Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.307
Filtrar
1.
Prog Orthod ; 25(1): 30, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098934

RESUMO

BACKGROUND: Palatal expansion is a common way of treating maxillary transverse deficiency. Under mechanical force, the midpalatal suture is expanded, causing local immune responses. This study aimed to determine whether macrophages participate in bone remodeling of the midpalatal suture during palatal expansion and the effects on bone remodeling. METHODS: Palatal expansion model and macrophage depletion model were established. Micro-CT, histological staining, and immunohistochemical staining were used to investigate the changes in the number and phenotype of macrophages during palatal expansion as well as the effects on bone remodeling of the midpalatal suture. Additionally, the effect of mechanically induced M2 macrophages on palatal osteoblasts was also elucidated in vitro. RESULTS: The number of macrophages increased significantly and polarized toward M2 phenotype with the increase of the expansion time, which was consistent with the trend of bone remodeling. After macrophage depletion, the function of osteoblasts and bone formation at the midpalatal suture were impaired during palatal expansion. In vitro, conditioned medium derived from M2 macrophages facilitated osteogenic differentiation of osteoblasts and decreased the RANKL/OPG ratio. CONCLUSIONS: Macrophages through polarizing toward M2 phenotype participated in midpalatal suture bone remodeling during palatal expansion, which may provide a new idea for promoting bone remodeling from the perspective of regulating macrophage polarization.


Assuntos
Remodelação Óssea , Macrófagos , Osteoblastos , Técnica de Expansão Palatina , Microtomografia por Raio-X , Remodelação Óssea/fisiologia , Animais , Palato , Ligante RANK , Suturas Cranianas , Osteogênese/fisiologia , Diferenciação Celular , Camundongos , Osteoprotegerina , Masculino , Estresse Mecânico , Fenótipo
2.
Front Endocrinol (Lausanne) ; 15: 1429567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188913

RESUMO

Bone is a dynamically active tissue whose health status is closely related to its construction and remodeling, and imbalances in bone homeostasis lead to a wide range of bone diseases. The sulfated glycoprotein C-type lectin structural domain family 11 member A (Clec11a) is a key factor in bone mass regulation that significantly promotes the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts and stimulates chondrocyte proliferation, thereby promoting longitudinal bone growth. More importantly, Clec11a has high therapeutic potential for treating various bone diseases and can enhance the therapeutic effects of the parathyroid hormone against osteoporosis. Clec11a is also involved in the stress/adaptive response of bone to exercise via mechanical stimulation of the cation channel Pieoz1. Clec11a plays an important role in promoting bone health and preventing bone disease and may represent a new target and novel drug for bone disease treatment. Therefore, this review aims to explore the role and possible mechanisms of Clec11a in the skeletal system, evaluate its value as a potential therapeutic target against bone diseases, and provide new ideas and strategies for basic research on Clec11a and preventing and treating bone disease.


Assuntos
Remodelação Óssea , Lectinas Tipo C , Humanos , Lectinas Tipo C/metabolismo , Animais , Remodelação Óssea/fisiologia , Osteogênese/fisiologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Doenças Ósseas/terapia , Doenças Ósseas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Diferenciação Celular
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 450-459, 2024 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39183057

RESUMO

Bone remodeling and bone regeneration are essential for preserving skeletal integrity and maintaining mineral homeostasis. T cells, as key members of adaptive immunity, play a pivotal role in bone remodeling and bone regeneration by producing a range of cytokines and growth factors. In the physiological state, T cells are involved in the maintenance of bone homeostasis through interactions with mesenchymal stem cells, osteoblasts, and osteoclasts. In pathological states, T cells participate in the pathological process of different types of osteoporosis through interaction with estrogen, glucocorticoids, and parathyroid hormone. During fracture healing for post-injury repair, T cells play different roles during the inflammatory hematoma phase, the bone callus formation phase and the bone remodeling phase. Targeting T cells thus emerges as a potential strategy for regulating bone homeostasis. This article reviews the research progress on related mechanisms of T cells immunity involved in bone remodeling and bone regeneration, with a view to providing a scientific basis for targeting T cells to regulate bone remodeling and bone regeneration.


Assuntos
Regeneração Óssea , Remodelação Óssea , Linfócitos T , Remodelação Óssea/imunologia , Remodelação Óssea/fisiologia , Humanos , Regeneração Óssea/imunologia , Linfócitos T/imunologia , Animais
4.
FASEB J ; 38(15): e23865, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096136

RESUMO

A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.


Assuntos
Mitocôndrias , Mitofagia , Osteoprotegerina , Ligamento Periodontal , Ligante RANK , Técnicas de Movimentação Dentária , Animais , Mitofagia/fisiologia , Ratos , Ligante RANK/metabolismo , Ligamento Periodontal/metabolismo , Osteoprotegerina/metabolismo , Mitocôndrias/metabolismo , Masculino , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Adolescente , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco/metabolismo , Remodelação Óssea/fisiologia , Células Cultivadas
5.
Health Informatics J ; 30(3): 14604582241270778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115269

RESUMO

To assess the diagnostic utility of bone turnover markers (BTMs) and demographic variables for identifying individuals with osteoporosis. A cross-sectional study involving 280 participants was conducted. Serum BTM values were obtained from 88 patients with osteoporosis and 192 controls without osteoporosis. Six machine learning models, including extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), CatBoost, random forest, support vector machine, and k-nearest neighbors, were employed to evaluate osteoporosis diagnosis. The performance measures included the area under the receiver operating characteristic curve (AUROC), F1-score, and accuracy. After AUROC optimization, LGBM exhibited the highest AUROC of 0.706. Post F1-score optimization, LGBM's F1-score was improved from 0.50 to 0.65. Combining the top three optimized models (LGBM, XGBoost, and CatBoost) resulted in an AUROC of 0.706, an F1-score of 0.65, and an accuracy of 0.73. BTMs, along with age and sex, were found to contribute significantly to osteoporosis diagnosis. This study demonstrates the potential of machine learning models utilizing BTMs and demographic variables for diagnosing preexisting osteoporosis. The findings highlight the clinical relevance of accessible clinical data in osteoporosis assessment, providing a promising tool for early diagnosis and management.


Assuntos
Biomarcadores , Aprendizado de Máquina , Osteoporose , Humanos , Osteoporose/diagnóstico , Feminino , Masculino , Estudos Transversais , Biomarcadores/sangue , Pessoa de Meia-Idade , Idoso , Remodelação Óssea/fisiologia , Curva ROC
6.
Reprod Biol Endocrinol ; 22(1): 106, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164703

RESUMO

Hormonal changes in pregnant and lactating women significantly affect bone metabolism and overall stress levels, positioning them as a unique group within the orthodontic population. Fluctuations in estrogen, progesterone, prolactin, and other hormones are closely linked to bone remodeling and the periodontal tissue's response to inflammation caused by dental plaque. Hormones such as thyrotropin, leptin, and melatonin also play crucial roles in pregnancy and bone remodeling, with potential implications for orthodontic tooth movement. Additionally, adverse personal behaviors and changes in dietary habits worsen periodontal conditions and complicate periodontal maintenance during orthodontic treatment. Notably, applying orthodontic force during pregnancy and lactation may trigger stress responses in the endocrine system, altering hormone levels. However, these changes do not appear to adversely affect the mother or fetus. This review comprehensively examines the interaction between hormone levels and orthodontic tooth movement in pregnant and lactating women, offering insights to guide clinical practice.


Assuntos
Lactação , Humanos , Feminino , Lactação/fisiologia , Lactação/metabolismo , Gravidez , Hormônios/metabolismo , Hormônios/sangue , Técnicas de Movimentação Dentária/métodos , Remodelação Óssea/fisiologia
7.
Int J Oral Sci ; 16(1): 52, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085217

RESUMO

Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.


Assuntos
Adaptação Fisiológica , Envelhecimento , Perda do Osso Alveolar , Processo Alveolar , Humanos , Adulto , Envelhecimento/fisiologia , Adaptação Fisiológica/fisiologia , Técnicas de Movimentação Dentária , Mecanotransdução Celular/fisiologia , Remodelação Óssea/fisiologia
8.
J Dent ; 148: 105264, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39053878

RESUMO

OBJECTIVES: To evaluate the bone changes around equicrestal and subcrestal implants, analyzing the effect of abutment height [short abutments (SA < 2 mm) and long abutments (LA > 2 mm)] and the three components of the peri­implant soft-tissue phenotype. METHODS: Twenty-six patients received 71 implants that were placed according to supracrestal tissue height (STH) in an equicrestal (n = 17), shallow subcrestal ≈1 mm (n = 33), or deep subcrestal ≈2 mm (n = 21) position. After 3 months of healing, rehabilitation was completed using metal-ceramic crowns on multi-unit abutments of 1.5 mm, 2.5 mm, or 3.5 mm in height, depending on the prosthetic space and STH. Longitudinal clinical parameters (STH, mucosal thickness, and keratinized mucosa width) and radiographic data [bone remodelling and marginal bone loss (MBL)] were collected at 3, 6, 12, and 24 months postsurgery. RESULTS: The gain in STH was significantly greater around the implants placed in a subcrestal ≈2 mm position. After 2 years, the mean change in bone remodelling in the SA group was significantly greater than in the LA group. According to the multiple linear regression, bone remodelling depends primarily on abutment height (ß = -0.43), followed by crestal position (ß = 0.34), and keratinized mucosa width (ß = -0.22), while MBL depends on abutment height (ß = -0.37), and the patient's age (ß = -0.36). CONCLUSIONS: Implants placed in an equicrestal or subcrestal ≈1 mm position with LA undergo less bone remodelling, while the lowest level of MBL occurs in subcrestal ≈2 mm implants with LA. Differing soft-tissue thicknesses combined with the use of either SA or LA produced significant intergroup differences in bone remodelling and MBL. CLINICAL SIGNIFICANCE: Abutment height is the most powerful predictor variable affecting bone remodelling and MBL. Depending on the dimensions of the peri­implant soft-tissue phenotype, placing the implants subcrestally may also be a viable option to decrease bone remodelling and, consequently, reduce MBL. CLINICAL TRIAL REGISTRATION: identification number: NCT05670340.


Assuntos
Perda do Osso Alveolar , Remodelação Óssea , Coroas , Dente Suporte , Projeto do Implante Dentário-Pivô , Implantes Dentários , Fenótipo , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Remodelação Óssea/fisiologia , Perda do Osso Alveolar/diagnóstico por imagem , Idoso , Adulto , Implantação Dentária Endóssea/métodos , Mucosa Bucal , Prótese Dentária Fixada por Implante , Ligas Metalo-Cerâmicas/química
9.
Calcif Tissue Int ; 115(3): 251-259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38951180

RESUMO

To explore serum levels of some bone turnover markers and the involvement of the Wnt signaling in CRPS-1. Query ID="Q1" Text="Please check and confirm whether the edit made to the article title is in order." We conducted an observational study on patients with early CRPS-1 recruited before any treatment. Clinical measures were assessed together with biochemical evaluation. Values of sclerostin, DKK1, CTX-I, and P1NP were compared with sex-age-matched healthy controls (HCs). We enrolled 34 patients diagnosed with CRPS-1 (mean age 59.3 ± 10.6 years, Male/Female 10/24), median disease duration = 2 weeks (IQR 1-5); median VAS score = 76 (IQR 68-80). Foot localization was slightly more frequent than hand localization (18/16). No statistically significant difference was found between CRPS-1 patients and HCs for CTX-I (0.3 ± 0.1 ng/ml vs 0.3 ± 0.1, p = 0.140), while mean serum values of P1NP were significantly higher in CRPS-1 patients compared to HCs (70.0 ± 38.8 ng/ml vs 50.1 ± 13.6, p = 0.005). Mean levels of sclerostin and DKK1 were lower in CRPS-1 patients vs HCs (sclerostin 28.4 ± 10.8 pmol/l vs 34.1 ± 11.6, p = 0.004; DKK1 12.9 ± 10.8 pmol/l vs 24.1 ± 11.9, p = 0.001). No statistically significant difference was found for all biochemical assessments in a subgroup of fracture-induced CRPS-1. No statistically significant differences were observed according to disease localization, disease duration, presence of hyperalgesia, allodynia, sudomotor alterations, and mild or moderate/severe swelling. No significant correlation emerged between sclerostin, DKK1 levels, baseline VAS score, or McGill Pain Questionnaire score. Bone involvement in early CRPS-1 does not seem to rely on increased osteoclast activity. Conversely, a serum marker of bone formation resulted increased. Both Sclerostin and DKK1 showed decreased values, probably suggesting a widespread osteocyte loss of function.Trial registration number: Eudract Number: 2014-001156-28.


Assuntos
Biomarcadores , Remodelação Óssea , Via de Sinalização Wnt , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Remodelação Óssea/fisiologia , Via de Sinalização Wnt/fisiologia , Síndromes da Dor Regional Complexa/sangue , Síndromes da Dor Regional Complexa/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Proteínas Adaptadoras de Transdução de Sinal/sangue
10.
Bone ; 187: 117213, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084545

RESUMO

Critical bone loss can have several origins: infections, tumors or trauma. Therefore, massive bone allograft can be a solution for limb salvage. Such a biological reconstruction should have the ideal biomechanical qualities. However, their complication rate remains too high. Perfusion-decellularization of massive allografts could promote the vitality of these grafts, thereby improving their integration and bone remodeling. Three perfusion-decellularized massive bone allografts were compared to 3 fresh frozen massive bone allografts in a preclinical in vivo porcine study using an orthopedic surgery model. Three pigs each underwent a critical diaphyseal femoral defects followed by an allogeneic intercalary femoral graft on their both femurs (one decellularized and one conventional fresh frozen as "native") to reconstruct the defect. Clinical imaging was performed over 3 months of follow-up. The grafts were then explanted and examined by non-decalcified histology, fluoroscopic microscopy and immunohistochemistry. Bone consolidation was achieved in both groups at the same time. However, the volume of bone callus appeared to be greater in the decellularized group. Histology demonstrated a superior bone remodeling in the decellularized group, with a higher number of osteoclasts (p < 0.001) and larger areas of osteoid matrix and newly formed bone as compared to the "native" group. Immunohistochemistry showed a superior vitality and remodeling in both the cortical and medullary cavities for osteocalcin (p < 0.001), Ki67 (p < 0.001), CD3 (p < 0.001) and α-SMA (p < 0.001) as compared the "native" group. Three months after implantation, the decellularized grafts were proven to be biologically more active compared to native grafts. Fluoroscopic microscopy revealed more ossification fronts in the depth of the decellularized grafts (p = 0.021). This pilot study provides the first in vivo demonstration on the enhanced biological capacities of massive bone allograft decellularized by perfusion as compared to conventional massive bone allografts.


Assuntos
Aloenxertos , Transplante Ósseo , Animais , Transplante Ósseo/métodos , Projetos Piloto , Suínos , Fêmur/patologia , Fêmur/diagnóstico por imagem , Remodelação Óssea/fisiologia , Transplante Homólogo/métodos , Feminino
11.
J Theor Biol ; 593: 111894, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38992463

RESUMO

In this paper, we explore the effects of biological (pathological) and mechanical damage on bone tissue within a benchmark model. Using the Finite Element Methodology, we analyze and numerically test the model's components, capabilities, and performance under physiologically and pathologically relevant conditions. Our findings demonstrate the model's effectiveness in simulating bone remodeling processes and self-repair mechanisms for micro-damage induced by biological internal conditions and mechanical external ones within bone tissue. This article is the second part of a series, where the first part presented the mathematical model and the biological and physical significance of the terms used in a simplified benchmark model. It explored the bone remodeling model's application, implementation, and results under physiological conditions.


Assuntos
Remodelação Óssea , Modelos Biológicos , Remodelação Óssea/fisiologia , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Osso e Ossos/fisiologia , Osso e Ossos/patologia , Animais , Estresse Mecânico , Simulação por Computador
12.
Sci Rep ; 14(1): 14655, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918485

RESUMO

Osteocytes locally remodel their surrounding tissue through perilacunar canalicular remodeling (PLR). During lactation, osteocytes remove minerals to satisfy the metabolic demand, resulting in increased lacunar volume, quantifiable with synchrotron X-ray radiation micro-tomography (SRµCT). Although the effects of lactation on PLR are well-studied, it remains unclear whether PLR occurs uniformly throughout the bone and what mechanisms prevent PLR from undermining bone quality. We used SRµCT imaging to conduct an in-depth spatial analysis of the impact of lactation and osteocyte-intrinsic MMP13 deletion on PLR in murine bone. We found larger lacunae undergoing PLR are located near canals in the mid-cortex or endosteum. We show lactation-induced hypomineralization occurs 14 µm away from lacunar edges, past a hypermineralized barrier. Our findings reveal that osteocyte-intrinsic MMP13 is crucial for lactation-induced PLR near lacunae in the mid-cortex but not for whole-bone resorption. This research highlights the spatial control of PLR on mineral distribution during lactation.


Assuntos
Remodelação Óssea , Lactação , Osteócitos , Microtomografia por Raio-X , Animais , Lactação/fisiologia , Feminino , Osteócitos/metabolismo , Osteócitos/fisiologia , Camundongos , Remodelação Óssea/fisiologia , Metaloproteinase 13 da Matriz/metabolismo
13.
Clin Implant Dent Relat Res ; 26(4): 809-818, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923709

RESUMO

AIM: To investigate whether a progressive marginal bone loss (PMBL) occurring beyond the initial bone remodeling (IBR) is linked with bleeding on probing. MATERIALS AND METHODS: A total of 70 partially edentulous patients exhibiting 112 two-piece bone-level implants were included in this retrospective study. Panoramic radiographs were obtained after implant insertion (T0), after delivery of a final prosthetic restoration (T1) and subsequently during the 1-(T2), 5-(T3), 10-(T4), and 15-years (T5) follow-up visits. At each time point, radiographic marginal bone levels were assessed from the implant shoulder to the first bone-to-implant contact at mesial and distal aspects. The IBR was defined as a bone loss occurring up to prosthesis delivery, that is, from T0 to T1. The PMBL was defined as bone loss occurring after T1. At T2, T3, T4, and T5, the presence or absence of bleeding on probing (BOP) was recorded at four sites. A median regression with mixed models was performed to assess the difference of PMBL in PMBL + BOP+ and PBML + BOP- groups. RESULTS: Over the mean implant functioning time of 4.44 ± 4.91 years, 38 (34%) implants showed no PBML, whereas 74 (66%) implants featured PMBL. Of these, 35 (47%) and 39 (53%) implants were assigned to the PMBL + BOP- and PMBL + BOP+ groups, respectively. The mean PMBL after 1, 5, 10, and 15 years were comparable between implants featuring PMBL with or without BOP. At 1 year, BOP intensity significantly correlated PMBL, with each increase in one BOP-positive site being associated with increase in PMBL by 0.55 mm (p = 0.038), whereas this association was not found at 5, 10, and 15 years. The IBR values in the no PBML, PMBL + BOP+, and PBML + BOP- groups were -0.24 ± 0.31, -0.41 ± 0.59, and -0.24 ± 0.33 mm, respectively, with no significant differences found among the groups. CONCLUSION: Progressive bone loss at implant sites is not always linked with bleeding on probing.


Assuntos
Perda do Osso Alveolar , Humanos , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Radiografia Panorâmica , Adulto , Remodelação Óssea/fisiologia , Implantação Dentária Endóssea/efeitos adversos , Arcada Parcialmente Edêntula/diagnóstico por imagem , Idoso , Implantes Dentários/efeitos adversos , Índice Periodontal
14.
Clin Oral Investig ; 28(7): 361, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847929

RESUMO

OBJECTIVES: To assess gingival crevicular fluid (GCF) levels of inflammatory and bone remodelling related biomarkers following transplantation of a tissue-engineered biocomplex into intrabony defects at several time-points over 12-months. MATERIALS AND METHODS: Group-A (n = 9) received the Minimal Access Flap (MAF) surgical technique combined with a biocomplex of autologous clinical-grade alveolar bone-marrow mesenchymal stem cells in collagen scaffolds enriched with an autologous fibrin/platelet lysate (aFPL). Group-B (n = 10) received the MAF surgery, with collagen scaffolds enriched with aFPL and Group-C (n = 8) received the MAF surgery alone. GCF was collected from the osseous defects of subjects via paper strips/30 sec at baseline, 6-weeks, 3-, 6-, 9-, 12-months post-surgery. Levels of inflammatory and bone remodelling-related biomarkers in GCF were determined by ELISA. RESULTS: Group-A demonstrated significantly higher GCF levels of BMP-7 at 6-9 months than baseline, with gradually decreasing levels of pro-inflammatory and pro-osteoclastogenic markers (TNF-α, RANKL) over the study-period; and an overall decrease in the RANKL/OPG ratio at 9-12 months than baseline (all p < 0.001). In comparison, only modest interim changes were observed in Groups-B and -C. CONCLUSIONS: At the protein level, the approach of MAF and biocomplex transplantation provided greater tissue regeneration potential as cell-based therapy appeared to modulate inflammation and bone remodelling in residual periodontal defects. CLINICAL RELEVANCE: Transplantation of a tissue engineered construct into periodontal intrabony defects demonstrated a biochemical pattern for inflammatory control and tissue regeneration over 12-months compared to the control treatments. Understanding the biological healing events of stem cell transplantation may facilitate the design of novel treatment strategies. CLINICAL DATABASE REGISTRATION: ClinicalTrials.gov ID: NCT02449005.


Assuntos
Biomarcadores , Remodelação Óssea , Líquido do Sulco Gengival , Engenharia Tecidual , Alicerces Teciduais , Humanos , Remodelação Óssea/fisiologia , Colágeno , Ensaio de Imunoadsorção Enzimática , Líquido do Sulco Gengival/química , Retalhos Cirúrgicos , Engenharia Tecidual/métodos , Resultado do Tratamento
15.
J Med Eng Technol ; 48(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38864409

RESUMO

Total ankle arthroplasty is the gold standard surgical treatment for severe ankle arthritis and fracture. However, revision surgeries due to the in vivo failure of the ankle implant are a serious concern. Extreme bone density loss due to bone remodelling is one of the main reasons for in situ implant loosening, with aseptic loosening of the talar component being one of the primary reasons for total ankle arthroplasty revisions. This study is aimed at determining the performance and potential causes of failure of the talar component. Herein, we investigated the stress, strain, and bone density changes that take place in the talus bone during the first 6 months of bone remodelling due to the total ankle arthroplasty procedure. Computed tomography scans were used to generate the 3D geometry used in the finite element (FE) model of the Intact and implanted ankle. The Scandinavian Total Ankle Replacement (STAR™) CAD files were generated, and virtual placement within bone models was done following surgical guidelines. The dorsiflexion physiological loading condition was investigated. The cortical region of the talus bone was found to demonstrate the highest values of stress (5.02 MPa). Next, the adaptive bone remodelling theory was used to predict bone density changes over the initial 6-month post-surgery. A significant change in bone density was observed in the talus bone due to bone remodelling. The observed quantitative changes in talus bone density over 6-month period underscore potential implications for implant stability and fracture susceptibility. These findings emphasise the importance of considering such biomechanical factors in ankle implant design and clinical management.


Assuntos
Artroplastia de Substituição do Tornozelo , Densidade Óssea , Remodelação Óssea , Análise de Elementos Finitos , Estresse Mecânico , Tálus , Humanos , Remodelação Óssea/fisiologia , Tálus/cirurgia , Tálus/diagnóstico por imagem , Densidade Óssea/fisiologia , Tomografia Computadorizada por Raios X
16.
Bone ; 186: 117173, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906519

RESUMO

Postmenopausal osteoporosis, marked by estrogen deficiency, is a major contributor to osteoporotic fractures, yet early prediction of fractures in this population remains challenging. Our goal was to explore the temporal changes in bone-specific inflammation, oxidative stress, bone turnover, and bone-matrix water, and their relationship with estrogen deficiency-induced modifications in bone structure and mechanical properties. Additionally, we sought to determine if emerging clinically translatable imaging techniques could capture early bone modifications prior to standard clinical imaging. Two-month-old female Sprague Dawley rats (n = 48) underwent ovariectomy (OVX, n = 24) or sham operations (n = 24). A subgroup of n = 8 rats per group was sacrificed at 2-, 5-, and 10-weeks post-surgery to assess the temporal relationships of inflammation, oxidative stress, bone turnover, bone matrix water, mechanics, and imaging outcomes. OVX rats exhibited higher body weight compared to sham rats at all time points. By 5-weeks, OVX animals showed elevated markers of inflammation and oxidative stress in cortical bone, which persisted throughout the study, while cortical bone formation rate did not differ from sham until 10-weeks. DXA outcomes did not reveal differences between OVX and sham at any time point. Bound water, assessed using ultrashort echo time magnetic resonance imaging (UTE MRI), was lower in OVX at the earliest time point (2-weeks) and reduced again at 10-weeks with no difference at 5-weeks. These data demonstrate that bound water assessment using novel UTE MRI technology was lower at the earliest time point following OVX. However, no temporal relationship with bone turnover, inflammation, or oxidative stress was observed at the time points assessed in this study. These findings underscore both the increased need to understand bone hydration changes and highlight the usefulness of UTE MRI for non-invasive bone hydration measurements.


Assuntos
Matriz Óssea , Remodelação Óssea , Estrogênios , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Feminino , Remodelação Óssea/fisiologia , Estrogênios/deficiência , Estrogênios/metabolismo , Matriz Óssea/metabolismo , Água/metabolismo , Ratos , Inflamação/patologia , Inflamação/metabolismo , Fenômenos Biomecânicos , Microtomografia por Raio-X
17.
Eur J Med Res ; 29(1): 317, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849920

RESUMO

The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.


Assuntos
Osso e Ossos , Encéfalo , Sistema Nervoso Central , Humanos , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Animais , Remodelação Óssea/fisiologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/metabolismo
18.
PLoS One ; 19(6): e0304694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861484

RESUMO

We propose a 3D stochastic cellular automaton model, governed by evolutionary game theory, to simulate bone remodeling dynamics. The model includes four voxel states: Formation, Quiescence, Resorption, and Environment. We simulate the Resorption and Formation processes on separate time scales to explore the parameter space and derive a phase diagram that illustrates the sensitivity of these processes to parameter changes. Combining these results, we simulate a full bone remodeling cycle. Furthermore, we show the importance of modeling small neighborhoods for studying local bone microenvironment controls. This model can guide experimental design and, in combination with other models, it could assist to further explore external impacts on bone remodeling. Consequently, this model contributes to an improved understanding of complex dynamics in bone remodeling dynamics and exploring alterations due to disease or drug treatment.


Assuntos
Remodelação Óssea , Processos Estocásticos , Remodelação Óssea/fisiologia , Humanos , Modelos Biológicos , Simulação por Computador , Reabsorção Óssea
19.
BMC Endocr Disord ; 24(1): 89, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872156

RESUMO

BACKGROUND: The aim was to evaluate the effect of metabolic control on bone biomarkers in children with type I diabetes. MATERIALS AND METHODS: The children were divided into two groups according to their glycated hemoglobin (HbA1c) (%) levels: a group with HbA1c levels < 8% (n = 16) and: a group with HbA1c levels > 8% (n = 18). The serum total oxidative status (TOS) (µmol/L), total antioxidant status (TAS) (mmol/L), alkaline phosphatase (ALP) (IU/L), osteocalcin (OC) (ng/ml), procollagen type-1-N-terminal peptide (P1NP) (ng/ml), and vitamin D (IU) levels and food consumption frequencies were determined. RESULTS: When patients were classified according to HbA1c (%) levels, those with HbA1c levels < 8% were found to have lower TOS (µmol/L) values (8.7 ± 6.16, 9.5 ± 5.60) and higher serum OC (ng/mL) (24.2 ± 16.92, 22.0 ± 6.21) levels than those with HbA1c levels > 8% (p < 0.05). Regardless of the level of metabolic control, there was a statistically significant association between serum TOS (µmol/L) and P1NP (ng/ml) (p < 0.05) levels, with no group-specific relationship (HbA1c levels <%8 or HbA1c levels >%8). CONCLUSION: HbA1c and serum TOS levels had an effect on bone turnover biomarkers in individuals with type I diabetes.


Assuntos
Biomarcadores , Remodelação Óssea , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Humanos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Criança , Masculino , Feminino , Biomarcadores/sangue , Remodelação Óssea/fisiologia , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Turquia/epidemiologia , Adolescente , Osteocalcina/sangue , Fosfatase Alcalina/sangue , Pró-Colágeno/sangue , Prognóstico , Fragmentos de Peptídeos/sangue , Estresse Oxidativo , Vitamina D/sangue , Seguimentos
20.
Front Endocrinol (Lausanne) ; 15: 1296047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894742

RESUMO

Purpose: The main objective of this study is to assess the possibility of using radiomics, deep learning, and transfer learning methods for the analysis of chest CT scans. An additional aim is to combine these techniques with bone turnover markers to identify and screen for osteoporosis in patients. Method: A total of 488 patients who had undergone chest CT and bone turnover marker testing, and had known bone mineral density, were included in this study. ITK-SNAP software was used to delineate regions of interest, while radiomics features were extracted using Python. Multiple 2D and 3D deep learning models were trained to identify these regions of interest. The effectiveness of these techniques in screening for osteoporosis in patients was compared. Result: Clinical models based on gender, age, and ß-cross achieved an accuracy of 0.698 and an AUC of 0.665. Radiomics models, which utilized 14 selected radiomics features, achieved a maximum accuracy of 0.750 and an AUC of 0.739. The test group yielded promising results: the 2D Deep Learning model achieved an accuracy of 0.812 and an AUC of 0.855, while the 3D Deep Learning model performed even better with an accuracy of 0.854 and an AUC of 0.906. Similarly, the 2D Transfer Learning model achieved an accuracy of 0.854 and an AUC of 0.880, whereas the 3D Transfer Learning model exhibited an accuracy of 0.740 and an AUC of 0.737. Overall, the application of 3D deep learning and 2D transfer learning techniques on chest CT scans showed excellent screening performance in the context of osteoporosis. Conclusion: Bone turnover markers may not be necessary for osteoporosis screening, as 3D deep learning and 2D transfer learning techniques utilizing chest CT scans proved to be equally effective alternatives.


Assuntos
Biomarcadores , Aprendizado Profundo , Osteoporose , Tomografia Computadorizada por Raios X , Humanos , Osteoporose/diagnóstico por imagem , Feminino , Tomografia Computadorizada por Raios X/métodos , Masculino , Pessoa de Meia-Idade , Idoso , Densidade Óssea , Remodelação Óssea/fisiologia , Adulto , Radiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...