Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.150
Filtrar
2.
BMC Infect Dis ; 24(1): 934, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251948

RESUMO

BACKGROUND: Coinfection with two phylogenetically distinct Human Immunodeficiency Virus-1 (HIV-1) variants might provide an opportunity for rapid viral expansion and the emergence of fit variants that drive disease progression. However, autologous neutralising immune responses are known to drive Envelope (Env) diversity which can either enhance replicative capacity, have no effect, or reduce viral fitness. This study investigated whether in vivo outgrowth of coinfecting variants was linked to pseudovirus and infectious molecular clones' infectivity to determine whether diversification resulted in more fit virus with the potential to increase disease progression. RESULTS: For most participants, emergent recombinants displaced the co-transmitted variants and comprised the major population at 52 weeks postinfection with significantly higher entry efficiency than other co-circulating viruses. Our findings suggest that recombination within gp41 might have enhanced Env fusogenicity which contributed to the increase in pseudovirus entry efficiency. Finally, there was a significant correlation between pseudovirus entry efficiency and CD4 + T cell count, suggesting that the enhanced replicative capacity of recombinant variants could result in more virulent viruses. CONCLUSION: Coinfection provides variants with the opportunity to undergo rapid recombination that results in more infectious virus. This highlights the importance of monitoring the replicative fitness of emergent viruses.


Assuntos
Coinfecção , Infecções por HIV , HIV-1 , Filogenia , Humanos , Infecções por HIV/virologia , Infecções por HIV/complicações , HIV-1/genética , HIV-1/fisiologia , Coinfecção/virologia , Evolução Molecular , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Proteína gp41 do Envelope de HIV/genética , Masculino , Feminino , Recombinação Genética , Internalização do Vírus , Adulto , Contagem de Linfócito CD4 , Replicação Viral
3.
Sci Immunol ; 9(99): eadp6529, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270007

RESUMO

Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and ß chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and ß chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.


Assuntos
Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Linfócitos T CD4-Positivos/imunologia , Animais , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Camundongos Endogâmicos C57BL , Humanos , Camundongos Transgênicos , Feminino , Recombinação Genética/imunologia
4.
PeerJ ; 12: e17864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221285

RESUMO

Meiosis is a critical process in sexual reproduction, and errors during this cell division can significantly impact fertility. Successful meiosis relies on the coordinated action of numerous genes involved in DNA replication, strand breaks, and subsequent rejoining. DNA topoisomerase enzymes play a vital role by regulating DNA topology, alleviating tension during replication and transcription. To elucidate the specific function of DNA topoisomerase 1α ( A t T O P 1 α ) in male reproductive development of Arabidopsis thaliana, we investigated meiotic cell division in Arabidopsis flower buds. Combining cytological and biochemical techniques, we aimed to reveal the novel contribution of A t T O P 1 α to meiosis. Our results demonstrate that the absence of A t T O P 1 α leads to aberrant chromatin behavior during meiotic division. Specifically, the top1α1 mutant displayed altered heterochromatin distribution and clustered centromere signals at early meiotic stages. Additionally, this mutant exhibited disruptions in the distribution of 45s rDNA signals and a reduced frequency of chiasma formation during metaphase I, a crucial stage for genetic exchange. Furthermore, the atm-2×top1α1 double mutant displayed even more severe meiotic defects, including incomplete synapsis, DNA fragmentation, and the presence of polyads. These observations collectively suggest that A t T O P 1 α plays a critical role in ensuring accurate meiotic progression, promoting homologous chromosome crossover formation, and potentially functioning in a shared DNA repair pathway with ATAXIA TELANGIECTASIA MUTATED (ATM) in Arabidopsis microspore mother cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Segregação de Cromossomos , DNA Topoisomerases Tipo I , Meiose , Arabidopsis/genética , Arabidopsis/enzimologia , Meiose/fisiologia , Meiose/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Recombinação Genética , Mutação
5.
Parasites Hosts Dis ; 62(3): 302-312, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39218629

RESUMO

Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.


Assuntos
Antígenos de Protozoários , Malária Falciparum , Proteínas de Membrana , Plasmodium falciparum , Polimorfismo Genético , Proteínas de Protozoários , Paquistão , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Proteínas de Membrana/genética , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Variação Genética/genética , Seleção Genética , Filogenia , Recombinação Genética/genética
6.
BMC Genomics ; 25(1): 822, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223519

RESUMO

BACKGROUND: Traditional recombinant inbred lines (RILs) are generated from repeated self-fertilization or brother-sister mating from the F1 hybrid of two inbred parents. Compared with the F2 population, RILs cumulate more crossovers between loci and thus increase the number of recombinants, resulting in an increased resolution of genetic mapping. Since they are inbred to the isogenic stage, another consequence of the heterozygosity reduction is the increased genetic variance and thus the increased power of QTL detection. Self-fertilization is the primary form of developing RILs in plants. Brother-sister mating is another way to develop RILs but in small laboratory animals. To ensure that the RILs have at least 98% of homozygosity, we need about seven generations of self-fertilization or 20 generations of brother-sister mating. Prior to homozygosity, these lines are called pre-recombinant inbred lines (PRERIL). Phenotypic values of traits in PRERILs are often collected but not used in QTL mapping. To perform QTL mapping in PRERILs, we need the recombination fraction between two markers at generation t for t < 7 (selfing) or t < 20 (brother-sister mating) so that the genotypes of QTL flanked by the markers can be inferred. RESULTS: In this study, we developed formulas to calculate the recombination fractions of PRERILs at generation t in self-fertilization, brother-sister mating, and random mating. In contrast to existing works in this topic, we used computer code to construct the transition matrix to form the Markov chain of genotype array between consecutive generations, the so-called recurrent equations. CONCLUSIONS: We provide R functions to calculate the recombination fraction using the newly developed recurrent equations of ordered genotype array. With the recurrent equations and the R code, users can perform QTL mapping in PRERILs. Substantial time and effort can be saved compared with QTL mapping in RILs.


Assuntos
Endogamia , Locos de Características Quantitativas , Recombinação Genética , Mapeamento Cromossômico , Homozigoto , Modelos Genéticos , Genótipo , Fenótipo
7.
Sci Rep ; 14(1): 20476, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227621

RESUMO

Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , RecQ Helicases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , RecQ Helicases/metabolismo , RecQ Helicases/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Recombinação Genética , Mutação , Recombinação Homóloga
8.
Arch Virol ; 169(10): 197, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256207

RESUMO

While treatment options for hepatitis C virus (HCV) infection have expanded considerably over the past decade thanks to the development of pan-genotypic therapies, genotype testing remains a prerequisite for treatment in sub-Saharan African countries, including Cameroon, where multiple HCV genotypes and subtypes exist. The main objective of this study was to describe the trend in the distribution of HCV genotypes and subtypes from 2013 to 2023 in the Cameroonian population. Viral loads were determined using the Abbott real-time assay, and genotyping/subtyping was based on nested and semi-nested reverse transcription polymerase chain reaction (RT-PCR) amplification of the regions encoding the core and non-structural protein 5B (NS5B) regions, respectively, followed by sequencing and phylogenetic analysis. A total of 512 patients with NS5B and core sequencing results were included in our study. Genotyping revealed a predominance of both genotype 4 (38.48%) and genotype 1 (37.11%), followed by genotype 2, detected in 22.46% of patients. Interestingly, 10 samples (1.95%) had discordant genotypes in both regions, suggesting the presence of putative recombinant forms of HCV. Twelve different subtypes were detected during the study period, with a predominance of subtypes 4f (18.95%) and 1e (16.02%). Furthermore, phylogenetic analysis failed to assign a subtype to a relatively high proportion of sequences (38.67%) for the two genomic regions, and their classification was limited to genotype assignment. The frequency distribution of HCV genotypes did not show any statistical difference according to year or sex. These results confirm the genetic diversity of HCV in Cameroon and the potential for the generation of recombinant strains.


Assuntos
Variação Genética , Genótipo , Hepacivirus , Hepatite C , Filogenia , Proteínas não Estruturais Virais , Hepacivirus/genética , Hepacivirus/classificação , Hepacivirus/isolamento & purificação , Humanos , Camarões/epidemiologia , Masculino , Feminino , Adulto , Hepatite C/virologia , Hepatite C/epidemiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto Jovem , Proteínas não Estruturais Virais/genética , Adolescente , Idoso , Recombinação Genética , Carga Viral , Criança , RNA Polimerase Dependente de RNA
9.
PLoS One ; 19(8): e0309391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39186542

RESUMO

The global impact of the SARS-CoV-2 pandemic has underscored the need for a deeper understanding of viral evolution to anticipate new viruses or variants. Genetic recombination is a fundamental mechanism in viral evolution, yet it remains poorly understood. In this study, we conducted a comprehensive research on the genetic regions associated with genetic recombination features in SARS-CoV-2. With this aim, we implemented a two-phase transfer learning approach using genomic spectrograms of complete SARS-CoV-2 sequences. In the first phase, we utilized a pre-trained VGG-16 model with genomic spectrograms of HIV-1, and in the second phase, we applied HIV-1 VGG-16 model to SARS-CoV-2 spectrograms. The identification of key recombination hot zones was achieved using the Grad-CAM interpretability tool, and the results were analyzed by mathematical and image processing techniques. Our findings unequivocally identify the SARS-CoV-2 Spike protein (S protein) as the pivotal region in the genetic recombination feature. For non-recombinant sequences, the relevant frequencies clustered around 1/6 and 1/12. In recombinant sequences, the sharp prominence of the main hot zone in the Spike protein prominently indicated a frequency of 1/6. These findings suggest that in the arithmetic series, every 6 nucleotides (two triplets) in S may encode crucial information, potentially concealing essential details about viral characteristics, in this case, recombinant feature of a SARS-CoV-2 genetic sequence. This insight further underscores the potential presence of multifaceted information within the genome, including mathematical signatures that define an organism's unique attributes.


Assuntos
COVID-19 , Recombinação Genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Humanos , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/genética , HIV-1/genética , HIV-1/classificação , Genoma Viral , Redes Neurais de Computação
10.
Biochem J ; 481(15): 1015-1042, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39101615

RESUMO

Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.


Assuntos
DNA Mitocondrial , Evolução Molecular , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Eucariotos/genética , Humanos , Recombinação Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genes Mitocondriais
11.
Front Immunol ; 15: 1332444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156896

RESUMO

Introduction: Since their identification in 1974, circoviruses have caused clinicopathological diseases in various animal species, including humans. However, their origin, transmission, and genetic evolution remain poorly understood. Methods: In this study, the genome sequences of circovirus were obtained from GenBank, and the Bayesian stochastic search variable selection algorithm was employed to analyzed the evolution and origin of circovirus. Results: Here, the evolutionary origin, mode of transmission, and genetic recombination of the circovirus were determined based on the available circovirus genome sequences. The origin of circoviruses can be traced back to fish circovirus, which might derive from fish genome, and human contributes to transmission of fish circovirus to other species. Furthermore, mosquitos, ticks, bats, and/or rodents might play a role as intermediate hosts in circovirus intra- and inter-species transmission. Two major lineages (A and B) of circoviruses are identified, and frequent recombination events accelerate their variation and spread. The time to the most recent common ancestor of circoviruses can be traced back to around A.D. 600 and has been evolving at a rate of 10-4 substitutions site-1 year-1 for a long time. Discussion: These comprehensive findings shed light on the evolutionary origin, population dynamics, transmission model, and genetic recombination of the circovirus providing valuable insights for the development of prevention and control strategies against circovirus infections.


Assuntos
Infecções por Circoviridae , Circovirus , Evolução Molecular , Filogenia , Recombinação Genética , Animais , Humanos , Circovirus/genética , Infecções por Circoviridae/transmissão , Infecções por Circoviridae/virologia , Infecções por Circoviridae/veterinária , Genoma Viral , Teorema de Bayes
12.
Biol Direct ; 19(1): 70, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169390

RESUMO

BACKGROUND: The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination. METHODS: On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse. RESULTS: We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human. CONCLUSIONS: We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.


Assuntos
Troca Genética , Primatas , Recombinação Genética , Animais , Humanos , Primatas/genética , Genoma , Genoma Humano , Camundongos
13.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106433

RESUMO

Cytoplasmic incompatibility (CI), a non-Mendelian genetic phenomenon, involves the manipulation of host reproduction by Wolbachia, a maternally transmitted alphaproteobacterium. The underlying mechanism is centered around the CI Factor (CIF) system governed by two genes, cifA and cifB, where cifB induces embryonic lethality, and cifA counteracts it. Recent investigations have unveiled intriguing facets of this system, including diverse cifB variants, prophage association in specific strains, copy number variation, and rapid component divergence, hinting at a complex evolutionary history. We utilized comparative genomics to systematically classify CIF systems, analyze their locus structure and domain architectures, and reconstruct their diversification and evolutionary trajectories. Our new classification identifies ten distinct CIF types, featuring not just versions present in Wolbachia, but also other intracellular bacteria, and eukaryotic hosts. Significantly, our analysis of CIF loci reveals remarkable variability in gene composition and organization, encompassing an array of diverse endonucleases, variable toxin domains, deubiquitinating peptidases (DUBs), prophages, and transposons. We present compelling evidence that the components within the loci have been diversifying their sequences and domain architectures through extensive, independent lateral transfers and interlocus recombination involving gene conversion. The association with diverse transposons and prophages, coupled with selective pressures from host immunity, likely underpins the emergence of CIF loci as recombination hotspots. Our investigation also posits the origin of CifB-REase domains from mobile elements akin to CR (Crinkler-RHS-type) effectors and Tribolium Medea1 factor, which is linked to another non-Mendelian genetic phenomenon. This comprehensive genomic analysis offers novel insights into the molecular evolution and genomic foundations of Wolbachia-mediated host reproductive control.


Assuntos
Transferência Genética Horizontal , Recombinação Genética , Wolbachia , Wolbachia/genética , Evolução Molecular , Filogenia , Genoma Bacteriano , Citoplasma/genética , Animais , Proteínas de Bactérias/genética
14.
Methods Mol Biol ; 2818: 45-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126466

RESUMO

Hi-C, a genome-wide chromosome conformation capture assay, is a powerful tool used to study three-dimensional genome organization by converting physical pairwise interactions into counts of pairwise interactions. To study the many temporally regulated facets of meiotic recombination in S. cerevisiae, the Hi-C assay must be robust such that fine- and wide-scale comparisons between genetic datasets can be made. Here we describe an updated protocol for Hi-C (Hi-C2B) that generates reproducible libraries of interaction data with low noise and for a relatively low cost.


Assuntos
Cromossomos Fúngicos , Meiose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Meiose/genética , Cromossomos Fúngicos/genética , Recombinação Genética , Genoma Fúngico
15.
Methods Mol Biol ; 2818: 81-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126468

RESUMO

Homologous recombination plays pivotal roles in physical attachments and genetic diversity. In the past, it was studied among individuals from different populations. However, only few gametes from individual could generate offspring, which limits its exploration in nature selection. In the last few years, preimplantation blastocysts based on trio SNP-chip data were available in individuals for preimplantation genetic testing (PGT). In this protocol, we demonstrate how to detect meiotic recombination events and construct the genetic map based on trio SNP-chip data, obtained from biopsied blastocysts and their related individuals in PGT cycles, which may allow better understanding of recombination events in nature selection.


Assuntos
Blastocisto , Meiose , Polimorfismo de Nucleotídeo Único , Humanos , Meiose/genética , Blastocisto/metabolismo , Blastocisto/citologia , Feminino , Diagnóstico Pré-Implantação/métodos , Mapeamento Cromossômico/métodos , Recombinação Homóloga , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Recombinação Genética
16.
Methods Mol Biol ; 2818: 249-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126480

RESUMO

Prophase I is a remarkable stage of meiotic division during which homologous chromosomes pair together and exchange DNA by meiotic recombination. Fluorescence microscopy of meiotic chromosome spreads is a central tool in the study of this process, with chromosome axis proteins being visualized as extended filaments upon which recombination proteins localize in focal patterns.Chromosome pairing and recombination are dynamic processes, and hundreds of recombination foci can be present in some meiotic nuclei. As meiotic nuclei can exhibit significant variations in staining patterns within and between nuclei, particularly in mutants, manual analysis of images presents challenges for consistency, documentation, and reproducibility. Here we share a combination of complementary computational tools that can be used to partially automate the quantitative analysis of meiotic images. (1) The segmentation of axial and focal staining patterns to automatically measure chromosome axis length and count axis-associated (and non-axis associated) recombination foci; (2) Quantification of focus position along chromosome axes to investigate spatial regulation; (3) Simulation of random distributions of foci within the nucleus or along the chromosome axes to statistically investigate observed foci-axis associations and foci-foci associations; (4) Quantification of chromosome axis proximity to investigate relationships with chromosome synapsis/asynapsis; (5) Quantification of and orientation of focus-axis distances. Together, these tools provide a framework to perform routine documentation and analysis of meiotic images, as well as opening up routes to build on this initial output and perform more detailed analyses.


Assuntos
Processamento de Imagem Assistida por Computador , Prófase Meiótica I , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Software , Biologia Computacional/métodos , Pareamento Cromossômico , Meiose , Núcleo Celular/metabolismo , Recombinação Genética
17.
Methods Mol Biol ; 2818: 239-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126479

RESUMO

During meiosis, homologous chromosomes reciprocally exchange segments of DNA via the formation of crossovers. However, the frequency and position of crossover events along chromosomes are not random. Each chromosome must receive at least one crossover, and the formation of a crossover at one location inhibits the formation of additional crossovers nearby. These crossover patterning phenomena are referred to as "crossover assurance" and "crossover interference," respectively. One key method for quantifying meiotic crossover patterning is to immunocytologically measure the position and intensity of crossover-associated protein foci along the length of meiotic prophase I chromosomes. This approach was recently used to map the position of a conserved E3 ligase, HEI10, along Arabidopsis pachytene chromosomes, providing experimental support for a novel mechanistic "coarsening model" for crossover patterning. Here we describe a user-friendly method for automatically measuring the position and intensity of recombination-associated foci along meiotic prophase I chromosomes that is broadly applicable to studies in different eukaryotic species.


Assuntos
Troca Genética , Meiose , Meiose/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Prófase Meiótica I , Recombinação Genética
18.
BMC Genomics ; 25(1): 752, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090561

RESUMO

Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.


Assuntos
Evolução Molecular , Genoma Viral , Herpesvirus Suídeo 1 , Mutação , Filogenia , Pseudorraiva , Recombinação Genética , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/isolamento & purificação , China , Animais , Suínos , Pseudorraiva/virologia , Doenças dos Suínos/virologia , Sequenciamento Completo do Genoma
19.
Arch Virol ; 169(9): 180, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150572

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that has been the main cause of diarrhea in piglets since 2010 in China. The aim of this study was to investigate sequence variation and recombination events in the spike (S) gene of PEDV isolates from China. Thirty complete S gene sequences were obtained from PEDV-positive samples collected in six provinces in China from 2020 to 2023. Phylogenetic analysis showed that 10% (3/30) belonged to subtype GII-a, 6.67% (2/30) were categorized as subtype GII-b, 66.67% (20/30) were categorized as subtype GII-c, and 16.66% (5/30) were clustered with the S-INDEL strains. Amino acid sequence alignments showed that, when compared to strains of other subtypes, the GII-c strains had two characteristic amino acid substitutions (N139D and I289M). Five S-INDEL subtype strains had a single amino acid deletion (139N) and four amino acid substitutions (N118G, T137S, A138S, and D141G). Recombination analysis allowed six putative recombination events to be identified, one involving recombination between GII-c strains, two involving GII-c and GII-b strains, two involving GII-c and GI-a strains, and one involving GII-a and GI-b strains. These results suggest that recombination between PEDV strains has been common and complex in recent years and is one of the main reasons for the continuous variation of PEDV strains.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Recombinação Genética , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Animais , Sequência de Aminoácidos , Substituição de Aminoácidos , China/epidemiologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Diarreia/virologia , Diarreia/veterinária , Diarreia/epidemiologia , Variação Genética , Genótipo , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/classificação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia
20.
Virology ; 598: 110195, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089050

RESUMO

Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.


Assuntos
Doenças dos Bovinos , Genoma Viral , Genótipo , Filogenia , Recombinação Genética , Infecções por Rotavirus , Rotavirus , Toxinas Biológicas , Proteínas não Estruturais Virais , Animais , Bovinos , Rotavirus/genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Bangladesh/epidemiologia , Proteínas não Estruturais Virais/genética , Humanos , Infecções por Rotavirus/virologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/epidemiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Estudos Transversais , Toxinas Biológicas/genética , Glicoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...