Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Allergol Immunopathol (Madr) ; 52(4): 91-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970271

RESUMO

Asthma is a widely prevalent chronic disease that brings great suffering to patients and may result in death if it turns severe. Jolkinolide B (JB) is one diterpenoid component separated from the dried roots of Euphorbia fischeriana Steud (Euphorbiaceae), and has anti--inflammatory, antioxidative, and antitumor properties. However, the detailed regulatory role and associated regulatory mechanism in the progression of asthma remain elusive. In this work, it was demonstrated that the extensive infiltration of bronchial inflammatory cells and the thickening of airway wall were observed in ovalbumin (OVA)-induced mice, but these impacts were reversed by JB (10 mg/kg) treatment, indicating that JB relieved the provocative symptoms in OVA-induced asthma mice. In addition, JB can control OVA-triggered lung function and pulmonary resistance. Moreover, JB attenuated OVA-evoked inflammation by lowering the levels of interleukin (IL)-4, IL-5, and IL-13. Besides, the activated nuclear factor kappa B (NF-κB) and transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGFß/smad3) pathways in OVA-induced mice are rescued by JB treatment. In conclusion, it was disclosed that JB reduced allergic airway inflammation and airway remodeling in asthmatic mice by modulating the NF-κB and TGFß/smad3 pathways. This work could offer new opinions on JB for lessening progression of asthma.


Assuntos
Remodelação das Vias Aéreas , Asma , Modelos Animais de Doenças , Diterpenos , Camundongos Endogâmicos BALB C , NF-kappa B , Ovalbumina , Animais , Asma/tratamento farmacológico , Asma/imunologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Camundongos , Diterpenos/farmacologia , Diterpenos/administração & dosagem , Diterpenos/uso terapêutico , Ovalbumina/imunologia , NF-kappa B/metabolismo , Feminino , Fator de Crescimento Transformador beta/metabolismo , Citocinas/metabolismo , Proteína Smad3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Euphorbia/química
2.
Int J Chron Obstruct Pulmon Dis ; 19: 1273-1289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881716

RESUMO

Purpose: In recent years, the incidence of chronic obstructive pulmonary disease (COPD) has been increasing year by year, but therapeutic drugs has no breakthrough. The total alkaloid extract from Bulbus Fritillariae pallidiflorae (BFP-TA) is widely used in treating lung diseases. Therefore, this study aimed to investigate the protective effect and mechanism of BFP-TA in COPD mice. Methods: BFP-TA was prepared by macroporous adsorbent resin, and the material basis of BFP-TA was analyzed by HPLC-ELSD and UHPLC-MS/MS. Then, the COPD mouse model was induced by cigarette smoke (CS) for 12 weeks, administered at weeks 9-12. Subsequently, the body weight, lung-body ratio, pulmonary function, histopathology, and the levels of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and oxidative stress markers in the serum of mice were determined. The expressions of related protein of EMT and MAPK signaling pathways in the lung tissues of mice were detected by Western blot. Results: The alkaloid relative content of BFP-TA is 64.28%, and nine alkaloids in BFP-TA were identified and quantified by UHPLC-MS/MS. Subsequently, the animal experiment showed that BFP-TA could improve pulmonary function, and alleviate inflammatory cell infiltration, pulmonary emphysema, and collagen fiber deposition in the lung of COPD mice. Furthermore, BFP-TA could decrease the levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß), MMPs (MMP-9 and MMP-12) and MDA, while increase the levels of TIMP-1 and SOD. Moreover, BFP-TA could decrease the protein expressions of collagen I, vimentin, α-SMA, MMP-9, MMP-9/TIMP-1, Bax, p-JNK/JNK, p-P38/P38, and p-ERK/ERK, while increase the level of E-cadherin. Conclusion: This study is the first to demonstrate the protective effect of BFP-TA in CS-induced COPD mouse model. Furthermore, BFP-TA may improve airway remodeling by inhibiting the EMT process and potentially exert anti-inflammatory effect by inhibiting the MAPK signaling pathway.


Assuntos
Alcaloides , Anti-Inflamatórios , Citocinas , Modelos Animais de Doenças , Fritillaria , Pulmão , Estresse Oxidativo , Extratos Vegetais , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Alcaloides/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Masculino , Fritillaria/química , Extratos Vegetais/farmacologia , Citocinas/metabolismo , Fumaça/efeitos adversos , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 639-645, 2024 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-38926382

RESUMO

OBJECTIVES: To explore the effects of iris xanthin on airway inflammation, airway remodeling, and the high mobility group box 1 protein (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in asthmatic young mice. METHODS: Sixty male BALB/c young mice were randomly assigned into six groups: a blank group, a model group, a dexamethasone group, and low, medium, and high dose groups of iris xanthin, with ten mice per group. Asthma models were induced through intraperitoneal injections of a sensitizing agent [ovalbumin (OVA) 20 µg + aluminum hydroxide gel 2 mg], followed by 4% OVA aerosol inhalation. Lung function was measured using a pulmonary function tester to determine lung volume (LV), resting ventilation per minute (VE), and airway reactivity (Penh value). Hematoxylin-eosin (HE) staining was employed to examine and analyze airway remodeling. The contents of interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α) in bronchoalveolar lavage fluid were quantified using ELISA. Real-time fluorescence quantitative polymerase chain reaction and Western blot analysis were used to assess the expression of HMGB1/TLR4/NF-κB pathway-related mRNA and proteins in lung tissues. RESULTS: Compared to the model group, the dexamethasone and iris xanthin-treated groups (low, medium, and high doses) exhibited significant increases in LV and VE (P<0.05), with incremental dose-dependent increases observed in the iris xanthin groups. Additionally, Penh values, IL-1ß, IL-6, TNF-α, and airway remodeling indicators, along with mRNA levels of HMGB1, TLR4, and NF-κB p65 and protein levels of HMGB1, TLR4, and p-NF-κB p65, were all reduced (P<0.05) in a dose-dependent manner. When compared to the dexamethasone group, the low and medium dose iris xanthin groups showed decreases in LV and VE (P<0.05), whereas Penh values, IL-1ß, IL-6, TNF-α, and airway remodeling indicators, along with mRNA levels of HMGB1, TLR4, NF-κB p65 and protein levels of HMGB1, TLR4, and p-NF-κB p65, were increased (P<0.05). No significant differences were noted in these indices between the high dose iris xanthin group and the dexamethasone group (P>0.05). CONCLUSIONS: Iris xanthin can effectively alleviates airway inflammation and inhibits airway remodeling in asthmatic young mice, possibly through the suppression of the HMGB1/TLR4/NF-κB pathway.


Assuntos
Remodelação das Vias Aéreas , Asma , Proteína HMGB1 , Camundongos Endogâmicos BALB C , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/tratamento farmacológico , Asma/metabolismo , Masculino , Camundongos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
PLoS One ; 19(6): e0305863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913666

RESUMO

The efficacy of rosuvastatin in reducing allergic inflammation has been established. However, its potential to reduce airway remodeling has yet to be explored. This study aimed to evaluate the efficacy of rosuvastatin in reducing airway inflammation and remodeling in a mouse model of chronic allergic asthma induced by sensitization and challenge with OVA. Histology of the lung tissue and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) showed a marked decrease in airway inflammation and remodeling in mice treated with rosuvastatin, as evidenced by a decrease in goblet cell hyperplasia, collagen deposition, and smooth muscle hypertrophy. Furthermore, levels of inflammatory cytokines, angiogenesis-related factors, and OVA-specific IgE in BALF, plasma, and serum were all reduced upon treatment with rosuvastatin. Western blotting was employed to detect AMPK expression, while immunohistochemistry staining was used to observe the expression of remodeling signaling proteins such as α-SMA, TGF-ß, MMP-9, and p-AMPKα in the lungs. It was found that the activity of 5'-adenosine monophosphate-activated protein kinase alpha (AMPKα) was significantly lower in the lungs of OVA-induced asthmatic mice compared to Control mice. However, the administration of rosuvastatin increased the ratio of phosphorylated AMPK to total AMPKα, thus inhibiting the formation of new blood vessels, as indicated by CD31-positive staining mainly in the sub-epithelial region. These results indicate that rosuvastatin can effectively reduce airway inflammation and remodeling in mice with chronic allergic asthma caused by OVA, likely due to the reactivation of AMPKα and a decrease in angiogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Remodelação das Vias Aéreas , Asma , Modelos Animais de Doenças , Rosuvastatina Cálcica , Transdução de Sinais , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Camundongos , Ovalbumina , Feminino , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar , Doença Crônica , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Imunoglobulina E/sangue
5.
Zhonghua Yi Xue Za Zhi ; 104(20): 1860-1867, 2024 May 28.
Artigo em Chinês | MEDLINE | ID: mdl-38782755

RESUMO

Objective: To investigate the effects of the epidermal growth factor receptor(EGFR) inhibitor Gefitinib on airway inflammation and airway remodelling in asthmatic C57BL/6 mice, and to analyze its possible mechanisms. Methods: Male C57BL/6 mice, aged 6-8 weeks, were randomly assigned into five groups: Group A (control group), Group B (asthma group), Group C (asthma+20 mg/kg gefitinib group), Group D (asthma+40 mg/kg gefitinib group), and Group E (40 mg/kg gefitinib group), with seven mice per group. Mice were sensitized by intraperitoneal injection of a mixture of 0.2 ml solution containing OVA and Al(OH)3 [20 µg OVA+2 mg Al(OH)3 dissolved in 0.2 ml of physiological saline] at Day 0 and 14. Starting from Day 25 to 31, Group B, C, and D were challenged with nebulization of 1% OVA solution (8 ml) to induce asthma, once a day for approximately 40 minutes, with continuous aerosolization for 7 days. Group C and D were given 0.2 ml of Gefitinib dissolved in 0.5% carboxymethylcellulose sodium (CMCNa) by gavage half an hour before challenging, and Group E was simultaneously given with 0.2 ml of Gefitinib dissolved in 0.5% CMCNa only. Group A and B were given an equivalent volume of 0.5% CMCNa by gavage. After 24 h of final challenge, the bronchoalveolar lavage fluid (BALF) was prepared for the determination of total cell count and eosinophil count. The levels of total immune globulin E (IgE) in serum and interleukin (IL)-4, IL-5 and IL-13 in BALF and lung tissue homogenates were measured by ELISA. The mRNA expression levels of IL-4, IL-5, IL-13 in lung were measured. Immunohistochemistry and Western blot experiments were used to detect the expression levels of EGFR in lung tissues. Results: In Group B, the level of total IgE in serum, total cell count, eosinophil count, the levels of IL-4, IL-5, IL-13 in BALF and the phosphorylation of EGFR and its downstream activation in lung were higher than those in Group A (all P<0.05). The levels of total IgE in serum [(261.32±44.38) ng/ml, (194.09±52.39) ng/ml vs (1 023.70±105.51) ng/ml], total cell count [(23.70±4.08)×105/ml, (14.92±4.06)×105/ml vs (35.36±6.30)×105/ml], eosinophil count [(108.00±13.69)×104/ml, (67.00±17.28)×104/ml vs (147.86±20.06)×104/ml], IL-4 [(36.42±4.48) pg/ml, (30.45±8.12) pg/ml vs (58.72±7.17) pg/ml], IL-5 [(16.20±4.62) pg/ml, (13.38±5.14) pg/ml vs (23.46±5.38) pg/ml], IL-13 [(18.45±7.28) pg/ml, (14.33±7.70) pg/ml vs (104.12±24.66) pg/ml] in BALF of Group C and D were lower than those in Group B (all P<0.05). The levels of IL-4, IL-5, and IL-13 as well as their mRNA levels in the lung tissue of Group C and D were lower than those in Group B (all P<0.05). In Group C and D, the positive expression rate of phosphorylated epidermal growth factor receptor (p-EGFR) in lung tissue [(40.53±6.80)%, (23.60±4.42)% vs (70.78±5.36)%], p-EGFR/EGFR (61.68±7.48, 51.13±5.19 vs 105.90±11.66), phosphorylated extracellular regulated protein kinase (p-Erk)/extracellular regulated protein kinase (Erk) (75.28±7.11, 47.54±4.83 vs 98.76±4.71), and phosphorylated protein kinase B (p-Akt)/protein kinase B (Akt) (96.24±5.40, 68.52±2.73 vs 103.30±4.52) was lower than those of Group B (all P<0.05). There was no statistically significant difference in the relevant indicators between Group A and E (all P>0.05). Conclusion: Gefitinib may alleviate airway inflammation and airway remodeling in asthmatic mice by inhibiting EGFR phosphorylation and affecting the activation of downstream Erk and Akt.


Assuntos
Remodelação das Vias Aéreas , Asma , Gefitinibe , Camundongos Endogâmicos C57BL , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Camundongos , Gefitinibe/farmacologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Masculino , Líquido da Lavagem Broncoalveolar , Inflamação , Interleucina-4/metabolismo , Quinazolinas/farmacologia , Receptores ErbB/metabolismo , Ovalbumina , Pulmão/metabolismo , Pulmão/patologia , Interleucina-5/metabolismo , Interleucina-13/metabolismo , Eosinófilos , Modelos Animais de Doenças
6.
Front Immunol ; 15: 1384697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807596

RESUMO

Background: Asthma is a common obstructive airway disease with an inflammatory etiology. The main unmet need in the management of asthma is inadequate adherence to pharmacotherapy, leading to a poorly-controlled disease state, necessitating the development of novel therapies. Bronchom is a calcio-herbal formulation, which is purported to treat chronic asthma. The objective of the current study was to examine the in-vivo efficacy of Bronchom in mouse model of allergic asthma. Methods: Ultra high performance liquid chromatography was utilized to analyze the phytocompounds in Bronchom. Further, the in-vivo efficacy of Bronchom was evaluated in House dust mite (HDM)-induced allergic asthma in mice. Mice were challenged with aerosolized methacholine to assess airway hyperresponsiveness. Subsequently, inflammatory cell influx was evaluated in bronchoalveolar lavage fluid (BALF) followed by lung histology, wherein airway remodeling features were studied. Simultaneously, the levels of Th2 cytokines and chemokines in the BALF was also evaluated. Additionally, the mRNA expression of pro-inflammatory and Th2 cytokines was also assessed in the lung along with the oxidative stress markers. Results: Phytocompounds present in Bronchom included, gallic acid, protocatechuic acid, methyl gallate, rosmarinic acid, glycyrrhizin, eugenol, 6-gingerol and piperine. Bronchom effectively suppressed HDM-induced airway hyperresponsiveness along with the influx of leukocytes in the BALF. Additionally, Bronchom reduced the infiltration of inflammatory cells in the lung and it also ameliorated goblet cell metaplasia, sub-epithelial fibrosis and increase in α-smooth muscle actin. Bronchom decreased Th2 cytokines (IL-4 and IL-5) and chemokines (Eotaxin and IP-10) in the BALF. Likewise, it could also suppress the mRNA expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-6 and IL-33), and IL-13. Moreover, Bronchom restored the HDM-induced diminution of endogenous anti-oxidants (GSH and SOD) and the increase in pro-oxidants (GSSG and MDA). Furthermore, Bronchom could also decrease the nitrosative stress by lowering the observed increase in nitrite levels. Conclusion: Taken together, the results of the present study data convincingly demonstrate that Bronchom exhibits pharmacological effects in an animal model of allergic asthma. Bronchom mitigated airway hyperresponsiveness, inflammation and airway remodeling evoked by a clinically relevant allergen and accordingly it possesses therapeutic potential for the treatment of asthma.


Assuntos
Asma , Quimiocinas , Citocinas , Modelos Animais de Doenças , Células Caliciformes , Metaplasia , Pyroglyphidae , Células Th2 , Animais , Asma/tratamento farmacológico , Asma/imunologia , Camundongos , Citocinas/metabolismo , Células Caliciformes/patologia , Células Caliciformes/imunologia , Células Caliciformes/efeitos dos fármacos , Pyroglyphidae/imunologia , Células Th2/imunologia , Quimiocinas/metabolismo , Fibrose , Camundongos Endogâmicos BALB C , Remodelação das Vias Aéreas/efeitos dos fármacos , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pulmão/patologia , Pulmão/imunologia , Pulmão/efeitos dos fármacos
7.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579176

RESUMO

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Assuntos
Asma , Interleucina-17 , Ovalbumina , Transdução de Sinais , Proteína Smad2 , Estigmasterol , Fator de Crescimento Transformador beta1 , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/induzido quimicamente , Asma/imunologia , Proteína Smad2/metabolismo , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Interleucina-17/metabolismo , Estigmasterol/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Feminino , Remodelação das Vias Aéreas/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico
8.
Allergol Int ; 73(3): 406-415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38472036

RESUMO

BACKGROUND: Dupilumab has clinical effects in patients with moderate-to-severe asthma. When considering interleukin (IL)-4 and IL-13 signaling, effects of dupilumab on airway mucus hypersecretion and airway remodeling are expected, but they have been reported in only a few short-term studies. Its efficacy for airway hyperresponsiveness (AHR) remains unknown. We comprehensively assessed the efficacy of dupilumab, especially for subjective and objective measures of airway mucus hypersecretion and airway dimensions in moderate-to-severe asthmatic patients. METHODS: In 28 adult patients with moderate-to-severe uncontrolled asthma, the comprehensive efficacy of 48-week dupilumab treatment, including the Cough and Sputum Assessment Questionnaire (CASA-Q), radiological mucus scores and airway dimensions on computed tomography (CT), was assessed prospectively. Treatment responsiveness to dupilumab was analyzed. RESULTS: With 48-week dupilumab treatment, all four cough and sputum domain scores of CASA-Q improved significantly. Radiological mucus scores and airway wall thickening on CT were significantly decreased. The decreases in mucus scores were significantly associated with improvements in Asthma Control Questionnaire scores, Asthma Quality of Life Questionnaire (AQLQ) overall scores, airway obstruction, and airway type 2 inflammation. When defined by > 0.5 improvement in AQLQ overall scores, 18 patients (64%) were identified as responders. CONCLUSIONS: Dupilumab reversed subjective and objective measures of airway mucus hypersecretion and some aspects of airway remodeling in patients with moderate-to-severe uncontrolled asthma.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Índice de Gravidade de Doença , Humanos , Asma/tratamento farmacológico , Asma/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento , Adulto , Idoso , Remodelação das Vias Aéreas/efeitos dos fármacos , Antiasmáticos/uso terapêutico , Antiasmáticos/farmacologia , Qualidade de Vida , Tomografia Computadorizada por Raios X , Testes de Função Respiratória
9.
Inflammation ; 47(3): 853-873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168709

RESUMO

Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-ß1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-ß1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-ß1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.


Assuntos
Remodelação das Vias Aéreas , Apigenina , Asma , Glucuronatos , Ovalbumina , Proteína Smad2 , Proteína Smad3 , Apigenina/farmacologia , Apigenina/uso terapêutico , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Camundongos , Glucuronatos/farmacologia , Glucuronatos/uso terapêutico , Ovalbumina/toxicidade , Humanos , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Proteína Smad3/metabolismo , Proteína Smad2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular , Brônquios/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Camundongos Endogâmicos BALB C , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fenótipo
10.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902148

RESUMO

Chitotriosidase (CHIT1) is an enzyme produced by macrophages that regulates their differentiation and polarization. Lung macrophages have been implicated in asthma development; therefore, we asked whether pharmacological inhibition of macrophage-specific CHIT1 would have beneficial effects in asthma, as it has been shown previously in other lung disorders. CHIT1 expression was evaluated in the lung tissues of deceased individuals with severe, uncontrolled, steroid-naïve asthma. OATD-01, a chitinase inhibitor, was tested in a 7-week-long house dust mite (HDM) murine model of chronic asthma characterized by accumulation of CHIT1-expressing macrophages. CHIT1 is a dominant chitinase activated in fibrotic areas of the lungs of individuals with fatal asthma. OATD-01 given in a therapeutic treatment regimen inhibited both inflammatory and airway remodeling features of asthma in the HDM model. These changes were accompanied by a significant and dose-dependent decrease in chitinolytic activity in BAL fluid and plasma, confirming in vivo target engagement. Both IL-13 expression and TGFß1 levels in BAL fluid were decreased and a significant reduction in subepithelial airway fibrosis and airway wall thickness was observed. These results suggest that pharmacological chitinase inhibition offers protection against the development of fibrotic airway remodeling in severe asthma.


Assuntos
Remodelação das Vias Aéreas , Asma , Quitinases , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/patologia , Asma/terapia , Quitinases/antagonistas & inibidores , Modelos Animais de Doenças , Pulmão/metabolismo , Macrófagos/enzimologia , Pyroglyphidae/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
11.
Sci Rep ; 12(1): 446, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013387

RESUMO

Steroid resistance in asthma has been associated with neutrophilic inflammation and severe manifestations of the disease. Macrolide add-on therapy can improve the quality of life and the exacerbation rate in refractory cases, possibly with greater effectiveness in neutrophilic phenotypes. The mechanisms leading to these beneficial effects are incompletely understood and whether macrolides potentiate the modulation of bronchial remodeling induced by inhaled corticosteroids (ICS) is unknown. The objective of this study was to determine if adding azithromycin to ICS leads to further improvement of lung function, airway inflammation and bronchial remodeling in severe asthma. The combination of azithromycin (10 mg/kg q48h PO) and inhaled fluticasone (2500 µg q12h) was compared to the sole administration of fluticasone for five months in a randomized blind trial where the lung function, airway inflammation and bronchial remodeling (histomorphometry of central and peripheral airways and endobronchial ultrasound) of horses with severe neutrophilic asthma were assessed. Although the proportional reduction of airway neutrophilia was significantly larger in the group receiving azithromycin, the lung function and the peripheral and central airway smooth muscle mass decreased similarly in both groups. Despite a better control of airway neutrophilia, azithromycin did not potentiate the other clinical effects of fluticasone.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Antibacterianos/uso terapêutico , Asma/veterinária , Azitromicina/uso terapêutico , Doenças dos Cavalos/tratamento farmacológico , Administração por Inalação , Animais , Antibacterianos/farmacologia , Asma/tratamento farmacológico , Asma/imunologia , Azitromicina/farmacologia , Broncodilatadores/administração & dosagem , Quimioterapia Combinada , Feminino , Fluticasona/administração & dosagem , Doenças dos Cavalos/imunologia , Cavalos , Masculino , Neutrófilos
12.
Int Arch Allergy Immunol ; 183(4): 424-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856542

RESUMO

INTRODUCTION: Salidroside (Sal) a bioactive component extracted from Rhodiola rosea is remarkable for its anti-asthmatic effects. The study aimed to explore the molecular mechanism of Sal in airway inflammation and remodeling in asthmatic mice and provide a novel theoretical basis for asthma treatment. METHODS: An asthmatic mouse model was established via ovalbumin (OVA) treatment, followed by injection of Sal and transfection of miR-323-3p-mimic and sh- suppressor of cytokine signaling 5 (SOCS5). Expressions of miR-323-3p, SOCS5 mRNA, collagen (COL)-I, and COL-III were detected via reverse transcription quantitative polymerase chain reaction. SOCS5 protein level was detected via Western blot. Levels of IgE, IL-13, IL-4, and IL-5 were detected via enzyme-linked immunosorbent assay. Inflammatory cell infiltration was observed via hematoxylin-eosin staining. Collagen disposition was observed via Masson staining. Resistance index (RI) of airway hyperresponsiveness, and the number of total cells, inflammatory cells (eosinophil, macrophage, neutrophil, and lymphocyte) in bronchoalveolar lavage fluid (BALF) were observed. The binding relationship between miR-323-3p and SOCS5 was predicted through the RNA22 website and verified via dual-luciferase reporter assay. RESULTS: miR-323-3p was highly expressed in OVA-treated mice. Sal treatment reduced inflammatory cell infiltration, COL disposition, miR-323-3p expression, and IgE, IL-13, IL-4, IL-5, COL-I, and COL-III levels, RI value, and the number of total cells and inflammatory cells in BALF. miR-323-3p inhibited SOCS5 transcription. miR-323-3p overexpression or SOCS5 downregulation reversed the protecting role of Sal in asthmatic mice. CONCLUSION: Sal inhibited miR-323-3p expression to promote SOCS5 transcription, thereby attenuating airway inflammation and remodeling in asthmatic mice.


Assuntos
Remodelação das Vias Aéreas , Asma , Glucosídeos , MicroRNAs , Fenóis , Proteínas Supressoras da Sinalização de Citocina , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Ovalbumina , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras da Sinalização de Citocina/metabolismo
13.
Environ Toxicol Pharmacol ; 89: 103782, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34883242

RESUMO

Simultaneous exposure to both BaP and house dust mites (HDM) has been shown to exacerbate pulmonary inflammation and hyperresponsiveness in a murine asthma model. The mechanistic insight into epigenetic inheritance for this effect, however, remains to be clarified. As such, in this study, we explore the molecular basis for the enhancement of asthma. Female BAL/C mice were intranasally administered HDM (25 µg in 25 µL saline) and/or BaP (10 µg/kg) every other day for 9 weeks. RNA sequencing and DNA methylation assessment were used to explore the underlying mechanism. Following simultaneous exposure to HDM and BaP, mice exhibited pulmonary inflammation and the transcript level of IL4i1b, muc4 and IL22ra2 that were associated with altered DNA methylation, suggesting that there may be an epigenetic basis for BaP-induced asthma exacerbation. Our data suggest that DNA methylation is a major epigenetic modification that accompanies airway remodeling associated with changes in the allergic mice.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Remodelação das Vias Aéreas/imunologia , Animais , Asma/induzido quimicamente , Asma/imunologia , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Camundongos Endogâmicos BALB C , Pyroglyphidae/imunologia , Análise de Sequência de RNA
14.
Braz. J. Pharm. Sci. (Online) ; 58: e201089, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420429

RESUMO

Abstract Protease-activated receptors (PARs) are metabotropic G-protein-coupled receptors that are activated via proteolytic cleavage of a specific sequence of amino acids in their N-terminal region. PAR2 has been implicated in mediating allergic airway inflammation. This study aims to study the effect of PAR2 antagonist ENMD1068in lung inflammation and airway remodeling in experimental asthma. Allergic lung inflammation was induced in sensitized BALB/c mice through intranasal instillations of ovalbumin (OVA), and mice were pretreated with ENMD1068 1 hour before each OVA challenge. Bronchoalveolar lavage fluid (BALF) was collected, and the lungs were removed at different time intervals after OVA challenge to analyze inflammation, airway remodeling and airway hyperresponsiveness. Ovalbumin promoted leukocyte infiltration into BALF in a PAR2-dependent manner. ENMD1068 impaired eosinophil peroxidase (EPO) and myeloperoxidase (MPO) activity in the lung parenchyma into BALF and reduced the loss of dynamic pulmonary compliance, lung resistance in response to methacholine, mucus production, collagen deposition and chemokine (C-C motif) ligand 5 expression compared to those in OVA-challenged mice. We propose that proteases released after an allergen challenge may be crucial to the development of allergic asthma in mice, and PAR2 blockade may be useful as a new pharmacological approach for the treatment of airway allergic diseases.


Assuntos
Animais , Feminino , Camundongos , Pneumonia/patologia , Receptor PAR-2/antagonistas & inibidores , Receptores Ativados por Proteinase/antagonistas & inibidores , Remodelação das Vias Aéreas/efeitos dos fármacos
15.
Front Immunol ; 12: 736479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804018

RESUMO

Airway remodeling is associated with dysregulation of epithelial-mesenchymal transition (EMT) in patients with asthma. Sinomenine (Sin) is an effective, biologically active alkaloid that has been reported to suppress airway remodeling in mice with asthma. However, the molecular mechanisms behind this effect remain unclear. We aimed to explore the potential relationship between Sin and EMT in respiratory epithelial cells in vitro and in vivo. First, 16HBE cells were exposed to 100 µg/mL LPS and treated with 200 µg/mL Sin. Cell proliferation, migration, and wound healing assays were performed to evaluate EMT, and EMT-related markers were detected using Western blotting. Mice with OVA-induced asthma were administered 35 mg/kg or 75 mg/kg Sin. Airway inflammation and remodeling detection experiments were performed, and EMT-related factors and proteins in the TGF-ß1 pathway were detected using IHC and Western blotting. We found that Sin suppressed cell migration but not proliferation in LPS-exposed 16HBE cells. Sin also inhibited MMP7, MMP9, and vimentin expression in 16HBE cells and respiratory epithelial cells from mice with asthma. Furthermore, it decreased OVA-specific IgE and IL-4 levels in serum, relieved airway remodeling, attenuated subepithelial collagen deposition, and downregulating TGF-ß1and Smad3 expression in mice with asthma. Our results suggest that Sin suppresses EMT by inhibiting IL-4 and downregulating TGF-ß1 and Smad3 expression.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Morfinanos/farmacologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-4/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Transdução de Sinais
16.
Toxicol Appl Pharmacol ; 432: 115754, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634286

RESUMO

Exposure to dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations. We have previously reported that inhalation of real-world mine tailing dusts during lung development can alter lung function and structure in adult male mice. These real-world dusts contain a mixture of metal(loid)s, including arsenic. To determine whether arsenic in inhaled dust plays a role in altering lung development, we exposed C57Bl/6 mice to a background dust (0 arsenic) or to the background dust containing either 3% or 10% by mass, calcium arsenate. Total level of exposure was kept at 100 µg/m3. Calcium arsenate was selected since arsenate is the predominant species found in mine tailings. We found that inhalation exposure during in utero and postnatal lung development led to significant increases in pulmonary baseline resistance, airway hyper-reactivity, and airway collagen and smooth muscle expression in male C57Bl/6 mice. Responses were dependent on the level of calcium arsenate in the simulated dust. These changes were not associated with increased expression of TGF-ß1, a marker of epithelial to mesenchymal transition. However, responses were correlated with decreases in the expression of club cell protein 16 (CC16). Dose-dependent decreases in CC16 expression and increases in collagen around airways was seen for animals exposed in utero only (GD), animals exposed postnatally only (PN) and animals continuously exposed throughout development (GDPN). These data suggest that arsenic inhalation during lung development can decrease CC16 expression leading to functional and structural alterations in the adult lung.


Assuntos
Arseniatos/toxicidade , Compostos de Cálcio/toxicidade , Pulmão/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Remodelação das Vias Aéreas/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Broncoconstrição/efeitos dos fármacos , Colágeno/metabolismo , Regulação para Baixo , Poeira , Feminino , Idade Gestacional , Exposição por Inalação , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Uteroglobina/metabolismo
17.
Front Immunol ; 12: 740330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603325

RESUMO

Rationale: The accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated. Methods: Using a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes. Main Results: Cigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice. Conclusion: Cigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Lesão Pulmonar/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Animais , Bleomicina , Antígeno CD11b/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1alfa/metabolismo , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética
18.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502019

RESUMO

The lungs play a very important role in the human respiratory system. However, many factors can destroy the structure of the lung, causing several lung diseases and, often, serious damage to people's health. Nerve growth factor (NGF) is a polypeptide which is widely expressed in lung tissues. Under different microenvironments, NGF participates in the occurrence and development of lung diseases by changing protein expression levels and mediating cell function. In this review, we summarize the functions of NGF as well as some potential underlying mechanisms in pulmonary fibrosis (PF), coronavirus disease 2019 (COVID-19), pulmonary hypertension (PH), asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Furthermore, we highlight that anti-NGF may be used in future therapeutic strategies.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Pulmão/patologia , Fator de Crescimento Neural/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Asma/tratamento farmacológico , Asma/patologia , COVID-19/patologia , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular/métodos , Fator de Crescimento Neural/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Tratamento Farmacológico da COVID-19
19.
Biomed Res Int ; 2021: 2522305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34580637

RESUMO

Exposure of the respiratory system to the Anisakis pegreffii L3 crude extract (AE) induces airway inflammation; however, the mechanism underlying this inflammatory response remains unknown. AE contains allergens that promote allergic inflammation; exposure to AE may potentially lead to asthma. In this study, we aimed to establish a murine model to assess the effects of AE on characteristic features of chronic asthma, including airway hypersensitivity (AHR), airway inflammation, and airway remodeling. Mice were sensitized for five consecutive days each week for 4 weeks. AHR, lung inflammation, and airway remodeling were evaluated 24 h after the last exposure. Lung inflammation and airway remodeling were assessed from the bronchoalveolar lavage fluid (BALF). To confirm the immune response in the lungs, changes in gene expression in the lung tissue were assessed with reverse transcription-quantitative PCR. The levels of IgE, IgG1, and IgG2a in blood and cytokine levels in the BALF, splenocyte, and lung lymph node (LLN) culture supernatant were measured with ELISA. An increase in AHR was prominently observed in AE-exposed mice. Epithelial proliferation and infiltration of inflammatory cells were observed in the BALF and lung tissue sections. Collagen deposition was detected in lung tissues. AE exposure increased IL-4, IL-5, and IL-13 expression in the lung, as well as the levels of antibodies specific to AE. IL-4, IL-5, and IL-13 were upregulated only in LLN. These findings indicate that an increase in IL-4+ CD4+ T cells in the LLN and splenocyte resulted in increased Th2 response to AE exposure. Exposure of the respiratory system to AE resulted in an increased allergen-induced Th2 inflammatory response and AHR through accumulation of inflammatory and IL-4+ CD4+ T cells and collagen deposition. It was confirmed that A. pegreffii plays an essential role in causing asthma in mouse models and has the potential to cause similar effects in humans.


Assuntos
Remodelação das Vias Aéreas , Anisakis/fisiologia , Pneumonia/fisiopatologia , Pneumonia/parasitologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Especificidade de Anticorpos/imunologia , Biomarcadores/metabolismo , Hiper-Reatividade Brônquica/sangue , Hiper-Reatividade Brônquica/complicações , Hiper-Reatividade Brônquica/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos BALB C , Pneumonia/sangue , Pneumonia/complicações , Células Th2/metabolismo
20.
Chem Biol Interact ; 349: 109660, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537180

RESUMO

Asthma is a chronic respiratory disease, which is characterized by airway inflammation, remodeling and airway hyperresponsiveness. Airway remodeling is caused by long-term inflammation of the airways. Lipoxin A4 (LXA4) is a natural eicosanoid with powerful anti-inflammatory properties, and has been shown to serve a critical role in orchestrating pulmonary inflammation and airway hyper-responsiveness in asthmatic mice. However, its effect on airway remodeling is unknown. Female BALB/c mice were used to establish a mouse model of asthma which were sensitized and challenged by ovalbumin (OVA). LXA4 was intranasally administrated prior to the challenge. The results of our study indicated that LXA4 suppressed the OVA-induced inflammatory cell infiltration and T helper type 2 (Th2) cytokines secretion in the mouse model of asthma. Characteristics of airway remodeling, such as thickening of the bronchial wall and smooth muscle, overdeposition of collagen, and overexpression of α-smooth muscle actin (α-SMA) and collagen-I were reversed by LXA4. Furthermore, LXA4 suppressed the aberrant activation of the signal transducer and activator of transcription 3 (STAT3) pathway in the lung tissues of asthmatic mice. In conclusion, these findings demonstrated that LXA4 alleviated allergic airway inflammation and remodeling in asthmatic mice, which may be related to the inhibition of STAT3 pathway.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Lipoxinas/fisiologia , Ovalbumina/toxicidade , Traqueia/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Traqueia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...