Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1555-1569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779856

RESUMO

BACKGROUND: ß-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS: BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS: BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS: BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.


Assuntos
Aminopropionitrilo , Aorta Torácica , Ruptura Aórtica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Aminopropionitrilo/toxicidade , Aminopropionitrilo/farmacologia , Aorta Torácica/patologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Feminino , Masculino , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/patologia , Ruptura Aórtica/metabolismo , Ruptura Aórtica/prevenção & controle , Camundongos , Remodelação Vascular/efeitos dos fármacos , Dilatação Patológica , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fatores Etários , Fatores de Tempo , Fatores Sexuais , Proliferação de Células/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo
2.
Sci Rep ; 14(1): 12431, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816406

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease featured by high morbidity and mortality. Although Cordycepin is known for its anti-inflammatory, antioxidant and immune-enhancing effects, its role in PAH treatment and the underlying mechanisms remain unclear. The therapeutic effects of Cordycepin on rats with PAH were investigated using a monocrotaline (MCT)-induced rat model. The metabolic effects of Cordycepin were assessed based on the plasma metabolome. The potential mechanisms of Cordycepin in PAH treatment were investigated through transcriptome sequencing and validated in pulmonary artery smooth muscle cells (PASMC). Evaluations included hematoxylin and eosin staining for pulmonary vascular remodeling, CCK-8 assay, EDU, and TUNEL kits for cell viability, proliferation, and apoptosis, respectively, and western blot for protein expression. Cordycepin significantly reduced right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) in PAH rats, and mitigated pulmonary vascular remodeling. Plasma metabolomics showed that Cordycepin could reverse the metabolic disorders in the lungs of MCT-induced PAH rats, particularly impacting linoleic acid and alpha-linolenic acid metabolism pathways. Transcriptomics revealed that the P53 pathway might be the primary pathway involved, and western blot results showed that Cordycepin significantly increased P53 and P21 protein levels in lung tissues. Integrated analysis of transcriptomics and metabolomics suggested that these pathways were mainly enriched in linoleic acid metabolism and alpha-linolenic acid metabolism pathway. In vitro experiments demonstrated that Cordycepin significantly inhibited the PDGFBB (PD)-induced abnormal proliferation and migration of PASMC and promoted PD-induced apoptosis. Meanwhile, Cordycepin enhanced the expression levels of P53 and P21 proteins in PD-insulted PASMC. However, inhibitors of P53 and P21 eliminated these effects of Cordycepin. Cordycepin may activate the P53-P21 pathway to inhibit abnormal proliferation and migration of PASMC and promote apoptosis, offering a potential approach for PAH treatment.


Assuntos
Apoptose , Proliferação de Células , Desoxiadenosinas , Hipertensão Arterial Pulmonar , Animais , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Ratos , Masculino , Apoptose/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Proliferação de Células/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Metabolômica , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Monocrotalina , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Remodelação Vascular/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ácido Linoleico/farmacologia , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Perfilação da Expressão Gênica
3.
FASEB J ; 38(9): e23645, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703043

RESUMO

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Assuntos
Dissecção Aórtica , Quimiocina CX3CL1 , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos , Transdução de Sinais , Fator de Transcrição RelA , Remodelação Vascular , Animais , Camundongos , Masculino , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aminopropionitrilo/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
4.
Respir Res ; 25(1): 210, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755610

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Assuntos
Fumar Cigarros , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Masculino , Humanos , Fumar Cigarros/efeitos adversos , Sistema de Sinalização das MAP Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Proteínas ras/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Quinases raf/metabolismo , Quinases raf/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
5.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691302

RESUMO

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Assuntos
Apoptose , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Hipertensão , Janus Quinases , Síndrome Metabólica , Estresse Oxidativo , Transdução de Sinais , Ubiquitina Tiolesterase , Animais , Humanos , Masculino , Ratos , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/patologia , Hipertensão/enzimologia , Janus Quinases/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Remodelação Vascular/efeitos dos fármacos
7.
Respir Med ; 227: 107631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631526

RESUMO

Pulmonary hypertension (PH) is a pathophysiological disorder that may involve multiple clinical conditions and may be associated with a variety of cardiovascular and respiratory diseases. Pulmonary hypertension due to left heart disease (PH-LHD) currently lacks targeted therapies, while Pulmonary arterial hypertension (PAH), despite approved treatments, carries considerable residual risk. Metabolic dysfunction has been linked to the pathogenesis and prognosis of PH through various studies, with emerging metabolic agents offering a potential avenue for improving patient outcomes. Sodium-glucose cotransporter 2 inhibitor (SGLT-2i), a novel hypoglycemic agent, could ameliorate metabolic dysfunction and exert cardioprotective effects. Recent small-scale studies suggest SGLT-2i treatment may improve pulmonary artery pressure in patients with PH-LHD, and the PAH animal model shows that SGLT-2i can reduce pulmonary vascular remodeling and prevent progression in PAH, suggesting potential benefits for patients with PH-LHD and perhaps PAH. This review aims to succinctly review PH's pathophysiology, and the connection between metabolic dysfunction and PH, and investigate the prospective mechanisms of action of SGLT-2i in PH-LHD and PAH management.


Assuntos
Hipertensão Pulmonar , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Animais , Remodelação Vascular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/fisiopatologia
8.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608525

RESUMO

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Assuntos
Ácidos Docosa-Hexaenoicos , Hipertensão , Camundongos Endogâmicos C57BL , Obesidade , Remodelação Vascular , Animais , Masculino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Obesidade/complicações , Obesidade/metabolismo , Remodelação Vascular/efeitos dos fármacos , Camundongos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Dieta Hiperlipídica/efeitos adversos , Angiotensina II , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Camundongos Obesos , Vasoconstrição/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças
9.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674087

RESUMO

Vascular diseases, including peripheral arterial disease (PAD), pulmonary arterial hypertension, and atherosclerosis, significantly impact global health due to their intricate relationship with vascular remodeling. This process, characterized by structural alterations in resistance vessels, is a hallmark of heightened vascular resistance seen in these disorders. The influence of environmental estrogenic endocrine disruptors (EEDs) on the vasculature suggests a potential exacerbation of these alterations. Our study employs an integrative approach, combining data mining with bioinformatics, to unravel the interactions between EEDs and vascular remodeling genes in the context of PAD. We explore the molecular dynamics by which EED exposure may alter vascular function in PAD patients. The investigation highlights the profound effect of EEDs on pivotal genes such as ID3, LY6E, FOS, PTP4A1, NAMPT, GADD45A, PDGF-BB, and NFKB, all of which play significant roles in PAD pathophysiology. The insights gained from our study enhance the understanding of genomic alterations induced by EEDs in vascular remodeling processes. Such knowledge is invaluable for developing strategies to prevent and manage vascular diseases, potentially mitigating the impact of harmful environmental pollutants like EEDs on conditions such as PAD.


Assuntos
Biologia Computacional , Disruptores Endócrinos , Redes Reguladoras de Genes , Doença Arterial Periférica , Remodelação Vascular , Humanos , Doença Arterial Periférica/genética , Biologia Computacional/métodos , Remodelação Vascular/genética , Remodelação Vascular/efeitos dos fármacos , Estrogênios/metabolismo
10.
Eur J Pharmacol ; 972: 176547, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38561103

RESUMO

Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.


Assuntos
Proliferação de Células , Células Endoteliais , Indóis , Interleucina-11 , Miócitos de Músculo Liso , Artéria Pulmonar , Piridonas , Fator de Transcrição STAT3 , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/citologia , Interleucina-11/metabolismo , Indóis/farmacologia , Animais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Piridonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Humanos , Masculino , Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Remodelação Vascular/efeitos dos fármacos
11.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614383

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Transcrição STAT3/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Becaplermina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
12.
Biomed Pharmacother ; 174: 116505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574614

RESUMO

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Assuntos
Canagliflozina , Proliferação de Células , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Ratos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Canagliflozina/farmacologia , Proliferação de Células/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Monocrotalina/efeitos adversos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/induzido quimicamente , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Remodelação Vascular/efeitos dos fármacos
13.
Int Immunopharmacol ; 132: 111946, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552292

RESUMO

Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 µM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.


Assuntos
Células Endoteliais , Monocrotalina , Poliaminas , Hipertensão Arterial Pulmonar , Artéria Pulmonar , Purinas , Ratos Sprague-Dawley , Espermidina , Remodelação Vascular , Animais , Espermidina/farmacologia , Espermidina/uso terapêutico , Purinas/farmacologia , Poliaminas/metabolismo , Masculino , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Remodelação Vascular/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Purina-Núcleosídeo Fosforilase/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Adenosilmetionina Descarboxilase/metabolismo , Modelos Animais de Doenças , Humanos
14.
Phytomedicine ; 128: 155535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537442

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE: To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS: Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS: The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION: Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.


Assuntos
Flavonoides , Hipertensão Arterial Pulmonar , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Hipertensão Pulmonar/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Medicina Tradicional Chinesa/métodos
15.
Hypertens Res ; 47(5): 1338-1349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383894

RESUMO

Mitochondrial dysfunction has been implicated in various types of cardiovascular disease including hypertension. Mitochondrial fission fusion balance is critical to mitochondrial quality control, whereas enhanced fission has been reported in several models of cardiovascular disease. However, limited information is available regarding the contribution of mitochondrial fission in hypertension. Here, we have tested the hypothesis that inhibition of mitochondrial fission attenuates the development of hypertension and associated vascular remodeling. In C57BL6 mice infused with angiotensin II for 2 weeks, co-treatment of mitochondrial fission inhibitor, mdivi1, significantly inhibited angiotensin II-induced development of hypertension assessed by radiotelemetry. Histological assessment of hearts and aortas showed that mdivi1 inhibited vessel fibrosis and hypertrophy induced by angiotensin II. This was associated with attenuation of angiotensin II-induced decline in mitochondrial aspect ratio seen in both the endothelial and medial layers of aortas. Mdivi1 also mitigated angiotensin II-induced cardiac hypertrophy assessed by heart weight-to-body weight ratio as well as by echocardiography. In ex vivo experiments, mdivi1 inhibited vasoconstriction and abolished the enhanced vascular reactivity by angiotensin II in small mesenteric arteries. Proteomic analysis on endothelial cell culture media with angiotensin II and/or mdivi1 treatment revealed that mdivi1 inhibited endothelial cell hypersecretory phenotype induced by angiotensin II. In addition, mdivi1 attenuated angiotensin II-induced protein induction of periostin, a myofibroblast marker in cultured vascular fibroblasts. In conclusion, these data suggest that mdivi1 prevented angiotensin II-induced hypertension and cardiovascular remodeling via multicellular mechanisms in the vasculature.


Assuntos
Angiotensina II , Hipertensão , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Animais , Angiotensina II/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos , Masculino , Quinazolinonas/farmacologia , Remodelação Vascular/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos
16.
J Pediatr Surg ; 59(8): 1515-1525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38350773

RESUMO

BACKGROUND: Pulmonary hypertension remains difficult to manage in congenital diaphragmatic hernia (CDH). Prenatal therapy may ameliorate postnatal pulmonary hypertension. We hypothesized that intra-amniotic (IA) injection of either sildenafil, a phosphodiesterase 5 inhibitor, or rosiglitazone, a PPAR-γ agonist, or both late in gestation would decrease the detrimental pulmonary vascular remodeling seen in CDH and improve peripheral pulmonary blood flow. METHODS: Pregnant rats were gavaged with nitrogen on embryonic day (E) 9.5 to induce fetal CDH. Sildenafil and/or rosiglitazone were administered to each fetus via an intra-amniotic injection after laparotomy on the pregnant dam at E19.5, and fetuses delivered at E21.5. Efficacy measures were gross necropsy, histology, peripheral blood flow assessment using intra-cardiac injection of a vascular tracer after delivery, and protein expression analysis. RESULTS: Intra-amniotic injections did not affect fetal survival, the incidence of CDH, or lung weight-to-body weight ratio in CDH fetuses. IA sildenafil injection decreased pulmonary vascular muscularization, and rosiglitazone produced an increase in peripheral pulmonary blood flow distribution. The combination of sildenafil and rosiglitazone decreased pulmonary artery smooth muscle cell proliferation. These intra-amniotic treatments did not show any negative effects in either CDH fetuses or control fetuses. CONCLUSION: IA injection of sildenafil and rosiglitazone late in gestation ameliorates the pulmonary hypertensive phenotype of CDH and may have utility in clinical translation. LEVEL OF EVIDENCE: Not applicable.


Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Ratos Sprague-Dawley , Rosiglitazona , Citrato de Sildenafila , Citrato de Sildenafila/administração & dosagem , Citrato de Sildenafila/uso terapêutico , Citrato de Sildenafila/farmacologia , Animais , Rosiglitazona/administração & dosagem , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Hérnias Diafragmáticas Congênitas/complicações , Feminino , Gravidez , Ratos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Modelos Animais de Doenças , Fenótipo , Inibidores da Fosfodiesterase 5/administração & dosagem , Inibidores da Fosfodiesterase 5/uso terapêutico , Inibidores da Fosfodiesterase 5/farmacologia , Remodelação Vascular/efeitos dos fármacos , Terapias Fetais/métodos , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/uso terapêutico , Circulação Pulmonar/efeitos dos fármacos
17.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L539-L550, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410870

RESUMO

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.


Assuntos
Modelos Animais de Doenças , Dióxido de Enxofre , Animais , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Camundongos Transgênicos , Remodelação Vascular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos
18.
Am J Respir Cell Mol Biol ; 70(6): 468-481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381098

RESUMO

Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH). Hemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline rats, and Su5416/hypoxia mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that Notch1/2/3, ß-catenin, Cadherin-1, DNER (delta/notch-like epidermal growth factor-related receptor), TMP10, and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A, and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process in hypoxic and monocrotaline-induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the noncanonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and can be developed as a potential anti-PAH drug.


Assuntos
Hipertensão Pulmonar , Presenilina-1 , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Ratos , Camundongos , Camundongos Knockout , Ratos Sprague-Dawley , Masculino , Pirróis/farmacologia , Humanos , Hipóxia/metabolismo , Monocrotalina , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Indóis
19.
Am J Respir Crit Care Med ; 209(11): 1376-1391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261723

RESUMO

Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Transdução de Sinais , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Modelos Animais de Doenças , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Proliferação de Células/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Lisina/análogos & derivados
20.
Front Endocrinol (Lausanne) ; 13: 1027164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465608

RESUMO

Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia. Androgens are key regulators of decidualization that promote optimal differentiation of stromal fibroblasts and activation of downstream signaling pathways required for endometrial remodeling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualization of human stromal fibroblasts in vitro, but whether this is required for decidualization in vivo has not been tested. In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualization to investigate the role of SRD5A1 and intracrine androgen signaling in endometrial decidualization. We measured decidualization response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualization response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signaling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualization restored decidualization responses, vessel permeability, and expression of angiogenesis genes to wild type levels. Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signaling is required for optimal decidualization in vivo and confirm a major role for androgens in the development of the vasculature during decidualization through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signaling in the endometrium.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Decídua , Remodelação Vascular , Animais , Feminino , Camundongos , Gravidez , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Androgênios/farmacologia , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Decídua/efeitos dos fármacos , Decídua/metabolismo , Di-Hidrotestosterona/farmacologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética , Remodelação Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...