Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.683
Filtrar
1.
Nat Commun ; 15(1): 7872, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251607

RESUMO

In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.


Assuntos
RNA Mensageiro , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica , Células HEK293 , Análise de Célula Única , Redes Reguladoras de Genes , Regulon/genética
2.
Genome Biol ; 25(1): 245, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300560

RESUMO

BACKGROUND: The shoot apical meristem (SAM), from which all above-ground tissues of plants are derived, is critical to plant morphology and development. In maize (Zea mays), loss-of-function mutant studies have identified several SAM-related genes, most encoding homeobox transcription factors (TFs), located upstream of hierarchical networks of hundreds of genes. RESULTS: Here, we collect 46 transcriptome and 16 translatome datasets across 62 different tissues or stages from the maize inbred line B73. We construct a dynamic regulome for 27 members of three SAM-related homeobox subfamilies (KNOX, WOX, and ZF-HD) through machine-learning models for the detection of TF targets across different tissues and stages by combining tsCUT&Tag, ATAC-seq, and expression profiling. This dynamic regulome demonstrates the distinct binding specificity and co-factors for these homeobox subfamilies, indicative of functional divergence between and within them. Furthermore, we assemble a SAM dynamic regulome, illustrating potential functional mechanisms associated with plant architecture. Lastly, we generate a wox13a mutant that provides evidence that WOX13A directly regulates Gn1 expression to modulate plant height, validating the regulome of SAM-related homeobox genes. CONCLUSIONS: The SAM-related homeobox transcription-factor regulome presents an unprecedented opportunity to dissect the molecular mechanisms governing SAM maintenance and development, thereby advancing our understanding of maize growth and shoot architecture.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Meristema , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulon , Transcriptoma , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento
3.
Commun Biol ; 7(1): 1160, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289465

RESUMO

Hydrogen sulfide (H2S), mainly produced from L-cysteine (Cys), renders bacteria highly resistant to oxidative stress and potentially increases antimicrobial resistance (AMR). CyuR is a Cys-dependent transcription regulator, responsible for the activation of the cyuPA operon and generation of H2S. Despite its potential importance, its regulatory network remains poorly understood. In this study, we investigate the roles of the CyuR regulon in a Cys-dependent AMR mechanism in E. coli strains. We show: (1) Generation of H2S from Cys affects the sensitivities to growth inhibitors; (2) Cys supplementation decreases stress responses; (3) CyuR negatively controls the expression of mdlAB encoding a potential transporter for antibiotics; (4) CyuR binds to a DNA sequence motif 'GAAwAAATTGTxGxxATTTsyCC' in the absence of Cys; and (5) CyuR may regulate 25 additional genes which were not reported previously. Collectively, our findings expand the understanding of the biological roles of CyuR relevant to antibiotic resistance associated with Cys.


Assuntos
Cisteína , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Óperon , Regulon
4.
J Cell Biol ; 223(12)2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39302312

RESUMO

Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted the induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing the expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.


Assuntos
Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70 , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Regulon/genética
5.
Elife ; 132024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347738

RESUMO

Some transcription factors (TFs) can form liquid-liquid phase separated (LLPS) condensates. However, the functions of these TF condensates in 3-Dimentional (3D) genome organization and gene regulation remain elusive. In response to methionine (met) starvation, budding yeast TF Met4 and a few co-activators, including Met32, induce a set of genes involved in met biosynthesis. Here, we show that the endogenous Met4 and Met32 form co-localized puncta-like structures in yeast nuclei upon met depletion. Recombinant Met4 and Met32 form mixed droplets with LLPS properties in vitro. In relation to chromatin, Met4 puncta co-localize with target genes, and at least a subset of these target genes is clustered in 3D in a Met4-dependent manner. A MET3pr-GFP reporter inserted near several native Met4-binding sites becomes co-localized with Met4 puncta and displays enhanced transcriptional activity. A Met4 variant with a partial truncation of an intrinsically disordered region (IDR) shows less puncta formation, and this mutant selectively reduces the reporter activity near Met4-binding sites to the basal level. Overall, these results support a model where Met4 and co-activators form condensates to bring multiple target genes into a vicinity with higher local TF concentrations, which facilitates a strong response to methionine depletion.


Assuntos
Regulação Fúngica da Expressão Gênica , Metionina , Regulon , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Metionina/metabolismo , Metionina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina Básica
6.
Microbiology (Reading) ; 170(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222353

RESUMO

Phase variation is defined as the rapid and reversible switching of gene expression, and typically occurs in genes encoding surface features in small genome bacterial pathogens. Phase variation has evolved to provide an extra survival mechanism in bacteria that lack multiple 'sense-and-respond' gene regulation systems. Many bacterial pathogens also encode DNA methyltransferases that are phase-variable, controlling systems called 'phasevarions' (phase-variable regulons). This primer will summarize the current understanding of phase variation, describing the role of major phase-variable factors, and phasevarions, in bacterial pathobiology.


Assuntos
Bactérias , Regulação Bacteriana da Expressão Gênica , Bactérias/genética , Bactérias/metabolismo , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Regulon
7.
Genome Biol ; 25(1): 217, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135102

RESUMO

BACKGROUND: Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and conditions. How the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. RESULTS: We analyze existing bulk and single-cell transcriptomic datasets to uncover the prevalence of transcriptional adaptation in mammalian systems across diverse contexts and cell types. We perform regulon gene expression analyses of transcription factor target sets in both bulk and pooled single-cell genetic perturbation datasets. Our results reveal greater robustness in expression of regulons of transcription factors exhibiting transcriptional adaptation compared to those of transcription factors that do not. Stochastic mathematical modeling of minimal compensatory gene networks qualitatively recapitulates several aspects of transcriptional adaptation, including paralog upregulation and robustness to mutation. Combined with machine learning analysis of network features of interest, our framework offers potential explanations for which regulatory steps are most important for transcriptional adaptation. CONCLUSIONS: Our integrative approach identifies several putative hits-genes demonstrating possible transcriptional adaptation-to follow-up on experimentally and provides a formal quantitative framework to test and refine models of transcriptional adaptation.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulon , Humanos , Animais , Transcrição Gênica , Adaptação Fisiológica/genética , Regulação da Expressão Gênica , Transcriptoma
8.
Nat Commun ; 15(1): 7419, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198388

RESUMO

Sequential lytic cycles driven by cascading transcriptional waves underlie pathogenesis in the apicomplexan parasite Toxoplasma gondii. This parasite's unique division by internal budding, short cell cycle, and jumbled up classically defined cell cycle stages have restrained in-depth transcriptional program analysis. Here, unbiased transcriptome and chromatin accessibility maps throughout the lytic cell cycle are established at the single-cell level. Correlated pseudo-timeline assemblies of expression and chromatin profiles maps transcriptional versus chromatin level transition points promoting the cell division cycle. Sequential clustering analysis identifies functionally related gene groups promoting cell cycle progression. Promoter DNA motif mapping reveals patterns of combinatorial regulation. Pseudo-time trajectory analysis reveals transcriptional bursts at different cell cycle points. The dominant burst in G1 is driven largely by transcription factor AP2XII-8, which engages a conserved DNA motif, and promotes the expression of 44 ribosomal proteins encoding regulon. Overall, the study provides integrated, multi-level insights into apicomplexan transcriptional regulation.


Assuntos
Cromatina , Proteínas de Protozoários , Regulon , Ribossomos , Análise de Célula Única , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Cromatina/metabolismo , Cromatina/genética , Regulon/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Ribossomos/metabolismo , Ribossomos/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Ciclo Celular/genética , Humanos , Motivos de Nucleotídeos/genética , Transcriptoma , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética
9.
BMC Genomics ; 25(1): 777, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123115

RESUMO

BACKGROUND: Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied. RESULTS: In this study, we conducted transcriptome sequencing to explore the HrpG regulons of 17 Xanthomonas strains, encompassing six species and nine pathovars, each exhibiting distinct host and tissue specificities. We employed constitutive expression of plasmid-borne hrpG*, which encodes a constitutively active form of HrpG, to induce the regulon. Our findings reveal substantial inter- and intra-specific diversity in the HrpG* regulons across the strains. Besides 21 genes directly involved in the biosynthesis of the T3SS, the core HrpG* regulon is limited to only five additional genes encoding the transcriptional activator HrpX, the two T3E proteins XopR and XopL, a major facility superfamily (MFS) transporter, and the phosphatase PhoC. Interestingly, genes involved in chemotaxis and genes encoding enzymes with carbohydrate-active and proteolytic activities are variably regulated by HrpG*. CONCLUSIONS: The diversity in the HrpG* regulon suggests that HrpG-dependent virulence in Xanthomonas might be achieved through several distinct strain-specific strategies, potentially reflecting adaptation to diverse ecological niches. These findings enhance our understanding of the complex role of HrpG in regulating various virulence and adaptive pathways, extending beyond T3Es and the T3SS.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Regulon , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Transcriptoma , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012340

RESUMO

DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including Escherichia coli. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by E. coli DnaA. Here, we use a ChIP-seq to map the E. coli DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.


Assuntos
Proteínas de Bactérias , DNA Bacteriano , Proteínas de Ligação a DNA , Escherichia coli , Ligação Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Sítios de Ligação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulon
11.
Microbiology (Reading) ; 170(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39058385

RESUMO

Xenorhabdus nematophila is a Gram-negative bacterium, mutualistically associated with the soil nematode Steinernema carpocapsae, and this nemato-bacterial complex is parasitic for a broad spectrum of insects. The transcriptional regulator OxyR is widely conserved in bacteria and activates the transcription of a set of genes that influence cellular defence against oxidative stress. It is also involved in the virulence of several bacterial pathogens. The aim of this study was to identify the X. nematophila OxyR regulon and investigate its role in the bacterial life cycle. An oxyR mutant was constructed in X. nematophila and phenotypically characterized in vitro and in vivo after reassociation with its nematode partner. OxyR plays a major role during the X. nematophila resistance to oxidative stress in vitro. Transcriptome analysis allowed the identification of 59 genes differentially regulated in the oxyR mutant compared to the parental strain. In vivo, the oxyR mutant was able to reassociate with the nematode as efficiently as the control strain. These nemato-bacterial complexes harbouring the oxyR mutant symbiont were able to rapidly kill the insect larvae in less than 48 h after infestation, suggesting that factors other than OxyR could also allow X. nematophila to cope with oxidative stress encountered during this phase of infection in insect. The significantly increased number of offspring of the nemato-bacterial complex when reassociated with the X. nematophila oxyR mutant compared to the control strain revealed a potential role of OxyR during this symbiotic stage of the bacterial life cycle.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Simbiose , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Xenorhabdus/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Rabditídios/microbiologia , Rabditídios/genética , Rabditídios/fisiologia , Larva/microbiologia , Virulência , Regulon , Perfilação da Expressão Gênica , Mutação
12.
mBio ; 15(7): e0125224, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38899862

RESUMO

Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes pho1, pho84, and tgp1) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP8 levels derepress the PHO regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP8 are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1. IP8 toxicosis is ameliorated by mutations in cleavage/polyadenylation and termination factors, perturbations of the Pol2 CTD code, and mutations in SPX domain proteins that act as inositol pyrophosphate sensors. Here, we show that IP8 toxicity is alleviated by deletion of snf22+, the gene encoding the ATPase subunit of the SWI/SNF chromatin remodeling complex, by an ATPase-inactivating snf22-(D996A-E997A) allele, and by deletion of the gene encoding SWI/SNF subunit Sol1. Deletion of snf22+ hyper-repressed pho1 expression in phosphate-replete cells; suppressed the pho1 derepression elicited by mutations in Pol2 CTD, termination factor Seb1, Asp1 pyrophosphatase, and 14-3-3 protein Rad24 (that favor precocious prt lncRNA termination); and delayed pho1 induction during phosphate starvation. RNA analysis and lack of mutational synergies suggest that Snf22 is not impacting 3'-processing/termination. Using reporter assays, we find that Snf22 is important for the activity of the tgp1 and pho1 promoters, but not for the promoters that drive the synthesis of the PHO-repressive lncRNAs. Transcription profiling of snf22∆ and snf22-(D996A-E997A) cells identified an additional set of 66 protein-coding genes that were downregulated in both mutants.IMPORTANCERepression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to inositol pyrophosphate dynamics. Cytotoxic asp1-STF alleles derepress the PHO genes via the action of IP8 as an agonist of precocious lncRNA 3'-processing/termination. IP8 toxicosis is alleviated by mutations of the Pol2 CTD and the 3'-processing/termination machinery that dampen the impact of toxic IP8 levels on termination. In this study, a forward genetic screen revealed that IP8 toxicity is suppressed by mutations of the Snf22 and Sol1 subunits of the SWI/SNF chromatin remodeling complex. Genetic and biochemical evidence indicates that the SWI/SNF is not affecting 3'-processing/termination or lncRNA promoter activity. Rather, SWI/SNF is critical for firing the PHO mRNA promoters. Our results implicate the ATP-dependent nucleosome remodeling activity of SWI/SNF as necessary to ensure full access of PHO-activating transcription factor Pho7 to its binding sites in the PHO mRNA promoters.


Assuntos
Regulação Fúngica da Expressão Gênica , Regulon , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fosfatos de Inositol/metabolismo , Mutação com Perda de Função , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Clin Invest ; 134(15)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38875287

RESUMO

It is unknown which posttranscriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate posttranscriptional RNA metabolism within ribonucleoprotein networks, is essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to LIN28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 was a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 was able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/Lin28b-deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Biossíntese de Proteínas , Regulon , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Knockout
14.
J Transl Med ; 22(1): 486, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773508

RESUMO

BACKGROUND: Immunotherapy has brought about a paradigm shift in the treatment of cancer. However, the majority of patients exhibit resistance or become refractory to immunotherapy, and the underlying mechanisms remain to be explored. METHODS: Sing-cell RNA sequencing (scRNA­seq) datasets derived from 1 pretreatment and 1 posttreatment achieving pathological complete response (pCR) patient with lung adenocarcinoma (LUAD) who received neoadjuvant immunotherapy were collected, and pySCENIC was used to find the gene regulatory network (GRN) between cell types and immune checkpoint inhibitor (ICI) response. A regulon predicting ICI response was identified and validated using large­scale pan-cancer data, including a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 5 ICI transcriptomic cohorts. Symphony reference mapping was performed to construct the myeloid cell map. RESULTS: Thirteen major cluster cell types were identified by comparing pretreatment and posttreatment patients, and the fraction of myeloid cells was higher in the posttreatment group (19.0% vs. 11.8%). A PPARG regulon (containing 23 target genes) was associated with ICI response, and its function was validated by a colorectal cancer scRNA­seq dataset, a breast cancer scRNA­seq dataset, TCGA pan-cancer cohort, and 5 ICI transcriptomic cohorts. Additionally, a myeloid cell map was developed, and cluster I, II, and III myeloid cells with high expression of PPARG were identified. Moreover, we constructed a website called PPARG ( https://pparg.online/PPARG/ or http://43.134.20.130:3838/PPARG/ ), which provides a powerful discovery tool and resource value for researchers. CONCLUSIONS: The PPARG regulon is a predictor of ICI response. The myeloid cell map enables the identification of PPARG subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Assuntos
Imunoterapia , Células Mieloides , Terapia Neoadjuvante , Neoplasias , Regulon , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Regulon/genética , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/imunologia , Resultado do Tratamento , Redes Reguladoras de Genes , Feminino , Regulação Neoplásica da Expressão Gênica
16.
Microbiol Res ; 285: 127772, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797110

RESUMO

Ralstonia solanacearum is a devastating phytopathogen infecting a broad range of economically important crops. Phosphate (Pi) homeostasis and assimilation play a critical role in the environmental adaptation and pathogenicity of many bacteria. However, the Pi assimilation regulatory mechanism of R. solanacearum remains unknown. This study revealed that R. solanacearum pstSCAB-phoU-phoBR operon expression is sensitive to extracellular Pi concentration, with higher expression under Pi-limiting conditions. The PhoB-PhoR fine-tunes the Pi-responsive expression of the Pho regulon genes, demonstrating its pivotal role in Pi assimilation. By contrast, neither PhoB, PhoR, PhoU, nor PstS was found to be essential for virulence on tomato plants. Surprisingly, the PhoB regulon is activated in a Pi-abundant rich medium. Results showed that histidine kinase VsrB, which is known for the exopolysaccharide production regulation, partially mediates PhoB activation in the Pi-abundant rich medium. The 271 histidine of VsrB is vital for this activation. This cross-activation mechanism between the VsrB and PhoB-PhoR systems suggests the carbohydrate-Pi metabolism coordination in R. solanacearum. Overall, this research provides new insights into the complex regulatory interplay between Pi metabolism and growth in R. solanacearum.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Fosfatos , Doenças das Plantas , Ralstonia solanacearum , Solanum lycopersicum , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/genética , Fosfatos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Solanum lycopersicum/microbiologia , Virulência , Doenças das Plantas/microbiologia , Regulon , Histidina Quinase/metabolismo , Histidina Quinase/genética , Óperon , Meios de Cultura/química
17.
Infect Immun ; 92(6): e0008324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38712951

RESUMO

Streptococcus pyogenes [group A streptococcus (GAS)] is a human pathogen capable of infecting diverse tissues. To successfully infect these sites, GAS must detect available nutrients and adapt accordingly. The phosphoenolpyruvate transferase system (PTS) mediates carbohydrate uptake and metabolic gene regulation to adapt to the nutritional environment. Regulation by the PTS can occur through phosphorylation of transcriptional regulators at conserved PTS-regulatory domains (PRDs). GAS has several PRD-containing stand-alone regulators with regulons encoding both metabolic genes and virulence factors [PRD-containing virulence regulators (PCVRs)]. One is RofA, which regulates the expression of virulence genes in multiple GAS serotypes. It was hypothesized that RofA is phosphorylated by the PTS in response to carbohydrate levels to coordinate virulence gene expression. In this study, the RofA regulon of M1T1 strain 5448 was determined using RNA sequencing. Two operons were consistently differentially expressed across growth in the absence of RofA; the pilus operon was downregulated, and the capsule operon was upregulated. This correlated with increased capsule production and decreased adherence to keratinocytes. Purified RofA-His was phosphorylated in vitro by PTS proteins EI and HPr, and phosphorylated RofA-FLAG was detected in vivo when GAS was grown in low-glucose C medium. Phosphorylated RofA was not observed when C medium was supplemented 10-fold with glucose. Mutations of select histidine residues within the putative PRDs contributed to the in vivo phosphorylation of RofA, although phosphorylation of RofA was still observed, suggesting other phosphorylation sites exist in the protein. Together, these findings support the hypothesis that RofA is a PCVR that may couple sugar metabolism with virulence regulation.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes , Fatores de Virulência , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência , Fosforilação , Humanos , Regulon , Óperon , Infecções Estreptocócicas/microbiologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Queratinócitos/microbiologia
18.
Sci Rep ; 14(1): 9666, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671069

RESUMO

Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that the E. coli redox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a "pro-signaling molecule" that can be activated by its oxidation-in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2 to form H2O2 or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed "pro-signal" dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.


Assuntos
Escherichia coli , Oxirredução , Transdução de Sinais , Escherichia coli/genética , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Regulon/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fenóis/química , Fenóis/metabolismo
19.
J Mol Biol ; 436(10): 168573, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626867

RESUMO

Iron homeostasis is a critical process for living organisms because this metal is an essential co-factor for fundamental biochemical activities, like energy production and detoxification, albeit its excess quickly leads to cell intoxication. The protein Fur (ferric uptake regulator) controls iron homeostasis in bacteria by switching from its apo- to holo-form as a function of the cytoplasmic level of ferrous ions, thereby modulating gene expression. The Helicobacter pylori HpFur protein has the rare ability to operate as a transcriptional commutator; apo- and holo-HpFur function as two different repressors with distinct DNA binding recognition properties for specific sets of target genes. Although the regulation of apo- and holo-HpFur in this bacterium has been extensively investigated, we propose a genome-wide redefinition of holo-HpFur direct regulon in H. pylori by integration of RNA-seq and ChIP-seq data, and a large extension of the apo-HpFur direct regulon. We show that in response to iron availability, new coding sequences, non-coding RNAs, toxin-antitoxin systems, and transcripts within open reading frames are directly regulated by apo- or holo-HpFur. These new targets and the more thorough validation and deeper characterization of those already known provide a complete and updated picture of the direct regulons of this two-faced transcriptional regulator.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori , Ferro , Regulon , Proteínas Repressoras , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Regulon/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
Indian J Med Microbiol ; 48: 100563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38518847

RESUMO

Therapeutic options for staphylococcus infections have been raised due to the emergence of VISA and VRSA. Six isolates of Staphylococcus aureus of clinical origin which were previously confirmed to carry vanG were selected for this study. Antimicrobial susceptibility was performed by disc diffusion method. Transcriptional expression of vanG and vanSG showed down regulation against vancomycin and teicoplanin but expression was increased with increasing concentration of antibiotics. vanUG, vanRG showed up regulation against glycopeptide exposure. The present study underscored that expression of vanG and its regulatory gene operons are dependent on concentration of vancomycin and teicoplanin exposure in S.aureus.


Assuntos
Antibacterianos , Regulação Bacteriana da Expressão Gênica , Regulon , Staphylococcus aureus , Teicoplanina , Vancomicina , Teicoplanina/farmacologia , Vancomicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Humanos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...