindane). Fitness costs are commonly observed with resistant insect populations as side effects of the genetic change conferring the resistant phenotype. Because of fitness costs, reversion from the resistant to susceptible genotype and phenotype is common. However, the Rdl genotype in D. melanogaster appears to allow the flies to maintain the resistant genotype/phenotype without selective pressure and with minimal fitness costs. We provide evidence that compensation for the Rdl mutation influences the cholinergic system, where an increase in acetylcholinesterase gene expression and enzyme activity results in neurophysiological changes and cross resistance to a carbamate insecticide (propoxur oral resistance ratio (RR) of 63) and an organophosphate insecticide (dichlorvos oral RR of 7). Such cross resistance was not previously reported with the initial collection and testing of this strain. In addition to acetylcholinesterase, the Rdl mutation influences the expression of the muscarinic acetylcholine receptor subtype-B, resulting in resistance to non-selective muscarinic compounds (pilocarpine and atropine). Collectively, these results indicate that the Rdl mutation (A301S) at GABA-gated ionophore complex influences the physiology of the cholinergic system, leading to resistance to established insecticide classes. Additionally, this mutation may impact the effectiveness of insecticides targeting novel sites, like muscarinic receptors.


Assuntos
Acetilcolinesterase , Canais de Cloreto , Proteínas de Drosophila , Drosophila melanogaster , Resistência a Inseticidas , Receptores de GABA-A , Animais , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Resistência a Inseticidas/genética , Inseticidas , Mutação , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo
16.
Neurochem Int ; 178: 105804, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002759

RESUMO

Anxiety is a commonly prevailing psychological disorder that requires effective treatment, wherein phytopharmaceuticals and nutraceuticals could offer a desirable therapeutic profile. Hybanthus enneaspermus (L.) F. Muell. is a powerful medicinal herb, reportedly effective against several ailments, including psychological disorders. The current research envisaged evaluating the anxiolytic potential of the ethanolic extract of Hybanthus enneaspermus (EEHE) and its toluene insoluble biofraction (ITHE) employing experimental and computational approaches. Elevated Plus Maze, Light and Dark Transition, Mirror Chamber, Hole board and Open field tests were used as screening models to assess the antianxiety potential of 100, 200 and 400 mg/kg body weight of EEHE and ITHE in rats subjected to social isolation, using Diazepam as standard. The brains of rats exhibiting significant anxiolytic activity were dissected for histopathological and biochemical studies. Antioxidant enzymes like catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase; and neurotransmitters viz. monoamines (serotonin, noradrenaline, dopamine), Gamma-aminobutyric acid (GABA), and glutamate were quantified in the different regions of rats' brain (cortex, hippocampus, pons, medulla oblongata, cerebellum). Chromatographic techniques were used to isolate phytoconstituents from the fraction exhibiting significant activity that were characterized by spectroscopic methods and subjected to in silico molecular docking. ITHE at 400 mg/kg body weight significantly mitigated anxiety in all the screening models (p < 0.05), reduced the inflammatory vacuoles and necrosis (p < 0.05) and potentiated the antioxidant enzymes (p < 0.05). It enhanced the monoamines and GABA levels while attenuating glutamate levels (p < 0.01) in the brain. Three significant flavonoids viz. Quercitrin, Rutin and Hesperidin were isolated from ITHE. In silico docking studies of these flavonoids revealed that the compounds exhibited substantial binding to the GABAA receptor. ITHE displayed a promising pharmacological profile in combating anxiety and modulating oxidative stress, attributing its therapeutic virtues to the flavonoids present.


Assuntos
Ansiolíticos , Ansiedade , Extratos Vegetais , Ratos Wistar , Animais , Ansiolíticos/farmacologia , Ansiolíticos/isolamento & purificação , Ansiolíticos/uso terapêutico , Ansiolíticos/química , Ratos , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Masculino , Simulação de Acoplamento Molecular , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos
17.
EBioMedicine ; 106: 105236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996765

RESUMO

BACKGROUND: Variants in GABRB2, encoding the ß2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS: Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS: Electrophysiological assessments of α1ß2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION: The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING: This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.


Assuntos
Epilepsia , Estudos de Associação Genética , Fenótipo , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Masculino , Feminino , Epilepsia/genética , Criança , Pré-Escolar , Mutação com Ganho de Função , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Predisposição Genética para Doença , Adolescente , Lactente , Adulto , Genótipo , Alelos
18.
Proc Natl Acad Sci U S A ; 121(31): e2400339121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047036

RESUMO

The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) produces robust daily rhythms including rest-wake. SCN neurons synthesize and respond to γ-aminobutyric acid (GABA), but its role remains unresolved. We tested the hypothesis that γ2- and δ-subunits of the GABAA receptor in the SCN differ in their regulation of synchrony among circadian cells. We used two approaches: 1) shRNA to knock-down (KD) the expression of either γ2 or δ subunits in the SCN or 2) knock-in mice harboring a point mutation in the M2 domains of the endogenous GABAA γ2 or δ subunits. KD of either γ2 or δ subunits in the SCN increased daytime running and reduced nocturnal running by reducing their circadian amplitude by a third. Similarly, δ subunit knock-in mice showed decreased circadian amplitude, increased duration of daily activity, and decreased total daily activity. Reduction, or mutation of either γ2 or δ subunits halved the synchrony among, and amplitude of, circadian SCN cells as measured by firing rate or expression of the PERIOD2 protein, in vitro. Surprisingly, overexpression of the γ2 subunit rescued these phenotypes following KD or mutation of the δ subunit, and overexpression of the δ subunit rescued deficiencies due to γ2 subunit KD or mutation. We conclude that γ2 and δ GABAA receptor subunits play similar roles in maintaining circadian synchrony in the SCN and amplitude of daily rest-wake rhythms, but that modulation of their relative densities can change the duration and amplitude of daily activities.


Assuntos
Ritmo Circadiano , Receptores de GABA-A , Núcleo Supraquiasmático , Animais , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Camundongos , Masculino , Vigília/fisiologia , Vigília/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia
19.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963323

RESUMO

Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.


Assuntos
Retículo Endoplasmático , Receptores de GABA-A , Animais , Humanos , Ratos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Células HEK293 , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
20.
Sci Rep ; 14(1): 17461, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075105

RESUMO

GABAergic transmission is influenced by post-translational modifications, like phosphorylation, impacting channel conductance, allosteric modulator sensitivity, and membrane trafficking. O-GlcNAcylation is a post-translational modification involving the O-linked attachment of ß-N-acetylglucosamine on serine/threonine residues. Previously we reported an acute increase in O-GlcNAcylation elicits a long-term depression of evoked GABAAR inhibitory postsynaptic currents (eIPSCs) onto hippocampal principal cells. Importantly, O-GlcNAcylation and phosphorylation can co-occur or compete for the same residue; whether they interact in modulating GABAergic IPSCs is unknown. We tested this by recording IPSCs from hippocampal principal cells and pharmacologically increased O-GlcNAcylation, before or after increasing serine phosphorylation using the adenylate cyclase activator, forskolin. Although forskolin had no significant effect on baseline eIPSC amplitude, we found that a prior increase in O-GlcNAcylation unmasks a forskolin-dependent increase in eIPSC amplitude, reversing the O-GlcNAc-induced eIPSC depression. Inhibition of adenylate cyclase or protein kinase A did not prevent the potentiating effect of forskolin, indicating serine phosphorylation is not the mechanism. Surprisingly, increasing O-GlcNAcylation also unmasked a potentiating effect of the neurosteroids 5α-pregnane-3α,21-diol-20-one (THDOC) and progesterone on eIPSC amplitude in about half of the recorded cells, mimicking forskolin. Our findings show that under conditions of heightened O-GlcNAcylation, the neurosteroid site on synaptic GABAARs is possibly accessible to agonists, permitting strengthening of synaptic inhibition.


Assuntos
Colforsina , Hipocampo , Receptores de GABA-A , Sinapses , Colforsina/farmacologia , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ratos , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Masculino , Transmissão Sináptica/efeitos dos fármacos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...