Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.876
Filtrar
1.
PLoS Pathog ; 20(7): e1012302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949991

RESUMO

Oropharyngeal candidiasis (OPC) is the most common human fungal infection, arising typically from T cell immune impairments. IL-17 and IL-22 contribute individually to OPC responses, but here we demonstrate that the combined actions of both cytokines are essential for resistance to OPC. Mice lacking IL-17RA and IL-22RA1 exhibited high fungal loads in esophagus- and intestinal tract, severe weight loss, and symptoms of colitis. Ultimately, mice succumbed to infection. Dual loss of IL-17RA and IL-22RA impaired expression of small proline rich proteins (SPRRs), a class of antimicrobial effectors not previously linked to fungal immunity. Sprr2a1 exhibited direct candidacidal activity in vitro, and Sprr1-3a-/- mice were susceptible to OPC. Thus, cooperative actions of Type 17 cytokines mediate oral mucosal anti-Candida defenses and reveal a role for SPRRs.


Assuntos
Candidíase Bucal , Interleucina-17 , Interleucina 22 , Interleucinas , Camundongos Knockout , Animais , Camundongos , Candida albicans/imunologia , Candidíase Bucal/imunologia , Candidíase Bucal/microbiologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Interleucina/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo
2.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831315

RESUMO

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Assuntos
Canais de Cálcio Tipo T , Proteínas Quinases Dependentes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriais , Transdução de Sinais , Gânglio Trigeminal , Quinases da Família src , Animais , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/genética , Quinases da Família src/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gânglio Trigeminal/metabolismo , Masculino , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Interleucinas/metabolismo
3.
Nat Commun ; 15(1): 4528, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811532

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress ß-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.


Assuntos
Fígado Gorduroso , Interleucina 22 , Interleucinas , Fígado , Pâncreas , Interleucinas/metabolismo , Animais , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Humanos , Camundongos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Resistência à Insulina , Receptores de Interleucina/metabolismo
4.
Nat Commun ; 15(1): 4527, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811550

RESUMO

The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.


Assuntos
Glucose , Homeostase , Células Secretoras de Insulina , Insulina , Camundongos Knockout , Receptores de Interleucina , Animais , Células Secretoras de Insulina/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética , Feminino , Humanos , Masculino , Insulina/metabolismo , Camundongos , Glucose/metabolismo , Secreção de Insulina , Camundongos Endogâmicos C57BL , Interleucina 22 , Intolerância à Glucose/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Envelhecimento/metabolismo
5.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815582

RESUMO

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Assuntos
Movimento Celular , Fibrose , Rim , Linfócitos , Receptor de Morte Celular Programada 1 , Receptores CXCR6 , Receptores de Interleucina , Transdução de Sinais , Animais , Fibrose/imunologia , Camundongos , Receptores CXCR6/metabolismo , Receptores CXCR6/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/imunologia , Movimento Celular/imunologia , Humanos , Rim/patologia , Rim/imunologia , Rim/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/imunologia , Camundongos Endogâmicos C57BL , Nefropatias/imunologia , Nefropatias/metabolismo , Nefropatias/patologia , Imunidade Inata/imunologia , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/imunologia , Intestinos/patologia
6.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791570

RESUMO

INTRODUCTION: Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome. METHODS: We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data. RESULTS: Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes. CONCLUSIONS: Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.


Assuntos
Colite Ulcerativa , Biologia Computacional , Ustekinumab , Humanos , Ustekinumab/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Masculino , Feminino , Biologia Computacional/métodos , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Estudos Prospectivos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Aprendizado de Máquina , Prognóstico
7.
Cell Rep ; 43(5): 114206, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733584

RESUMO

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.


Assuntos
Colite , Sulfato de Dextrana , Interleucina 22 , Interleucinas , Receptores de Interleucina , Animais , Interleucinas/metabolismo , Camundongos , Glicosilação , Colite/metabolismo , Colite/patologia , Colite/induzido quimicamente , Receptores de Interleucina/metabolismo , Mucinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Transdução de Sinais , Camundongos Endogâmicos C57BL , Inflamação/patologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Knockout , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Células-Tronco/metabolismo
8.
Epigenetics ; 19(1): 2352683, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38723244

RESUMO

Some benign and malignant breast tumours are similar in pathological morphology, which are difficult to be distinguished in clinical diagnosis. In this study, we intended to explore novel biomarkers for differential diagnosis of benign and malignant breast tumours. Methylation EPIC 850K beadchip and RNA-sequencing were used to analyse 29 tissue samples from patients with early-stage breast cancer (BC) and benign breast tumours for differently methylated and expressed genes. The altered methylation of IL21R was semi-quantitatively validated in an independent study with 566 tissue samples (279 BC vs. 287 benign breast tumours) using mass spectrometry. Binary logistic regression analysis was performed to evaluate the association between IL21R methylation and BC. BC-associated IL21R hypomethylation and overexpression were identified in the discovery round. In the validation round, BC patients presented significant IL21R hypomethylation compared to women with benign breast tumours (ORs ≥1.29 per-10% methylation, p-values ≤ 5.69E-14), and this hypomethylation was even enhanced in BC patients with ER-negative and PR-negative tumours as well as with triple-negative tumours. The methylation of IL21R showed efficient discriminatory power to distinguish benign breast tumours from BC (area under curve (AUC) = 0.88), and especially from ER-negative BC (AUC = 0.95), PR-negative BC (AUC = 0.93) and triple-negative BC (AUC = 0.96). We disclosed significant IL21R hypomethylation in patients with BC compared to women with benign breast tumours, and revealed the somatic change of DNA methylation could be a potential biomarker for molecular pathology of BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Metilação de DNA , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Diagnóstico Diferencial , Subunidade alfa de Receptor de Interleucina-21 , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo
9.
Pharmacol Res ; 203: 107178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583686

RESUMO

Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.


Assuntos
Bleomicina , Ativação de Macrófagos , Macrófagos , Animais , Humanos , Masculino , Camundongos , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/imunologia , Janus Quinase 2/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/induzido quimicamente , Receptores de Interleucina/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Células THP-1
10.
Proc Natl Acad Sci U S A ; 121(19): e2321836121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687788

RESUMO

Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.


Assuntos
Citrobacter rodentium , Clostridioides difficile , Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Interleucina 22 , Camundongos Knockout , Animais , Camundongos , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle
11.
Nature ; 628(8008): 620-629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509369

RESUMO

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Assuntos
Infecções por Vírus Epstein-Barr , Interleucina-27 , Receptores de Interleucina , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Alelos , Linfócitos B/patologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Finlândia , Frequência do Gene , Herpesvirus Humano 4 , Homozigoto , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/terapia , Interleucina-27/imunologia , Interleucina-27/metabolismo , Mutação com Perda de Função , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Resultado do Tratamento
12.
Biochem Biophys Res Commun ; 701: 149552, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335918

RESUMO

The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Dieta Ocidental , Aorta/metabolismo , Células Mieloides/metabolismo , Monócitos/metabolismo , Adesão Celular , Receptores de Interleucina/metabolismo
13.
Inflammation ; 47(2): 807-821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117410

RESUMO

Interleukin-27 receptor (IL-27R) is expressed in a variety of immune cells and structural cells, including dendritic cells. The mechanism of IL-27 in asthma has not been fully elucidated. This study aimed to examine whether IL-27 regulated the CD39/ATP axis of dendritic cells in asthma. Our results showed that in ovalbumin (OVA)-induced asthma mouse model, IL-27Rα-/- asthmatic mice showed increased airway resistance, increased infiltration of inflammatory cells in lung tissue, proliferation of goblet cells, enhanced expression of Muc5 AC around airway epithelium, increased total number of cells and eosinophils, increased levels of total IgE, OVA-IgE, IL-4, IL-5, IL-13 and IL-17 A, and increased expression of transcription factors GATA-3 and RORγt in lung tissue. The expression of CD39 mRNA and protein in the lung tissue of IL-27Rα-/- asthmatic mice decreased, and the expression of NLRP3, ASC and Caspase-1 in NLRP3 inflammasome components increased. The concentration of ATP was significantly increased compared with WT asthmatic mice. In vitro experiments showed that the expression of CD39 in lung dendritic cells of IL-27Rα-/- asthmatic mice decreased, while the expression of NLRP3 inflammasome components NLRP3, ASC and Caspase-1 increased. These findings indicate that IL-27 directly and indirectly regulates immunoinflammatory responses in asthma by acting on dendritic cells CD39/ATP Axis.


Assuntos
Trifosfato de Adenosina , Antígenos CD , Apirase , Asma , Células Dendríticas , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Asma/imunologia , Asma/metabolismo , Asma/induzido quimicamente , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Inflamação/metabolismo , Inflamação/imunologia , Interleucinas/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina/toxicidade , Receptores de Interleucina/metabolismo , Hipersensibilidade Respiratória/metabolismo
14.
Mol Immunol ; 164: 28-38, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944204

RESUMO

The immune system contributes to the pathophysiology of endometriosis. The role of ThGM cells, which produce granulocyte macrophage-colony-stimulating factor (GM-CSF), in the pathogenesis of endometriosis remains unknown. To analyze the features of ThGM cells in endometriosis, a mouse endometriosis model was established. ThGM cells in the spleen, peritoneal fluid (PF), and endometriotic lesions (EL) were measured by flow cytometry, based on the expression of surface markers and intracellular proteins. Live ThGM cells were sorted according to chemokine receptor expression profiles and their effects on other CD4+ T cell subsets were determined by co-culture assays. An adoptive transfer assay was performed to characterize the effect of ThGM cells on endometriosis. We found that ThGM cells were present in endometriotic PF and EL. Live EL ThGM cells were enriched in CD4+CXCR3-CCR8-CCR4+CCR10+ T cells. EL ThGM cells differentially express interleukin-35 receptor (IL-35R), consisting of an IL-35R+ subset and an IL-35R- subset. The IL-35R+ subset expressed less GM-CSF, interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α) and proliferated slower than the IL-35R- subset. Meanwhile, the IL-35R+ subset was weaker than the IL-35R- subset in promoting the functions of Th1 and Th17 cells. ThGM cell transfer did not influence EL development but significantly alleviated pro-inflammatory cytokines in PF and ELs. Interleukin-35 (IL-35), the ligand of IL-35R, suppressed ThGM cell function and proliferation in an IL-35R-dependent manner. In summary, ThGM cells in the PF and ELs might exacerbate endometriotic inflammation. IL-35 might suppress the function of ThGM cells via IL-35R.


Assuntos
Endometriose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Receptores de Interleucina , Animais , Feminino , Humanos , Camundongos , Endometriose/metabolismo , Endometriose/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Granulócitos/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
15.
Front Immunol ; 14: 1251031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035099

RESUMO

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by intermittent itchy rash. Type 2 inflammatory cytokines such as interleukin (IL)-4, IL-13, and IL-31 are strongly implicated in AD pathogenesis. Stimulation of IL-31 cognate receptors on C-fiber nerve endings is believed to activate neurons in the dorsal root ganglion (DRG), causing itch. The IL-31 receptor is a heterodimer of OSMRß and IL31RA subunits, and OSMRß can also bind oncostatin M (OSM), a pro-inflammatory cytokine released by monocytes/macrophages, dendritic cells, and T lymphocytes. Further, OSM expression is enhanced in the skin lesions of AD and psoriasis vulgaris patients. Objective: The current study aimed to examine the contributions of OSM to AD pathogenesis and symptom expression. Methods: The expression levels of the OSM gene (OSM) and various cytokine receptor genes were measured in human patient skin samples, isolated human monocytes, mouse skin samples, and mouse DRG by RT-qPCR. Itching responses to various pruritogens were measured in mice by counting scratching episodes. Results: We confirmed overexpression of OSM in skin lesions of patients with AD and psoriasis vulgaris. Monocytes isolated from the blood of healthy subjects overexpressed OSM upon stimulation with IL-4 or GM-CSF. Systemic administration of OSM suppressed IL31RA expression in the mouse DRG and IL-31-stimulated scratching behavior. In contrast, systemic administration of OSM increased the expression of IL-4- and IL-13-related receptors in the DRG. Conclusion: These results suggest that OSM is an important cytokine in the regulation of skin monocytes, promoting the actions of IL-4 and IL-13 in the DRG and suppressing the action of IL-31. It is speculated that OSM released from monocytes in skin modulates the sensitivity of DRG neurons to type 2 inflammatory cytokines and thereby the severity of AD-associated skin itch.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Oncostatina M/farmacologia , Oncostatina M/metabolismo , Interleucina-4/metabolismo , Gânglios Espinais/metabolismo , Interleucina-13/metabolismo , Prurido/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Dermatite Atópica/metabolismo , Receptores de Interleucina/metabolismo , Psoríase/metabolismo
16.
Cell Rep ; 42(5): 112483, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37148242

RESUMO

Metaphocytes are tissue-resident macrophage (TRM)/dendritic cell (DC)-like cells of non-hematopoietic origin in zebrafish barrier tissues. One remarkable property of metaphocytes is their ability to capture soluble antigens from the external environment via transepithelial protrusions, a unique function manifested by specialized subpopulations of the TRMs/DCs in mammal barrier tissues. Yet, how metaphocytes acquire myeloid-like cell properties from non-hematopoietic precursors and how they regulate barrier immunity remains unknown. Here, we show that metaphocytes are in situ generated from local progenitors guided by the ETS transcription factor Spic, the deficiency of which results in the absence of metaphocytes. We further document that metaphocytes are the major IL-22BP-producing cells, and the depletion of metaphocytes causes dysregulated barrier immunity that resembles the phenotype of IL-22BP-deficient mice. These findings reveal the ontogeny, development, and function of metaphocytes in zebrafish, which facilitates our understanding of the nature and function of the mammalian TRM/DC counterparts.


Assuntos
Células Dendríticas , Peixe-Zebra , Animais , Camundongos , Diferenciação Celular , Proteínas de Ligação a DNA , Mamíferos , Receptores de Interleucina/metabolismo
17.
Physiol Rep ; 11(2): e15581, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708509

RESUMO

Macrophages play crucial roles in abdominal aortic aneurysm (AAA) formation through the inflammatory response and extracellular matrix degradation; therefore, regulating macrophages may suppress AAA formation. Interleukin-38 (IL-38) is a member of the IL-1 family, which binds to IL-36 receptor (IL1RL2) and has an anti-inflammation effect. Because macrophages express IL1RL2, we hypothesized that IL-38 suppresses AAA formation by controlling macrophages. We assessed a C57BL6/J mouse angiotensin II-induced AAA model with or without IL-38 treatment. RAW 264.7 cells were cultured with tumor necrosis factor-α and treated with or without IL-38. Because p38 has important roles in inflammation, we assessed p38 phosphorylation in vitro and in vivo. To clarify whether the IL-38 effect depends on the p38 pathway, we used SB203580 to inhibit p38 phosphorylation. IL1RL2+ macrophage accumulation along with matrix metalloproteinase (MMP)-2 and -9 expression was observed in mouse AAA. IL-38 reduced the incidence of AAA formation along with reduced M1 macrophage accumulation and MMP-2 and -9 expression in the AAA wall. Macrophage activities including inducible nitric oxide, MMP-2, and MMP-9 production and spindle-shaped changes were significantly suppressed by IL-38. Furthermore, we revealed that inhibition of p38 phosphorylation diminished the effects of IL-38 on regulating macrophages to reduce AAA incidence, indicating the protective effects of IL-38 depend on the p38 pathway. IL-38 plays protective roles against AAA formation through regulation of macrophage accumulation in the aortic wall and modulating the inflammatory phenotype. Using IL-38 may be a novel therapy for AAA patients.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 2 da Matriz , Animais , Camundongos , Angiotensina II/farmacologia , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Interleucinas/metabolismo , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Front Immunol ; 14: 1297329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162637

RESUMO

Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.


Assuntos
Antígeno B7-2 , Exaustão do Sistema Imunitário , Monócitos , Receptores de Interleucina , Sepse , Animais , Humanos , Camundongos , Proteínas do Domínio Armadillo/metabolismo , Antígeno B7-2/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais , Camundongos Knockout , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo
19.
Sci Immunol ; 7(78): eade5728, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36525507

RESUMO

Interleukin-1 (IL-1) family cytokines are key barrier cytokines that are typically expressed as inactive, or partially active, precursors that require proteolysis within their amino termini for activation. IL-37 is an enigmatic member of the IL-1 family that has been proposed to be activated by caspase-1 and to exert anti-inflammatory activity through engagement of the IL-18R and SIGIRR. However, here we show that the longest IL-37 isoform, IL-37b, exhibits robust proinflammatory activity upon amino-terminal proteolysis by neutrophil elastase or cathepsin S. In sharp contrast, caspase-1 failed to process or activate IL-37 at concentrations that robustly activated its canonical substrate, IL-1ß. IL-37 and IL-36 exhibit high structural homology, and, consistent with this, a K53-truncated form of IL-37, mimicking the cathepsin S-processed form of this cytokine, was found to exert its proinflammatory effects via IL-36 receptor engagement and produced an inflammatory signature practically identical to IL-36. Administration of K53-truncated IL-37b intraperitoneally into wild-type mice also elicited an inflammatory response that was attenuated in IL-36R-/- animals. These data demonstrate that, in common with other IL-1 family members, mature IL-37 can also elicit proinflammatory effects upon processing by specific proteases.


Assuntos
Interleucina-1 , Peptídeo Hidrolases , Receptores de Interleucina , Animais , Camundongos , Caspases , Catepsinas , Citocinas , Interleucina-1/metabolismo , Células Mieloides , Receptores de Interleucina/metabolismo
20.
Front Cell Infect Microbiol ; 12: 979701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225230

RESUMO

Pseudomembranous candidiasis (thrush), erythematous candidiasis, and fungal esophagitis are infections of the barrier mucosa of the upper gastrointestinal tract. The majority of these infections are caused by Candida albicans, an opportunistic fungal pathogen that frequently exists as a harmless commensal on mucosal surfaces lining the gastrointestinal tract. Oral infections are initiated in the superficial stratified squamous epithelium, in which keratinocytes are the most abundant host cells and are the initial points of contact with C. albicans present in saliva. Intrinsic features of oral keratinocytes are likely to play important roles in host defense and tissue homeostasis in oral candidiasis. One understudied pathway that may be important for modulating oral candidiasis is the IL-20 cytokine signaling pathway that employs keratinocyte IL-20RB receptors as ligands for IL-19, IL-20, and IL-24. We report that production of human oral keratinocyte il24 mRNA and protein are stimulated during co-culture with C. albicans. To test the role of the IL-20 family signaling pathway in oral candidiasis, Il20rb-/- mice (lacking the IL-20RB receptor) were compared to wild-type mice in a murine model of oropharyngeal candidiasis. Fungal burdens and percent loss in body weight were determined. Despite comparable fungal burdens, the Il20rb-/- mice exhibited less weight loss over the course of their infection compared to the B6 mice, suggestive of reduced overall disease consequences in the mutant mice. Interference with IL-20 family cytokine signaling may be useful for augmenting the ability of the host to defend itself against pathogens.


Assuntos
Candidíase Bucal , Candidíase , Receptores de Interleucina/metabolismo , Animais , Candida albicans/genética , Candidíase/microbiologia , Humanos , Interleucina-17/metabolismo , Interleucinas , Ligantes , Camundongos , Mucosa Bucal/microbiologia , RNA Mensageiro/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...