Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Expert Rev Respir Med ; 18(3-4): 145-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38755109

RESUMO

INTRODUCTION: 'Highly effective' modulator therapies (HEMTs) have radically changed the Cystic Fibrosis (CF) therapeutic landscape. AREAS COVERED: A comprehensive search strategy was undertaken to assess impact of HEMT in life of pwCF, treatment challenges in specific populations such as very young children, and current knowledge gaps. EXPERT OPINION: HEMTs are prescribed for pwCF with definite genotypes. The heterogeneity of variants complicates treatment possibilities and around 10% of pwCF worldwide remains ineligible. Genotype-specific treatments are prompting theratyping and personalized medicine strategies. Improvement in lung function and quality of life increase survival rates, shifting CF from a pediatric to an adult disease. This implies new studies addressing long-term efficacy, side effects, emergence of adult co-morbidities and possible drug-drug interactions. More sensitive and predictive biomarkers for both efficacy and toxicity are warranted. As HEMTs cross the placenta and are found in breast milk, studies addressing the potential consequences of treatment during pregnancy and breastfeeding are urgently needed. Finally, although the treatment and expected outcomes of CF have improved dramatically in high- and middle-income countries, lack of access in low-income countries to these life-changing medicines highlights inequity of care worldwide.


Assuntos
Fibrose Cística , Qualidade de Vida , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Medicina de Precisão , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Resultado do Tratamento , Criança , Genótipo , Feminino
2.
Nutrition ; 123: 112425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621324

RESUMO

OBJECTIVE: Treatment with cystic fibrosis transmembrane conductance regulator (CFTR) modulators in individuals with cystic fibrosis (CF) has brought a significant change in forced expiratory volume in 1 second (FEV1) and clinical parameters. However, it also results in weight gain. The aim of our study is to evaluate the effect of CFTR modulator treatment on body composition, measured by computed tomography (CT). METHODS: Adult subjects with CF under follow-up at La Princesa University Hospital were recruited. All of them were on elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA) treatment. Body composition analysis was conducted using CT scans and an open-source software. The results were then compared with bioimpedance estimations, as well as other clinical and spirometry data. RESULTS: Our sample consisted of 26 adult subjects. The fat mass compartments on CT scans correlated with similar compartments on bioimpedance, and normal-density muscle mass exhibited a strong correlation with phase angle. Higher levels of very low-density muscle prior to treatment were associated with lower final FEV1 and less improvement in FEV1 after therapy. We observed an increase in total body area (P < 0.001), driven by increases in total fat mass (P < 0.001), subcutaneous fat (P < 0.001), visceral fat (P = 0.002), and intermuscular fat (P = 0.022). The only muscle compartment that showed an increase after treatment was very low-density muscle (P = 0.032). CONCLUSIONS: CT scans represent an opportunity to assess body composition on CF. Combination treatment with CFTR modulators, leads to an improvement in FEV1 and to an increase in body mass in all compartments primarily at the expense of fat mass.


Assuntos
Aminofenóis , Composição Corporal , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Combinação de Medicamentos , Quinolonas , Tomografia Computadorizada por Raios X , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Fibrose Cística/diagnóstico por imagem , Adulto , Composição Corporal/efeitos dos fármacos , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Quinolonas/farmacologia , Seguimentos , Adulto Jovem , Indóis/farmacologia , Indóis/uso terapêutico , Volume Expiratório Forçado/efeitos dos fármacos , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Impedância Elétrica
3.
Pediatr Pulmonol ; 59(6): 1614-1621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38456611

RESUMO

INTRODUCTION: Cystic fibrosis (CF) treatment has increasingly focused on highly effective modulators. Despite measurable benefits of modulators, there is little guidance for CF care team members on providing education and support to patients regarding initiation of these therapies. We aimed to explore patient, caregiver, and clinician perceptions of modulators and influences on decisions about starting cystic fibrosis transmembrane regulator (CFTR) modulators. METHODS: We conducted semistructured interviews with CF clinicians, adults with CF, and caregivers of children with CF. We reviewed audio recordings and coded responses to identify central themes. RESULTS: We interviewed 8 CF clinicians, 9 adults with CF, and 11 caregivers of children with CF. Themes centered on emotional responses to modulator availability, influences on decision-making, concerns about side effects, impact of modulators on planning for the future, the benefits of the multidisciplinary CF care team in supporting treatment decisions, and the unique needs of people with CF who are not eligible for modulators. Clinicians described changes in conversations about modulators since the approval of elexacaftor/tezacaftor/ivacaftor, specifically greater willingness to prescribe with less nuanced conversations with patients and/or caregivers regarding their use. CONCLUSION: Based on perspectives and experiences of CF clinicians, adults with CF, and caregivers of children with CF, we suggest clinicians approach conversations about CFTR modulators thoughtfully and thoroughly, utilizing the multidisciplinary model of CF care in exploring patient and caregiver emotions while filling in knowledge gaps, asking about treatment goals beyond potential clinical benefit, and having compassionate conversations with those who are ineligible for modulators.


Assuntos
Aminofenóis , Benzodioxóis , Cuidadores , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/psicologia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Adulto , Feminino , Masculino , Criança , Benzodioxóis/uso terapêutico , Cuidadores/psicologia , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Tomada de Decisões , Indóis/uso terapêutico , Pessoa de Meia-Idade , Adolescente , Combinação de Medicamentos , Piridinas/uso terapêutico , Adulto Jovem , Entrevistas como Assunto , Pirazóis , Quinolinas
6.
EBioMedicine ; 86: 104384, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462404

RESUMO

BACKGROUND: Cognitive impairment is a serious comorbidity in heart failure patients, but effective therapies are lacking. We investigated the mechanisms that alter hippocampal neurons following myocardial infarction (MI). METHODS: MI was induced in male C57Bl/6 mice by left anterior descending coronary artery ligation. We utilised standard procedures to measure cystic fibrosis transmembrane regulator (CFTR) protein levels, inflammatory mediator expression, neuronal structure, and hippocampal memory. Using in vitro and in vivo approaches, we assessed the role of neuroinflammation in hippocampal neuron degradation and the therapeutic potential of CFTR correction as an intervention. FINDINGS: Hippocampal dendrite length and spine density are reduced after MI, effects that associate with decreased neuronal CFTR expression and concomitant microglia activation and inflammatory cytokine expression. Conditioned medium from lipopolysaccharide-stimulated microglia (LCM) reduces neuronal cell CFTR protein expression and the mRNA expression of the synaptic regulator post-synaptic density protein 95 (PSD-95) in vitro. Blocking CFTR activity also down-regulates PSD-95 in neurons, indicating a relationship between CFTR expression and neuronal health. Pharmacologically correcting CFTR expression in vitro rescues the LCM-mediated down-regulation of PSD-95. In vivo, pharmacologically increasing hippocampal neuron CFTR expression improves MI-associated alterations in neuronal arborisation, spine density, and memory function, with a wide therapeutic time window. INTERPRETATION: Our results indicate that CFTR therapeutics improve inflammation-induced alterations in hippocampal neuronal structure and attenuate memory dysfunction following MI. FUNDING: Knut and Alice Wallenberg Foundation [F 2015/2112]; Swedish Research Council [VR; 2017-01243]; the German Research Foundation [DFG; ME 4667/2-1]; Hjärnfonden [FO2021-0112]; The Crafoord Foundation; Åke Wibergs Stiftelse [M19-0380], NMMP 2021 [V2021-2102]; the Albert Påhlsson Research Foundation; STINT [MG19-8469], Lund University; Canadian Institutes of Health Research [PJT-153269] and a Heart and Stroke Foundation of Ontario Mid-Career Investigator Award.


Assuntos
Amnésia Retrógrada , Regulador de Condutância Transmembrana em Fibrose Cística , Infarto do Miocárdio , Animais , Masculino , Camundongos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Lipopolissacarídeos , Memória de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Ontário , Amnésia Retrógrada/tratamento farmacológico , Amnésia Retrógrada/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo
9.
J Med Chem ; 65(7): 5212-5243, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377645

RESUMO

In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Proteostase , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Dobramento de Proteína/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Proteostase/fisiologia
10.
J Hepatol ; 76(2): 420-434, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678405

RESUMO

Cystic fibrosis (CF) is the most common autosomal recessive disease in the Caucasian population. Cystic fibrosis-related liver disease (CFLD) is defined as the pathogenesis related to the underlying CFTR defect in biliary epithelial cells. CFLD needs to be distinguished from other liver manifestations that may not have any pathological significance. The clinical/histological presentation and severity of CFLD vary. The main histological presentation of CFLD is focal biliary fibrosis, which is usually asymptomatic. Portal hypertension develops in a minority of cases (about 10%) and may require specific management including liver transplantation for end-stage liver disease. Portal hypertension is usually the result of the progression of focal biliary fibrosis to multilobular cirrhosis during childhood. Nevertheless, non-cirrhotic portal hypertension as a result of porto-sinusoidal vascular disease is now identified increasingly more frequently, mainly in young adults. To evaluate the effect of new CFTR modulator therapies on the liver, the spectrum of hepatobiliary involvement must first be precisely classified. This paper discusses the phenotypic features of CFLD, its underlying physiopathology and relevant diagnostic and follow-up approaches, with a special focus on imaging.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/complicações , Hepatopatias/etiologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/estatística & dados numéricos , Humanos , Hipertensão Portal/diagnóstico por imagem , Hipertensão Portal/fisiopatologia , Fígado/patologia , Hepatopatias/diagnóstico por imagem , Hepatopatias/fisiopatologia , Índice de Gravidade de Doença , Ultrassonografia/métodos , Ultrassonografia/estatística & dados numéricos
11.
J Cyst Fibros ; 21(2): 339-343, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742667

RESUMO

Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA, Trikafta) is the newest Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulator drug approved by the Food and Drug Administration. Post-marketing reports with earlier CFTR modulators suggest these medications can impact mood, and in clinical trials an adverse effect of headache was reported with all currently approved CFTR modulators. However, there are no other documented reports of mental status changes during clinical trials or in post-marketing reports with elexacaftor/tezacaftor/ivacaftor. In this case series, we describe 6 patients who reported "mental fogginess" or other mental status changes shortly after initiation of this drug. The mechanism of this patient-reported side effect is still unclear. All patients noticed a change within the first 3 months of therapy. The management differed in each case, with all four cystic fibrosis (CF) care teams utilizing a patient-centered decision-making approach to address this concern.


Assuntos
Afeto , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Afeto/efeitos dos fármacos , Aminofenóis , Benzodioxóis , Agonistas dos Canais de Cloreto , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Indóis , Fadiga Mental , Pirazóis , Piridinas , Pirrolidinas , Quinolonas , Transtornos Somatoformes
12.
Am J Physiol Cell Physiol ; 321(6): C932-C946, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644122

RESUMO

Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.


Assuntos
Antiporters/efeitos dos fármacos , Canais de Cloreto/efeitos dos fármacos , Cloretos/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Moduladores de Transporte de Membrana/farmacologia , Animais , Antiporters/genética , Antiporters/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Cinética , Moduladores de Transporte de Membrana/química , Mutação , Transportadores de Sulfato/efeitos dos fármacos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
14.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299226

RESUMO

Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Pneumonia/tratamento farmacológico , Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Benzodioxóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Inflamação/tratamento farmacológico , Transporte de Íons , Pulmão/metabolismo , Pulmão/fisiologia , Macrófagos/metabolismo , Quinolonas/uso terapêutico , Transdução de Sinais
16.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067708

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais/metabolismo , Humanos , Indóis/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/metabolismo , Piridinas/metabolismo , Pirrolidinas/metabolismo , Quinolinas/farmacologia
17.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34166230

RESUMO

Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Interleucina-17/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aminofenóis/administração & dosagem , Benzodioxóis/administração & dosagem , Bicarbonatos/metabolismo , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/imunologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Indóis/administração & dosagem , Lactente , Recém-Nascido , Interleucina-17/administração & dosagem , Transporte de Íons , Mutação , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Quinolinas/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Fator de Necrose Tumoral alfa/administração & dosagem
18.
J Cyst Fibros ; 20(5): 843-850, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020896

RESUMO

BACKGROUND: The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators varies between people with cystic fibrosis (CF) of the same genotype, in part through the action of solute carriers encoded by modifier genes. Here, we investigate whether phosphate transport by SLC34A2 modulates the function of F508del-CFTR after its rescue by CFTR correctors. METHODS: With Fischer rat thyroid (FRT) cells heterologously expressing wild-type and F508del-CFTR and fully-differentiated CF and non-CF human airway epithelial cells, we studied SLC34A2 expression and the effects of phosphate on CFTR-mediated transepithelial ion transport. F508del-CFTR was trafficked to the plasma membrane by incubation with different CFTR correctors (alone or in combination) or by low temperature. RESULTS: Quantitative RT-PCR demonstrated that both FRT and primary airway epithelial cells express SLC34A2 mRNA and no differences were found between cells expressing wild-type and F508del-CFTR. For both heterologously expressed and native F508del-CFTR rescued by either VX-809 or C18, the magnitude of CFTR-mediated Cl- currents was dependent on the presence of extracellular phosphate. However, this effect of phosphate was not detected with wild-type and low temperature-rescued F508del-CFTR Cl- currents. Importantly, the modulatory effect of phosphate was observed in native CF airway cells exposed to VX-445, VX-661 and VX-770 (Trikafta) and was dependent on the presence of both sodium and phosphate. CONCLUSIONS: Extracellular phosphate modulates the magnitude of CFTR-mediated Cl- currents after F508del-CFTR rescue by clinically-approved CFTR correctors. This effect likely involves electrogenic phosphate transport by SLC34A2. It might contribute to inter-individual variability in the clinical response to CFTR correctors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Aminofenóis/farmacologia , Animais , Benzodioxóis/farmacologia , Membrana Celular/metabolismo , Fibrose Cística/genética , Quimioterapia Combinada , Humanos , Indóis/farmacologia , Transporte de Íons , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Endogâmicos F344
19.
J Cyst Fibros ; 20(6): 1072-1079, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34030985

RESUMO

BACKGROUND: Chronic infection and an exaggerated inflammatory response are key drivers of the pathogenesis of cystic fibrosis (CF), especially CF lung disease. An imbalance of pro- and anti-inflammatory mediators, including dysregulated Th2/Th17 cells and impairment of regulatory T cells (Tregs), maintain CF inflammation. CF transmembrane conductance regulator (CFTR) modulator therapy might influence these immune cell abnormalities. METHODS: Peripheral blood mononuclear cells and serum samples were collected from 108 patients with CF (PWCF) and 40 patients with non-CF bronchiectasis. Samples were analysed for peripheral blood lymphocytes subsets (Tregs; Th1-, Th1/17-, Th17- and Th2-effector cells) and systemic T helper cell-associated cytokines (interleukin [IL]-5, IL-13, IL-2, IL-6, IL-9, IL-10, IL-17A, IL-17F, IL-4, IL-22, interferon-γ, tumour necrosis factor-α) using flow cytometry. RESULTS: 51% of PWCF received CFTR modulators (ivacaftor, ivacaftor/ lumacaftor or tezacaftor/ ivacaftor). There were no differences in proportions of analysed T cell subsets or cytokines between PWCF who were versus were not receiving CFTR modulators. Additional analysis revealed lower percentages of Tregs in PWCF and chronic pulmonary Pseudomonas aeruginosa infection; this difference was also present in PWCF treated with CFTR modulators. Patients with non-CF bronchiectasis tended to have higher percentages of Th2- and Th17-cells and higher levels of peripheral cytokines versus PWCF. CONCLUSIONS: Chronic P. aeruginosa lung infection appears to impair Tregs in PWCF (independent of CFTR modulator therapy) but not those with non-CF bronchiectasis. Moreover, our data showed no statistically significant differences in major subsets of peripheral lymphocytes and cytokines among PWCF who were versus were not receiving CFTR modulators.


Assuntos
Agonistas dos Canais de Cloreto/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/imunologia , Infecções por Pseudomonas/complicações , Linfócitos T Reguladores/imunologia , Adulto , Biomarcadores/sangue , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1093-L1100, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825507

RESUMO

Animal models have been highly informative for understanding the pathogenesis and progression of cystic fibrosis (CF) lung disease. In particular, the CF rat models recently developed have addressed mechanistic causes of the airway mucus defect characteristic of CF, and how these may change when cystic fibrosis transmembrane conductance regulator (CFTR) activity is restored using new modulator therapies. We hypothesized that inflammatory changes to the airway would develop spontaneously and progressively, and that these changes would be resolved with modulator therapy. To test this, we used a humanized-CFTR rat expressing the G551D variant that responds to the CFTR modulator ivacaftor. Markers typically found in the CF lung were assessed, including neutrophil influx, small airway histopathology, and inflammatory cytokine concentration. Young hG551D rats did not express inflammatory cytokines at baseline but did upregulate these in response to inflammatory trigger. As the hG551D rats aged, histopathology worsened, accompanied by neutrophil influx into the airway and increasing concentrations of TNF-α, IL-1α, and IL-6 in the airways. Ivacaftor administration reduced concentrations of these cytokines when administered to the rats at baseline but was less effective in the rats that had also received inflammatory stimulus. Therefore, we conclude that administration of ivacaftor resulted in an incomplete resolution of inflammation when rats received an external trigger, suggesting that CFTR activation may not be enough to resolve inflammation in the lungs of patients with CF.


Assuntos
Aminofenóis/farmacologia , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Transporte de Íons/efeitos dos fármacos , Quinolonas/farmacologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Depuração Mucociliar/efeitos dos fármacos , Ratos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...