Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.558
Filtrar
1.
Methods Mol Biol ; 2848: 37-58, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240515

RESUMO

Several protocols have been established for the generation of lens organoids from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and other cells with regenerative potential in humans or various animal models. It is important to examine how well the regenerated lens organoids reflect lens biology, in terms of its development, homeostasis, and aging. Toward this goal, the iSyTE database (integrated Systems Tool for Eye gene discovery; https://research.bioinformatics.udel.edu/iSyTE/ ), a bioinformatics resource tool that contains meta-analyzed gene expression data in wild-type lens across different embryonic, postnatal, and adult stages, can serve as a resource for comparative analysis. This article outlines the approaches toward effective use of iSyTE to gain insights into normal gene expression in the mouse lens, enriched expression in the lens, and differential gene expression in select mouse gene-perturbation cataract/lens defects models, which in turn can be used to evaluate expression of key lens-relevant genes in lens organoids by transcriptomics (e.g., RNA-sequencing (RNA-seq), microarrays, etc.) or other downstream methods (e.g., RT-qPCR, etc.).


Assuntos
Cristalino , Organoides , Regeneração , Cristalino/citologia , Cristalino/metabolismo , Organoides/metabolismo , Organoides/citologia , Animais , Camundongos , Regeneração/genética , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Simulação por Computador , Humanos , Catarata/genética , Catarata/patologia , Catarata/metabolismo , Transcriptoma , Bases de Dados Genéticas
2.
Methods Mol Biol ; 2848: 117-134, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240520

RESUMO

Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.


Assuntos
Células Ependimogliais , Retina , Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Retina/metabolismo , Células Ependimogliais/metabolismo , Regeneração/genética , Análise de Sequência de RNA/métodos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , RNA-Seq/métodos , Modelos Animais de Doenças
3.
Nat Commun ; 15(1): 8530, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358385

RESUMO

In lung disease, persistence of KRT8-expressing aberrant basaloid cells in the alveolar epithelium is associated with impaired tissue regeneration and pathological tissue remodeling. We analyzed single cell RNA sequencing datasets of human interstitial lung disease and found the profibrotic Interleukin-11 (IL11) cytokine to be highly and specifically expressed in aberrant KRT8+ basaloid cells. IL11 is similarly expressed by KRT8+ alveolar epithelial cells lining fibrotic lesions in a mouse model of interstitial lung disease. Stimulation of alveolar epithelial cells with IL11 causes epithelial-to-mesenchymal transition and promotes a KRT8-high state, which stalls the beneficial differentiation of alveolar type 2 (AT2)-to-AT1 cells. Inhibition of IL11-signaling in AT2 cells in vivo prevents the accumulation of KRT8+ cells, enhances AT1 cell differentiation and blocks fibrogenesis, which is replicated by anti-IL11 therapy. These data show that IL11 inhibits reparative AT2-to-AT1 differentiation in the damaged lung to limit endogenous alveolar regeneration, resulting in fibrotic lung disease.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Interleucina-11 , Regeneração , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Interleucina-11/metabolismo , Interleucina-11/genética , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Regeneração/genética , Transdução de Sinais
4.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39408838

RESUMO

The quality control (QC) of pharmaceutical-grade cell-therapy products, such as mesenchymal stem cells (MSCs), is challenging. Attempts to develop such products have been hampered by difficulties defining cell-type-specific characteristics and therapeutic mechanisms of action (MoAs). Although we have developed a cell therapy product, FF-31501, consisting of human synovial MSCs (SyMSCs), it was difficult to find specific markers for SyMSCs and to define the cells separately from other MSCs. The purpose of this study was to create a method for identifying and defining SyMSCs from other tissue-derived MSCs and to delve deeper into the mechanism of action of SyMSC-induced meniscus regeneration. Specifically, as a cell-type-dependent approach, we constructed a set of 1143 genes (Amp1200) reported to be associated with MSCs and established a method to evaluate them by correlating gene expression patterns. As a result, it was possible to define SyMSCs separately from other tissue-derived MSCs and non-MSCs. In addition, the gene expression analysis also highlighted TNSF-15. The in vivo rat model of meniscus injury found TNSF-15 to be an essential molecule for meniscus regeneration via SyMSC administration. This molecule and previously reported MoA molecules allowed an MoA-dependent approach to define the mechanism of action for SyMSCs. Therefore, SyMSCs for meniscus regeneration were defined by means of two approaches: the method to separate them from other MSCs and the identification of the MoA molecules. These approaches would be useful for the QC of cell therapy products.


Assuntos
Menisco , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Regeneração , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Regeneração/genética , Ratos , Menisco/citologia , Menisco/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Masculino , Células Cultivadas , Lesões do Menisco Tibial/genética , Lesões do Menisco Tibial/terapia
5.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39408869

RESUMO

Since Teleostei fins have a strong regenerative capacity, further research was conducted on the regulation of gene expression during fin regeneration. This research focuses on miRNA, which is a key post-transcriptional regulatory molecule. In this study, a miRNA library for the fin regeneration of zebrafish was constructed to reveal the differential expression of miRNA during fin regeneration and to explore the regulatory pathway for fin regeneration. Following the injection of miRNA agomir into zebrafish, the proliferation of blastema cells and the overall fin regeneration area were significantly reduced. It was observed that the miRNAs impaired blastocyte formation by affecting fin regeneration through the inhibition of the expressions of genes and proteins associated with blastocyte formation (including yap1 and Smad1/5/9), which is an effect associated with the Hippo pathway. Furthermore, it has been demonstrated that miRNAs can impair the patterns and mineralization of newly formed fin rays. The miRNAs influenced fin regeneration by inhibiting the expression of a range of bone-related genes and proteins in osteoblast lineages, including sp7, runx2a, and runx2b. This study provides a valuable reference for the further exploration of morphological bone reconstruction in aquatic vertebrates.


Assuntos
Nadadeiras de Animais , MicroRNAs , Regeneração , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , MicroRNAs/genética , Peixe-Zebra/genética , Nadadeiras de Animais/fisiologia , Nadadeiras de Animais/metabolismo , Regeneração/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proliferação de Células/genética , Regulação da Expressão Gênica , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Transdução de Sinais , Osteoblastos/metabolismo , Fator de Transcrição Sp7
6.
Mol Biol Rep ; 51(1): 1045, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377855

RESUMO

Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.


Assuntos
MicroRNAs , Planárias , Regeneração , Células-Tronco , Animais , Planárias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Regeneração/genética , Redes Reguladoras de Genes
7.
Nat Commun ; 15(1): 8358, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333549

RESUMO

Programmable RNA editing is harnessed for modifying mRNA. Besides mRNA, miRNA also regulates numerous biological activities, but current RNA editors have yet to be exploited for miRNA manipulation. To engineer primary miRNA (pri-miRNA), the miRNA precursor, we present a customizable editor REPRESS (RNA Editing of Pri-miRNA for Efficient Suppression of miRNA) and characterize critical parameters. The optimized REPRESS is distinct from other mRNA editing tools in design rationale, hence enabling editing of pri-miRNAs that are not editable by other RNA editing systems. We edit various pri-miRNAs in different cells including adipose-derived stem cells (ASCs), hence attenuating mature miRNA levels without disturbing host gene expression. We further develop an improved REPRESS (iREPRESS) that enhances and prolongs pri-miR-21 editing for at least 10 days, with minimal perturbation of transcriptome and miRNAome. iREPRESS reprograms ASCs differentiation, promotes in vitro cartilage formation and augments calvarial bone regeneration in rats, thus implicating its potentials for engineering miRNA and applications such as stem cell reprogramming and tissue regeneration.


Assuntos
Diferenciação Celular , MicroRNAs , Células-Tronco , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo , Edição de RNA , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Regeneração Óssea/genética , Regeneração/genética , Regeneração/fisiologia , Ratos Sprague-Dawley , Masculino
8.
Nat Commun ; 15(1): 7010, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237549

RESUMO

Kidney injury disrupts the intricate renal architecture and triggers limited regeneration, together with injury-invoked inflammation and fibrosis. Deciphering the molecular pathways and cellular interactions driving these processes is challenging due to the complex tissue structure. Here, we apply single cell spatial transcriptomics to examine ischemia-reperfusion injury in the mouse kidney. Spatial transcriptomics reveals injury-specific and spatially-dependent gene expression patterns in distinct cellular microenvironments within the kidney and predicts Clcf1-Crfl1 in a molecular interplay between persistently injured proximal tubule cells and their neighboring fibroblasts. Immune cell types play a critical role in organ repair. Spatial analysis identifies cellular microenvironments resembling early tertiary lymphoid structures and associated molecular pathways. Collectively, this study supports a focus on molecular interactions in cellular microenvironments to enhance understanding of injury, repair and disease.


Assuntos
Comunicação Celular , Microambiente Celular , Rim , Regeneração , Traumatismo por Reperfusão , Transcriptoma , Animais , Camundongos , Regeneração/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Análise de Célula Única , Fibrose
9.
Nat Cardiovasc Res ; 3(9): 1158-1176, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39271818

RESUMO

The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.


Assuntos
Fibrose , Imunidade Inata , Fator 88 de Diferenciação Mieloide , Regeneração , Transdução de Sinais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Endocárdio/metabolismo , Endocárdio/patologia , Endocárdio/imunologia , Coração/fisiopatologia , Imunidade Inata/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Commun Biol ; 7(1): 1127, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271811

RESUMO

Primordial germ cells (PGCs) are vital for producing sperm and eggs and are crucial for conserving chicken germplasm and creating genetically modified chickens. However, efforts to use PGCs for preserving native chicken germplasm and genetic modification via CRISPR/Cas9 are limited. Here we show that we established 289 PGC lines from eight Chinese chicken populations with an 81.6% success rate. We regenerated Piao chickens by repropagating cryopreserved PGCs and transplanting them into recipient chickens, achieving a 12.7% efficiency rate. These regenerated chickens carried mitochondrial DNA from female donor PGC and the rumplessness mutation from both male and female donors. Additionally, we created the TYRP1 (tyrosinase-related protein 1) knockout (KO) PGC lines via CRISPR/Cas9. Transplanting KO cells into male recipients and mating them with wild-type hens produced four TYRP1 KO chickens with brown plumage due to reduced eumelanin production. Our work demonstrates efficient PGC culture, cryopreservation, regeneration, and gene editing in chickens.


Assuntos
Sistemas CRISPR-Cas , Galinhas , Criopreservação , Células Germinativas , Animais , Galinhas/genética , Células Germinativas/metabolismo , Feminino , Masculino , Oxirredutases/genética , Oxirredutases/metabolismo , Edição de Genes/métodos , Regeneração/genética , Animais Geneticamente Modificados , Quimera/genética , Técnicas de Inativação de Genes
11.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273174

RESUMO

Newts are excellent vertebrate models for investigating tissue regeneration due to their remarkable regenerative capabilities. To investigate the mRNA and microRNAs (miRNAs) profiles within the blastema niche of regenerating newt limbs, we amputated the limbs of Chinese fire belly newts (Cynops orientalis) and conducted comprehensive analyses of the transcriptome and microRNA profiles at five distinct time points post-amputation (0 hours, 1 day, 5 days 10 days and 20 days). We identified 24 significantly differentially expressed (DE) genes and 20 significantly DE miRNAs. Utilizing weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) enrichment analysis, we identified four genes likely to playing crucial roles in the early stages of limb regeneration: Cemip, Rhou, Gpd2 and Pcna. Moreover, mRNA-miRNA integration analysis uncovered seven human miRNAs (miR-19b-1, miR-19b-2, miR-21-5p, miR-127-5p, miR-150-5p, miR-194-5p, and miR-210-5p) may regulate the expression of these four key genes. The temporal expression patterns of these key genes and miRNAs further validated the robustness of the identified mRNA-miRNA landscape. Our study successfully identified candidate key genes and elucidated a portion of the genetic regulatory mechanisms involved in newt limb regeneration. These findings offer valuable insights for further exploration of the intricate processes of tissue regeneration.


Assuntos
MicroRNAs , RNA Mensageiro , Regeneração , Salamandridae , MicroRNAs/genética , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/genética , Salamandridae/genética , Extremidades , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Transcriptoma , Ontologia Genética , Regulação da Expressão Gênica
13.
Nature ; 634(8032): 220-227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39198649

RESUMO

Fertilization introduces parental genetic information into the zygote to guide embryogenesis. Parental contributions to postfertilization development have been discussed for decades, and the data available show that both parents contribute to the zygotic transcriptome, suggesting a paternal role in early embryogenesis1-6. However, because the specific paternal effects on postfertilization development and the molecular pathways underpinning these effects remain poorly understood, paternal contribution to early embryogenesis and plant development has not yet been adequately demonstrated7. Here our research shows that TREE1 and its homologue DAZ3 are expressed exclusively in Arabidopsis sperm. Despite presenting no evident defects in sperm development and fertilization, tree1 daz3 unexpectedly led to aberrant differentiation of the embryo root stem cell niche. This defect persisted in seedlings and disrupted root tip regeneration, comparable to congenital defects in animals. TREE1 and DAZ3 function by suppression of maternal RKD2 transcription, thus mitigating the detrimental maternal effects from RKD2 on root stem cell niche. Therefore, our findings illuminate how genetic deficiencies in sperm can exert enduring paternal effects on specific plant organ differentiation and how parental-of-origin genes interact to ensure normal embryogenesis. This work also provides a new concept of how gamete quality or genetic deficiency can affect specific plant organ formation.


Assuntos
Arabidopsis , Diferenciação Celular , Herança Paterna , Raízes de Plantas , Nicho de Células-Tronco , Arabidopsis/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Fertilização , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/citologia , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Regeneração/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Animais , Sementes/citologia , Sementes/embriologia , Sementes/genética , Transcrição Gênica , Herança Paterna/genética
14.
Int J Biol Macromol ; 279(Pt 1): 135024, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39208909

RESUMO

Myogenic regulatory factors (MRFs) are a group of transcription factors that regulate the activity of skeletal muscle cells during embryonic development and postnatal myogenesis in various vertebrate species. However, the role of MRFs in limb regeneration remains poorly understood in crustaceans. In this study, we identified a full-length cDNA encoding a myogenic regulatory factor from Eriocheir sinensis (EsMRF) and evaluated its mRNA expression profile during muscle development, growth, and regeneration. The expression of EsMRF was found to correlate with the onset of muscle formation during development and with the regeneration process following limb autotomy. To elucidate the function of MRF during limb regeneration in E. sinensis, we assessed regenerative efficiency using RNA interference (RNAi) targeting EsMRF. Our findings revealed that the blockade of MRF delayed limb regeneration by disrupting the proliferation and myogenesis of blastema cells at the basal growth stage. Furthermore, luciferase assays results demonstrated that EsMRF can transcriptionally activate target myogenic genes, either through direct binding to their promoters or by interacting with co-regulators such as EsHEB or EsMEF2. This study identifies a novel MRF in E. sinensis and elucidates its function during limb regeneration, thereby contributing to our understanding of muscle growth and regeneration mechanisms in crustaceans.


Assuntos
Braquiúros , Extremidades , Desenvolvimento Muscular , Fatores de Regulação Miogênica , Regeneração , Animais , Desenvolvimento Muscular/genética , Regeneração/genética , Fatores de Regulação Miogênica/metabolismo , Fatores de Regulação Miogênica/genética , Extremidades/fisiologia , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Proliferação de Células
15.
Dev Biol ; 516: 196-206, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39179016

RESUMO

The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's function in adult tissues.


Assuntos
Planárias , Regeneração , Animais , Planárias/genética , Planárias/fisiologia , Regeneração/fisiologia , Regeneração/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Metilação de DNA/genética , Interferência de RNA , Células-Tronco Pluripotentes/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/genética , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
16.
Nat Commun ; 15(1): 6659, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174502

RESUMO

Regeneration in many animals involves the formation of a blastema, which differentiates and organizes into the appropriate missing body parts. Although the mechanisms underlying blastema formation are often fundamental to regeneration biology, information on the cellular and molecular basis of blastema formation remains limited. Here, we focus on a fragmenting potworm (Enchytraeus japonensis), which can regenerate its whole body from small fragments. We find soxC and mmpReg as upregulated genes in the blastema. RNAi of soxC and mmpReg reduce the number of blastema cells, indicating that soxC and mmpReg promote blastema formation. Expression analyses show that soxC-expressing cells appear to gradually accumulate in blastema and constitute a large part of the blastema. Additionally, similar expression dynamics of SoxC orthologue genes in frog (Xenopus laevis) are found in the regeneration blastema of tadpole tail. Our findings provide insights into the cellular and molecular mechanisms underlying blastema formation across species.


Assuntos
Regeneração , Fatores de Transcrição SOXC , Animais , Regeneração/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Oligoquetos/genética , Oligoquetos/fisiologia , Larva/genética , Interferência de RNA , Xenopus laevis
17.
PLoS Genet ; 20(8): e1011388, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186815

RESUMO

Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood. To test whether calcium and cAMP might also be involved in dendrite injury signaling, we tracked the responses of Drosophila dendritic arborization neurons to laser severing of axons and dendrites. We found that calcium and subsequently cAMP accumulate in the cell body after both dendrite and axon injury. Two voltage-gated calcium channels (VGCCs), L-Type and T-Type, are required for the calcium influx in response to dendrite injury and play a role in rapid initiation of dendrite regeneration. The AC8 family adenylyl cyclase, Ac78C, is required for cAMP production after dendrite injury and timely initiation of regeneration. Injury-induced cAMP production is sensitive to VGCC reduction, placing calcium upstream of cAMP generation. We propose that two VGCCs initiate global calcium influx in response to dendrite injury followed by production of cAMP by Ac78C. This signaling pathway promotes timely initiation of dendrite regrowth several hours after dendrite damage.


Assuntos
Adenilil Ciclases , Canais de Cálcio Tipo L , Cálcio , AMP Cíclico , Dendritos , Animais , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Axônios/metabolismo , Axônios/fisiologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/genética , Sinalização do Cálcio/genética , AMP Cíclico/metabolismo , Dendritos/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regeneração Nervosa/fisiologia , Regeneração Nervosa/genética , Neurônios/metabolismo , Regeneração/genética , Regeneração/fisiologia , Transdução de Sinais
18.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201309

RESUMO

In the face of rising global demand and unsustainable production methods, cultivated crustacean meat (CCM) is proposed as an alternative means to produce delicious lobster, shrimp, and crab products. Cultivated meat requires starting stem cells that may vary in terms of potency and the propensity to proliferate or differentiate into myogenic (muscle-related) tissues. Recognizing that regenerating limbs are a non-lethal source of tissue and may harbor relevant stem cells, we selected those of the crayfish Cherax quadricarinatus as our model. To investigate stem cell activity, we conducted RNA-Seq analysis across six stages of claw regeneration (four pre-molt and two post-molt stages), along with histology and real-time quantitative PCR (qPCR). Our results showed that while genes related to energy production, muscle hypertrophy, and exoskeletal cuticle synthesis dominated the post-molt stages, growth factor receptors (FGFR, EGFR, TGFR, and BMPR) and those related to stem cell proliferation and potency (Cyclins, CDKs, Wnts, C-Myc, Klf4, Sox2, PCNA, and p53) were upregulated before the molt. Pre-molt upregulation in several genes occurred in two growth peaks; Stages 2 and 4. We therefore propose that pre-molt limb regeneration tissues, particularly those in the larger Stage 4, present a prolific and non-lethal source of stem cells for CCM development.


Assuntos
Astacoidea , Regeneração , Células-Tronco , Animais , Astacoidea/genética , Regeneração/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Perfilação da Expressão Gênica , Transcriptoma , Casco e Garras/metabolismo
19.
Genes (Basel) ; 15(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39202378

RESUMO

Capsicum annuum L. is extensively cultivated in subtropical and temperate regions globally, respectively, when grown in a medium with 8 holding significant economic importance. Despite the availability of genome sequences and editing tools, gene editing in peppers is limited by the lack of a stable regeneration and transformation method. This study assessed regeneration and transformation protocols in seven chili pepper varieties, including CM334, Zunla-1, Zhongjiao6 (ZJ6), 0818, 0819, 297, and 348, in order to enhance genetic improvement efforts. Several explants, media compositions, and hormonal combinations were systematically evaluated to optimize the in vitro regeneration process across different chili pepper varieties. The optimal concentrations for shoot formation, shoot elongation, and rooting in regeneration experiments were determined as 5 mg/L of 6-Benzylaminopurine (BAP) with 5 mg/L of silver nitrate (AgNO3), 0.5 mg/L of Gibberellic acid (GA3), and 1 mg/L of Indole-3-butyric acid (IBA), respectively. The highest regeneration rate of 41% was observed from CM334 cotyledon explants. Transformation optimization established 300 mg/L of cefotaxime for bacterial control, with a 72-h co-cultivation period at OD600 = 0.1. This study optimizes the protocols for chili pepper regeneration and transformation, thereby contributing to genetic improvement efforts.


Assuntos
Capsicum , Regeneração , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Regeneração/genética , Regeneração/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Transformação Genética , Giberelinas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Compostos de Benzil , Purinas/farmacologia , Edição de Genes/métodos , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/efeitos dos fármacos , Melhoramento Vegetal/métodos , Indóis
20.
Genes (Basel) ; 15(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202437

RESUMO

Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Fosfoproteínas , Proteínas de Plantas , Proteômica , Regeneração , Gossypium/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Regeneração/genética , Regeneração/fisiologia , Fosforilação , Proteoma/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...