Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.837
Filtrar
1.
Curr Top Dev Biol ; 159: 344-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729681

RESUMO

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.


Assuntos
Remodelação Vascular , Humanos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/embriologia , Neovascularização Fisiológica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Diferenciação Celular , Desenvolvimento Embrionário , Endotélio Vascular/citologia
2.
Genome Biol ; 25(1): 117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715110

RESUMO

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Remodelação Vascular , Pré-Eclâmpsia/genética , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Remodelação Vascular/genética , Placenta/metabolismo , Metilação de DNA , Epigênese Genética , Células Endoteliais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Impressão Genômica , Fator de Crescimento Transformador beta/metabolismo , Retardo do Crescimento Fetal/genética , Placentação/genética , Proteínas de Ligação a RNA , Proteínas Reguladoras de Apoptose
3.
Front Immunol ; 15: 1365422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807593

RESUMO

Autogenous arteriovenous fistula (AVF) is the preferred dialysis access for receiving hemodialysis treatment in end-stage renal disease patients. After AVF is established, vascular remodeling occurs in order to adapt to hemodynamic changes. Uremia toxins, surgical injury, blood flow changes and other factors can induce inflammatory response, immune microenvironment changes, and play an important role in the maintenance of AVF vascular remodeling. This process involves the infiltration of pro-inflammatory and anti-inflammatory immune cells and the secretion of cytokines. Pro-inflammatory and anti-inflammatory immune cells include neutrophil (NEUT), dendritic cell (DC), T lymphocyte, macrophage (Mφ), etc. This article reviews the latest research progress and focuses on the role of immune microenvironment changes in vascular remodeling of AVF, in order to provide a new theoretical basis for the prevention and treatment of AVF failure.


Assuntos
Derivação Arteriovenosa Cirúrgica , Microambiente Celular , Falência Renal Crônica , Diálise Renal , Remodelação Vascular , Humanos , Falência Renal Crônica/terapia , Falência Renal Crônica/imunologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Microambiente Celular/imunologia , Animais , Fístula Arteriovenosa/imunologia
4.
Cells ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786017

RESUMO

Arteries and veins develop different types of occlusive diseases and respond differently to injury. The biological reasons for this discrepancy are not well understood, which is a limiting factor for the development of vein-targeted therapies. This study contrasts human peripheral arteries and veins at the single-cell level, with a focus on cell populations with remodeling potential. Upper arm arteries (brachial) and veins (basilic/cephalic) from 30 organ donors were compared using a combination of bulk and single-cell RNA sequencing, proteomics, flow cytometry, and histology. The cellular atlases of six arteries and veins demonstrated a 7.8× higher proportion of contractile smooth muscle cells (SMCs) in arteries and a trend toward more modulated SMCs. In contrast, veins showed a higher abundance of endothelial cells, pericytes, and macrophages, as well as an increasing trend in fibroblasts. Activated fibroblasts had similar proportions in both types of vessels but with significant differences in gene expression. Modulated SMCs and activated fibroblasts were characterized by the upregulation of MYH10, FN1, COL8A1, and ITGA10. Activated fibroblasts also expressed F2R, POSTN, and COMP and were confirmed by F2R/CD90 flow cytometry. Activated fibroblasts from veins were the top producers of collagens among all fibroblast populations from both types of vessels. Venous fibroblasts were also highly angiogenic, proinflammatory, and hyper-responders to reactive oxygen species. Differences in wall structure further explain the significant contribution of fibroblast populations to remodeling in veins. Fibroblasts are almost exclusively located outside the external elastic lamina in arteries, while widely distributed throughout the venous wall. In line with the above, ECM-targeted proteomics confirmed a higher abundance of fibrillar collagens in veins vs. more basement ECM components in arteries. The distinct cellular compositions and transcriptional programs of reparative populations in arteries and veins may explain differences in acute and chronic wall remodeling between vessels. This information may be relevant for the development of antistenotic therapies.


Assuntos
Artérias , Miócitos de Músculo Liso , Análise de Célula Única , Remodelação Vascular , Veias , Humanos , Artérias/metabolismo , Veias/metabolismo , Miócitos de Músculo Liso/metabolismo , Fibroblastos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade
5.
No Shinkei Geka ; 52(3): 470-476, 2024 May.
Artigo em Japonês | MEDLINE | ID: mdl-38783489

RESUMO

A right aortic arch and aberrant subclavian artery result from an interruption in the remodeling of the pharyngeal arch arteries. We occasionally encounter this anatomical variation during angiography. Patients with disorders such as Down syndrome and congenital heart disease show a high incidence of an aberrant right subclavian artery, and this anomaly can cause symptomatic esophageal or tracheal compression. The root of the aberrant artery may show dilatation(referred to as a Kommerell diverticulum), dissection, intramural hematoma, or rupture necessitating cardiac intervention using a surgical or endovascular approach. Neurointerventionalists should have working knowledge of the anatomy to rapidly understand the anatomy and ensure a safe procedure. A left transradial approach should be considered if prior knowledge of the aberrant subclavian anatomy is available.


Assuntos
Aorta Torácica , Artéria Subclávia , Humanos , Aorta Torácica/anormalidades , Aorta Torácica/diagnóstico por imagem , Artéria Subclávia/anormalidades , Artéria Subclávia/diagnóstico por imagem , Remodelação Vascular , Anormalidades Cardiovasculares
6.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691302

RESUMO

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Assuntos
Apoptose , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Hipertensão , Janus Quinases , Síndrome Metabólica , Estresse Oxidativo , Transdução de Sinais , Ubiquitina Tiolesterase , Animais , Humanos , Masculino , Ratos , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/patologia , Hipertensão/enzimologia , Janus Quinases/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Remodelação Vascular/efeitos dos fármacos
7.
Respir Res ; 25(1): 210, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755610

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Assuntos
Fumar Cigarros , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Masculino , Humanos , Fumar Cigarros/efeitos adversos , Sistema de Sinalização das MAP Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Proteínas ras/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Quinases raf/metabolismo , Quinases raf/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
8.
J Am Heart Assoc ; 13(10): e033639, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38742509

RESUMO

BACKGROUND: It was recently reported that thin-cap fibroatheroma (TCFA) detected by optical coherence tomography was an independent predictor of future cardiac events in patients with diabetes. However, the clinical usefulness of this finding is limited by the invasive nature of optical coherence tomography. Computed tomography angiography (CTA) characteristics of TCFA have not been systematically studied. The aim of this study was to investigate CTA characteristics of TCFA in patients with diabetes. METHODS AND RESULTS: Patients with diabetes who underwent preintervention CTA and optical coherence tomography were included. Qualitative and quantitative analyses were performed for plaques on CTA. TCFA was assessed by optical coherence tomography. Among 366 plaques in 145 patients with diabetes, 111 plaques had TCFA. The prevalence of positive remodeling (74.8% versus 50.6%, P<0.001), low attenuation plaque (63.1% versus 33.7%, P<0.001), napkin-ring sign (32.4% versus 11.0%, P<0.001), and spotty calcification (55.0% versus 34.9%, P<0.001) was significantly higher in TCFA than in non-TCFA. Low-density noncalcified plaque volume (25.4 versus 15.7 mm3, P<0.001) and remodeling index (1.30 versus 1.20, P=0.002) were higher in TCFA than in non-TCFA. The presence of napkin-ring sign, spotty calcification, high low-density noncalcified plaque volume, and high remodeling index were independent predictors of TCFA. When all 4 predictors were present, the probability of TCFA increased to 82.4%. CONCLUSIONS: The combined qualitative and quantitative plaque analysis of CTA may be helpful in identifying TCFA in patients with diabetes. REGISTRATION INFORMATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04523194.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Placa Aterosclerótica , Tomografia de Coerência Óptica , Humanos , Masculino , Placa Aterosclerótica/diagnóstico por imagem , Feminino , Angiografia por Tomografia Computadorizada/métodos , Tomografia de Coerência Óptica/métodos , Idoso , Pessoa de Meia-Idade , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Estudos Retrospectivos , Valor Preditivo dos Testes , Diabetes Mellitus/epidemiologia , Calcificação Vascular/diagnóstico por imagem , Remodelação Vascular , Fibrose
9.
FASEB J ; 38(9): e23645, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703043

RESUMO

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Assuntos
Dissecção Aórtica , Quimiocina CX3CL1 , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos , Transdução de Sinais , Fator de Transcrição RelA , Remodelação Vascular , Animais , Camundongos , Masculino , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aminopropionitrilo/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
10.
Eur J Cardiothorac Surg ; 65(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759115

RESUMO

OBJECTIVES: The Dissected Aorta Repair Through Stent (DARTS) Implantation trial demonstrated positive proximal aortic remodelling following aortic dissection repair with the AMDS hybrid prosthesis. In this study, we look to identify predictors of aortic remodelling following aortic dissection repair with AMDS including whether communications between branch vessels and the false lumen (FL) predict aortic growth. METHODS: The DARTS implantation trial included patients who underwent acute DeBakey type I aortic dissection (ATAD I) repair with the AMDS from March 2017 to January 2019. Anatomic measurements were collected from original computerized tomography scans. Measurements were taken at zones 2, 3, 6 and 9. Patients were grouped based on the number of FL communications with the supra-aortic branch vessels or visceral branch vessels. RESULTS: Forty-seven patients were included in the original DARTS implantation trial. Patients with FL communications with the supra-aortic branch vessels tended to have significant growth at zone 3 (P = 0.02-0.0018), while greater numbers of visceral FL communications tended to predict aortic growth at zones 3 (P = 0.003), 6 (P = 0.017-0.0087) and 9 (P = 0.0016-0.0003). CONCLUSIONS: Aortic remodelling following ATAD I repair using the AMDS may be predicted by local FL communications with branch vessels. Patients undergoing ATAD I repair were more likely to experience significant aortic growth in zone 3 with more head vessel communications and in zones 3, 6 and 9 with more visceral FL communications. Predictors of aortic remodelling may help to guide initial surgical management for aortic dissection patients.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Stents , Remodelação Vascular , Humanos , Dissecção Aórtica/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Remodelação Vascular/fisiologia , Implante de Prótese Vascular/métodos , Aneurisma da Aorta Torácica/cirurgia , Prótese Vascular , Idoso , Procedimentos Endovasculares/métodos , Desenho de Prótese , Tomografia Computadorizada por Raios X , Resultado do Tratamento
11.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741032

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Assuntos
Adenosina , Células Endoteliais , Transição Epitelial-Mesenquimal , Hipertensão Pulmonar , Fatores de Transcrição Kruppel-Like , Metiltransferases , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Metilação , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Caderinas/genética , Masculino , Remodelação Vascular/genética , Células Cultivadas
12.
J Biomech ; 169: 112152, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38763809

RESUMO

The healthy adult aorta is a remarkably resilient structure, able to resist relentless cardiac-induced and hemodynamic loads under normal conditions. Fundamental to such mechanical homeostasis is the mechano-sensitive cell signaling that controls gene products and thus the structural integrity of the wall. Mouse models have shown that smooth muscle cell-specific disruption of transforming growth factor-beta (TGFß) signaling during postnatal development compromises this resiliency, rendering the aortic wall susceptible to aneurysm and dissection under normal mechanical loading. By contrast, disruption of such signaling in the adult aorta appears to introduce a vulnerability that remains hidden under normal loading, but manifests under increased loading as experienced during hypertension. We present a multiscale (transcript to tissue) computational model to examine possible reasons for compromised mechanical homeostasis in the adult aorta following reduced TGFß signaling in smooth muscle cells.


Assuntos
Aorta , Modelos Cardiovasculares , Transdução de Sinais , Fator de Crescimento Transformador beta , Remodelação Vascular , Fator de Crescimento Transformador beta/metabolismo , Animais , Camundongos , Aorta/patologia , Aorta/metabolismo , Remodelação Vascular/fisiologia , Simulação por Computador , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Humanos
13.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767703

RESUMO

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Assuntos
Exossomos , Integrina beta1 , MicroRNAs , Telócitos , Proteínas rac1 de Ligação ao GTP , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Camundongos , Telócitos/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Proliferação de Células/genética , Movimento Celular/genética , Humanos , Remodelação Vascular/genética , Neuropeptídeos
14.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
15.
Biomed Pharmacother ; 174: 116505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574614

RESUMO

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Assuntos
Canagliflozina , Proliferação de Células , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Ratos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Canagliflozina/farmacologia , Proliferação de Células/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Monocrotalina/efeitos adversos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/induzido quimicamente , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Remodelação Vascular/efeitos dos fármacos
16.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614383

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Transcrição STAT3/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Becaplermina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
17.
Physiol Rep ; 12(7): e15999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610069

RESUMO

Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.


Assuntos
Hipertensão Pulmonar , Quinase I-kappa B , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Humanos , Ratos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Quinase I-kappa B/metabolismo , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
18.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672515

RESUMO

Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-ß-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.


Assuntos
DNA Mitocondrial , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inflamação , Humanos , DNA Mitocondrial/genética , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Pessoa de Meia-Idade , Inflamação/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Idoso , Remodelação Vascular/genética , Estudos de Casos e Controles
19.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572650

RESUMO

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Assuntos
Prótese Vascular , Hemodinâmica , Humanos , Animais , Modelos Cardiovasculares , Falha de Prótese , Estresse Mecânico , Fenômenos Biomecânicos , Mecanotransdução Celular , Implante de Prótese Vascular/efeitos adversos , Desenho de Prótese , Oclusão de Enxerto Vascular/fisiopatologia , Oclusão de Enxerto Vascular/etiologia , Remodelação Vascular
20.
Eur J Pharmacol ; 972: 176547, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38561103

RESUMO

Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.


Assuntos
Proliferação de Células , Células Endoteliais , Indóis , Interleucina-11 , Miócitos de Músculo Liso , Artéria Pulmonar , Piridonas , Fator de Transcrição STAT3 , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/citologia , Interleucina-11/metabolismo , Indóis/farmacologia , Animais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Piridonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Humanos , Masculino , Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Remodelação Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA