Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.038
Filtrar
1.
Sci Rep ; 14(1): 16660, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030233

RESUMO

The fibrous wastes generated from the mills of textile production can be recycled and converted into high add-values products to be implemented in several applications. The current study aimed to employ commercial free cellulase enzyme to partially hydrolyze (activate) the polyester cotton blended (PET/C) fibrous wastes by creation functional groups such as OH and COOH on their surfaces. The activated fibrous wastes were then modified by coating with ZnO nanoparticles (ZnO-NPs) biosynthesized by actinobacterial cultures free supernatant. The isolate was identified as Streptomyces pseudogriseolus with accession number of OR574241. The conditions that influence the actino-synthesis of ZnO-NPs were optimized and the product was characterized using spectroscopic vision, FTIR, XRD, TEM and SEM. The characteristic ZnO peaks were obviously observed by EDX analysis with 0.38 and 0.75% (wt%), respectively. TEM analyses proved the nanoscale of ZnO-NPs (5-15 nm) which was followed by cytotoxic evaluation for the produced NPs. Fortunately, the tested actino-ZnO-NPs didn't have any cytotoxicity against human normal fibroblast cell line (BJ1), which means that the product can be safely used in a direct-contact with human skin. The treated PET/C blended waste fabrics coated with ZnO-NPs showed high antimicrobial activity and ultraviolet protection values after functionalization by cellulase. EDX analysis demonstrates the presence of Zn peaks on the coated fabrics compared with their absence in blank and control samples, while SEM images showed the formation of a thin layer of ZnO-NPs on the fabric surface. The obtained smart textile can be applied several needed sectors.


Assuntos
Têxteis , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Nanopartículas Metálicas/química , Streptomyces/metabolismo , Linhagem Celular , Resíduos Industriais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
2.
Environ Monit Assess ; 196(8): 703, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967833

RESUMO

Industrial effluents pose a serious environmental problem, because they contain toxic contaminants mainly heavy metals that are the most dangerous to humans, animals, plants, and the environment in general. Phytoremediation using macrophytes is an adopted technique for the environment decontamination due to its efficiency and cost-effectiveness. The present study aims to highlight the capabilities of macrophytes to remove heavy metals from wastewater of Biskra region (Algeria). The methodology consists of filling out the filters planted with Arundo donax and Phragmites australis with raw industrial wastewater, then recovering decontaminated water after 15 days to assess removal of lead, copper, zinc, and iron. Both plants had shown a good efficiency for the removal of metals loaded in wastewater eliminating about 94 to 98% of initial concentration. In addition, calculated bioaccumulation factor (BAF) had confirmed the accumulation of heavy metals in different parts of experimental plants; recorded values of BAF > 1 allowed the consideration of Arundo donax and Phragmites australis as good hyper-accumulator plants. Obtained results confirm the efficiency of phytoremediation technology using macrophytes for the wastewater treatment in particular and the environment decontamination in general.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poaceae , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Metais Pesados/análise , Metais Pesados/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Argélia , Resíduos Industriais
3.
Environ Sci Pollut Res Int ; 31(32): 45011-45034, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961019

RESUMO

Green liquor dregs (GLD) is an alkaline by-product from the pulp and paper industry with a pH between 10 and 14. Today most of the produced GLD in Sweden is landfilled. As a fine-grained alkaline material, it might be possible to use it for acid-generating mining waste remediation. To increase the utilization, quality characteristics and environmental performance need to be determined. In this study samples were collected 5 times from 16 mills during a period of 2.5 years, and were characterized by analyzing dry matter content, loss on ignition (LOI) 550 °C and LOI 950 °C, elemental analysis, pH, electrical conductivity, and calorific value. The results were then evaluated using multivariate statistics (PCA) as well as being compared to other studies and Swedish till. The results show that even if GLD is heterogenous (both within a mill and between different mills) trends can be seen for samples from most mills. When samples do stand out, it is predominately related to the same four mills. Most of the studied parameters showed characteristics favorable for use as a remediant; however, TOC, sulfur, and some of the elements require further study. In general, this study concludes that GLD can be a viable option for the remediation of small orphaned sulfidic mining sites and thus worthy of further studies on the interaction between GLD and acidic mining waste.Overall, GLD can be a good alternative for cost-effective remediation of smaller orphaned mining sites. It is readily available in large quantities, has the qualities needed for remediation of many orphaned acidic mining sites, and can often be locally sourced near the mining site. The use of GLD for mining site remediation is likely also a more sustainable method compared to traditional remediation methods.


Assuntos
Papel , Suécia , Mineração , Resíduos Industriais
4.
Carbohydr Polym ; 342: 122399, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048235

RESUMO

This work demonstrates that sesame (Sesamum indicum L.) hull, an unexploited food industrial waste, can be used as an efficient source for the extraction of hemicellulose and/or pectin polysaccharides to further obtain functional oligosaccharides. Different polysaccharides extraction methods were surveyed including alkaline and several enzymatic treatments. Based on the enzymatic release of xylose, arabinose, glucose, and galacturonic acid from sesame hull by using different enzymes, Celluclast®1.5 L, Pectinex®Ultra SP-L, and a combination of them were selected for the enzymatic extraction of polysaccharides at 50 °C, pH 5 up to 24 h. Once the polysaccharides were extracted, Ultraflo®L was selected to produce arabinoxylo-oligosaccharides (AXOS) at 40 °C up to 24 h. Apart from oligosaccharides production from extracted polysaccharides, alternative approaches for obtaining oligosaccharides were also explored. These were based on the analysis of the supernatants resulting from the polysaccharide extraction, alongside a sequential hydrolysis performed with Celluclast®1.5 L and Ultraflo®L of the starting raw sesame hull. The different fractions obtained were comprehensively characterized by determining low molecular weight carbohydrates and monomeric compositions, average Mw and dispersity, and oligosaccharide structure by MALDI-TOF-MS. The results indicated that sesame hull can be a useful source for polysaccharides extraction (pectin and hemicellulose) and derived oligosaccharides, especially AXOS.


Assuntos
Oligossacarídeos , Sesamum , Sesamum/química , Oligossacarídeos/química , Hidrólise , Polissacarídeos/química , Xilanos/química , Xilanos/isolamento & purificação , Pectinas/química , Pectinas/isolamento & purificação , Resíduos Industriais , Arabinose/química , Xilose/química
5.
PeerJ ; 12: e17151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026538

RESUMO

Background: The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. Methods: A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge. Results: Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p < 0.05). The highest COD and turbidity removal were 97.43% and 95.11%, respectively, with less than 5% error from the predicted values. Remarkably, the selected optimized conditions also reduced other polluting attributes, namely, biological oxygen demand (BOD), oil and grease (OG), color, and carbon content. In short, this study demonstrated the effectiveness of A. niger in treating SS through the application of a two-level factorial design.


Assuntos
Aspergillus niger , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Fermentação , Esgotos , Aspergillus niger/metabolismo , Esgotos/microbiologia , Esgotos/química , Águas Residuárias/química , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Óleo de Palmeira/química , Resíduos Industriais
6.
PLoS One ; 19(7): e0306330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968255

RESUMO

The efficiency of aerobic biodegradation of distillery wastewater using various microbial cultures is intricately linked to process conditions. The study aimed to examine the aerobic biodegradation by a Bacillus bacteria under controlled dissolved oxygen tension (DOT) conditions as a novel approach in the treatment of sugar beet distillery stillage. The processes were conducted in a 2-L Biostat®B stirred-tank reactor (STR), at a temperature of 36°C, with aeration of 1.0 L/(L·min), and uncontrolled pH of the medium (an initial pH of 8.0). Each experiment was performed at a different DOT setpoint: 75%, 65% and 55% saturation, controlled through stirrer rotational speed adjustments. The study showed that the DOT setpoint did not influence the process efficiency, determined by the pollutant load removal expressed as COD, BOD5 and TOC. In all three experiments, the obtained reduction values of these parameters were comparable, falling within the narrow ranges of 78.6-78.7%, 97.3-98.0% and 75.0-76.4%, respectively. However, the DOT setpoint did influence the rate of process biodegradation. The removal rate of the pollutant load expressed as COD, was the lowest when DOT was set at 55% (0.48 g O2/(L•h)), and the highest when DOT was set at 65% (0.55 g O2/(L•h)). For biogenic elements (nitrogen and phosphorus), a beneficial effect was observed at a low setpoint of controlled DOT during biodegradation. The maximum extent of removal of both total nitrogen (54%) and total phosphorus (67.8%) was achieved at the lowest DOT setpoint (55%). The findings suggest that conducting the batch aerobic process biodegradation of sugar beet stillage at a relatively low DOT setpoint in the medium might achieve high efficiency pollutant load removal and potentially lead to a reduction in the process cost.


Assuntos
Beta vulgaris , Biodegradação Ambiental , Oxigênio , Beta vulgaris/metabolismo , Oxigênio/metabolismo , Aerobiose , Reatores Biológicos/microbiologia , Análise da Demanda Biológica de Oxigênio , Bacillus/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Resíduos Industriais
7.
Environ Geochem Health ; 46(8): 287, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970741

RESUMO

The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.


Assuntos
Antimônio , Monitoramento Ambiental , Poluentes do Solo , Solo , Antimônio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Solo/química , Espectrofotometria Atômica/métodos , Resíduo Eletrônico/análise , Resíduos Industriais/análise
8.
Environ Geochem Health ; 46(9): 329, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012551

RESUMO

Tailings dust can negatively affect the surrounding environment and communities because the tailings are vulnerable to wind erosion. In this study, the effects of halides (sodium chloride [NaCl], calcium chloride [CaCl2], and magnesium chloride hexahydrate [MgCl2·6H2O]), and polymer materials (polyacrylamide [PAM], polyvinyl alcohol [PVA], and calcium lignosulfonate [LS]) were investigated for the stabilization of tailings for dust control. Erect milkvetch (Astragalus adsurgens), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon) were planted in the tailings and sprayed with chemical dust suppressants. The growth status of the plants and their effects on the mechanical properties of tailings were also studied. The results show that the weight loss of tailings was stabilized by halides and polymers, and decreased with increasing concentration and spraying amount of the solutions. The penetration resistance of tailings stabilized by halides and polymers increased with increasing concentration and spraying amount of the solutions. Among the halides and polymers tested, the use of CaCl2 and PAM resulted in the best control of tailings dust, respectively. CaCl2 solution reduces the adaptability of plants and therefore makes it difficult for grass seeds to germinate normally. PAM solutions are beneficial for the development of herbaceous plants. Among the three herbaceous species, ryegrass exhibited the best degree of development and was more suitable for growth in the tailings. The ryegrass plants planted in the tailings sprayed with PAM grew the best, and the root-soil complex that formed increased the shear strength of the tailings.


Assuntos
Poeira , Lolium , Lolium/efeitos dos fármacos , Cynodon , Astrágalo , Cloreto de Cálcio , Cloreto de Magnésio/farmacologia , Cloreto de Sódio/química , Resinas Acrílicas/química , Resíduos Industriais , Polímeros , Poaceae , Lignina/análogos & derivados
9.
Water Sci Technol ; 90(1): 18-31, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007304

RESUMO

The demand for new products derived from agro-industrial residues has increased recently. Furthermore, vinasse, a wastewater from ethanol production, needs treatment to be reused in the sugarcane industry, reducing industrial water consumption. This study performed vinasse filtration with charcoal from industrial sugarcane residues and used filtered molasses dilution in ethanolic fermentation. There were five treatments in randomized blocks with three repetitions. The treatments included deionized water and natural vinasse as positive and negative controls, respectively, and filtered vinasse from charcoal made from bamboo, sugarcane bagasse, and straw. Hence, fermentation for ethanol production was performed. Compared with natural vinasse, filtered vinasse with all types of charcoal showed lower soluble solids, total residual reducing sugars, higher ethanol concentrations, and greater fermentative efficiency. Filtered vinasse from bagasse and straw charcoals had efficiencies of 81.14% and 77.98%, respectively, in terms of ethanol production, which are close to those of deionized water (81.49%). In a hypothetical industry, vinasse charcoal filtration and charcoal regeneration should prevent 84.12% of water consumption from environmental resources. This process is feasible because it uses a product of sugarcane residue to treat wastewater and reduce industrial water consumption and vinasse disposal.


Assuntos
Carvão Vegetal , Etanol , Fermentação , Melaço , Saccharum , Carvão Vegetal/química , Etanol/química , Saccharum/química , Resíduos Industriais , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos
10.
Water Sci Technol ; 90(1): 314-343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007322

RESUMO

Desalination of seawater, brackish water, and reclaimed water is becoming increasingly prevalent worldwide to supplement and diversify fresh water supplies. However, particularly for industrial wastewater, the need for environment-friendly and economically viable alternatives for concentrate management is the major impediment to deploying large-scale desalination. This review covers various strategies and technologies for managing reverse osmosis concentrate (ROC) and also includes their disposal, treatment, and potential applications. Developing energy-efficient, economical, and ecologically sound ROC management systems is essential if desalination and wastewater treatment are being implemented for a sustainable water future, particularly for industrial wastewater. The limitations and benefits of various concentrate management strategies are examined in this review. Moreover, it explores the potential of innovative technologies in reducing concentrate volume, enhancing water recovery, eliminating organic pollutants, and extracting valuable resources. This review critically discusses concentrate management approaches and technologies, including disposal, treatment, and reuse, including new technologies for reducing concentrate volume, boosting water recovery, eliminating organic contaminants, recovering valuable commodities, and minimizing energy consumption.


Assuntos
Osmose , Purificação da Água , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais
11.
Environ Sci Pollut Res Int ; 31(29): 41791-41823, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861062

RESUMO

Increasing world population, urbanization, and industrialization have led to an increase in demand in production and consumption, resulting in an increase in industrial solid wastes and pollutant levels in water. These two main consequences have become global problems. The high Si and Al content of solid wastes suggests that they can be used as raw materials for the synthesis of zeolites. In this context, when the literature studies conducted to obtain synthetic zeolites are evaluated, it is seen that hydrothermal synthesis method is generally used. In order to improve the performance of the hydrothermal synthesis method in terms of energy cost, synthesis time, and even product quality, additional methods such as alkaline fusion, ultrasonic effect, and microwave support have been developed. The zeolites synthesized by different techniques exhibit superior properties such as high surface area and well-defined pore sizes, thermal stability, high cation exchange capacity, high regeneration ability, and catalytic activity. Due to these specific properties, zeolites are recognized as one of the most effective methods for the removal of pollutants. The toxic properties of heavy metals and dyes in water and their carcinogenic effects in long-term exposure pose a serious risk to living organisms. Therefore, they should be treated at specified levels before discharge to the environment. In this review study, processes including different methods developed for the production of zeolites from industrial solid wastes were evaluated. Studies using synthetic zeolites for the removal of high levels of health and environmental risks such as heavy metals and dyes are reviewed. In addition, EPMA, SEM, EDX, FTIR, BET, AFM, and 29Si and 27Al NMR techniques, which are characterization methods of synthetic zeolites, are presented and the cation exchange capacity, thermodynamics of adsorption, effect of temperature, and pH are investigated. It is expected that energy consumption can be reduced by large-scale applications of alternative techniques developed for zeolite synthesis and their introduction into the industry. It is envisaged that zeolites synthesized by utilizing wastes will be effective in obtaining a green technology. The use of synthesized zeolites in a wide variety of applications, especially in environmental problems, holds great promise.


Assuntos
Corantes , Resíduos Industriais , Metais Pesados , Zeolitas , Zeolitas/química , Corantes/química , Poluentes Químicos da Água
12.
Sci Total Environ ; 946: 174225, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914337

RESUMO

Tea waste (TW) includes pruned tea tree branches, discarded summer and fall teas, buds and wastes from the tea making process, as well as residues remaining after tea preparation. Effective utilization and proper management of TW is essential to increase the economic value of the tea industry. Through effective utilization of tea waste, products such as activated carbon, biochar, composite membranes, and metal nanoparticle composites can be produced and successfully applied in the fields of fuel production, composting, preservation, and heavy metal adsorption. Comprehensive utilization of tea waste is an effective and sustainable strategy to improve the economic efficiency of the tea industry and can be applied in various fields such as energy production, energy storage and pharmaceuticals. This study reviews recent advances in the strategic utilization of TW, including its processing, conversion technologies and high value products obtained, provides insights into the potential applications of tea waste in the plant, animal and environmental sectors, summarizes the effective applications of tea waste for energy and environmental sustainability, and discusses the effectiveness, variability, advantages and disadvantages of different processing and thermochemical conversion technologies. In addition, the advantages and disadvantages of producing new products from tea wastes and their derivatives are analyzed, and recommendations for future development of high-value products to improve the efficiency and economic value of tea by-products are presented.


Assuntos
Chá , Chá/química , Gerenciamento de Resíduos/métodos , Resíduos Industriais/análise
13.
Sci Rep ; 14(1): 13750, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877150

RESUMO

In this investigation, the modeling of the Aksaray industrial wastewater treatment plant was performed using artificial neural networks with various architectures in the MATLAB software. The dataset utilized in this study was collected from the Aksaray wastewater treatment plant over a 9-month period through daily records. The treatment efficiency of the plants was assessed based on the output values of chemical oxygen demand (COD) output. Principal component analysis (PCA) was applied to furnish input for the Feedforward Backpropagation Artificial Neural Networks (FFBANN). The model's performance was evaluated using the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and correlation coefficient (R2) parameters. The optimal architecture for the neural network model was determined through several trial and error iterations. According to the modeling results, the ANN exhibited a high predictive capability for plant performance, with an R2 reaching up to 0.9997 when comparing the observed and predicted output variables.


Assuntos
Análise da Demanda Biológica de Oxigênio , Redes Neurais de Computação , Águas Residuárias , Águas Residuárias/química , Análise de Componente Principal , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Resíduos Industriais/análise
14.
J Hazard Mater ; 474: 134701, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824774

RESUMO

Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.


Assuntos
Reatores Biológicos , Carbono , Coque , Ferro , Águas Residuárias , Águas Residuárias/química , Ferro/metabolismo , Ferro/química , Carbono/química , Carbono/metabolismo , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Resíduos Industriais , Poluentes Químicos da Água/metabolismo , Fenóis/metabolismo , Bactérias/metabolismo , Bactérias/genética
15.
World J Microbiol Biotechnol ; 40(8): 237, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853194

RESUMO

Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.


Assuntos
Biodegradação Ambiental , Glycine max , Óleos de Plantas , Aves Domésticas , Microbiologia do Solo , Poluentes do Solo , Solo , Animais , Poluentes do Solo/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Óleos de Plantas/metabolismo , Solo/química , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento , Bactérias/metabolismo , Germinação/efeitos dos fármacos , Resíduos Industriais
16.
World J Microbiol Biotechnol ; 40(8): 239, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862848

RESUMO

Anaerobic digestion (AD) emerges as a pivotal technique in climate change mitigation, transforming organic materials into biogas, a renewable energy form. This process significantly impacts energy production and waste management, influencing greenhouse gas emissions. Traditional research has largely focused on anaerobic bacteria and methanogens for methane production. However, the potential of anaerobic lignocellulolytic fungi for degrading lignocellulosic biomass remains less explored. In this study, buffalo rumen inocula were enriched and acclimatized to improve lignocellulolytic hydrolysis activity. Two consortia were established: the anaerobic fungi consortium (AFC), selectively enriched for fungi, and the anaerobic lignocellulolytic microbial consortium (ALMC). The consortia were utilized to create five distinct microbial cocktails-AF0, AF20, AF50, AF80, and AF100. These cocktails were formulated based on varying of AFC and ALMC by weights (w/w). Methane production from each cocktail of lignocellulosic biomasses (cassava pulp and oil palm residues) was evaluated. The highest methane yields of CP, EFB, and MFB were obtained at 337, 215, and 54 mL/g VS, respectively. Cocktails containing a mix of anaerobic fungi, hydrolytic bacteria (Sphingobacterium sp.), syntrophic bacteria (Sphaerochaeta sp.), and hydrogenotrophic methanogens produced 2.1-2.6 times higher methane in cassava pulp and 1.1-1.2 times in oil palm empty fruit bunch compared to AF0. All cocktails effectively produced methane from oil palm empty fruit bunch due to its lipid content. However, methane production ceased after 3 days when oil palm mesocarp fiber was used, due to long-chain fatty acid accumulation. Anaerobic fungi consortia showed effective lignocellulosic and starchy biomass degradation without inhibition due to organic acid accumulation. These findings underscore the potential of tailored microbial cocktails for enhancing methane production from diverse lignocellulosic substrates.


Assuntos
Biomassa , Fungos , Lignina , Metano , Consórcios Microbianos , Metano/metabolismo , Anaerobiose , Lignina/metabolismo , Fungos/metabolismo , Fungos/classificação , Animais , Rúmen/microbiologia , Biocombustíveis , Hidrólise , Fermentação , Bactérias/metabolismo , Bactérias/classificação , Resíduos Industriais , Agricultura/métodos
17.
World J Microbiol Biotechnol ; 40(8): 249, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907753

RESUMO

Tannery effluents contain high amounts of polluting chemicals, such as salts and heavy metals released often to surface waters. New economic and eco-friendly purification methods are needed. Two adsorbing materials and five salt-tolerant fungal isolates from mangrove habitat were studied. Purification experiments were carried out using the pollutant adsorbents biochar and the biomass of vetiver grass (Chrysopogon zizanioides) roots and the fungi Cladosporium cladosporioides, Phomopsis glabrae, Aspergillus niger, Emericellopsis sp., and Scopulariopsis sp., which were isolated from mangrove sediment. They efficacy to reduce pollutants was studied in different combinations. Salinity, turbidity, total dissolved solids, total suspended solids, phenols, nitrogen, ammonia. Biological and chemical oxygen demand (BOD, COD) and several heavy metals were measured. The adsorbents were efficient reducing the pollutants to 15-50% of the original. The efficiency of the combination of biochar and roots was generally at the same level as the adsorbents alone. Some pollutants such as turbidity, COD and ammonium were reduced slightly more by the combination than the adsorbents alone. From all 14 treatments, Emericellopsis sp. with biochar and roots appeared to be the most efficient reducing pollutants to < 10-30%. BOD and COD were reduced to ca 5% of the original. The treatment was efficient in reducing also heavy metals (As, Cd, Cr, Mn Pb, Zn). The fungal species originating from the environment instead of the strains present in the tannery effluent reduced pollutants remarkably and the adsorbents improved the reduction efficiency. However, the method needs development for effluents with high pollutant concentrations to fulfil the environmental regulations.


Assuntos
Biodegradação Ambiental , Biomassa , Carvão Vegetal , Fungos , Metais Pesados , Raízes de Plantas , Poaceae , Curtume , Poluentes Químicos da Água , Carvão Vegetal/química , Poaceae/microbiologia , Raízes de Plantas/microbiologia , Fungos/isolamento & purificação , Fungos/classificação , Águas Residuárias/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Adsorção , Purificação da Água/métodos , Resíduos Industriais/análise , Áreas Alagadas
18.
Food Res Int ; 190: 114586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945606

RESUMO

The acerola seed is an agro-industrial waste. It is a high moisture content product, rich in bioactive compounds. Drying is an alternative to make this waste available in a safe condition. The use of ethanol as a pretreatment could improve the drying process besides reducing the operation time. This study aimed to investigate the influence of ethanol pretreatment (ET) on the content of bioactive compounds, cell wall thickness, and color. The drying kinetics was studied, and the influence of external and internal resistance was discussed. The samples were immersed in ethanol for 2 min with subsequent convective drying (40 °C and 60 °C; 1 m s-1) until they reached the equilibrium condition. The ET reduced the drying time up to 36.36 %. The external and mixed control of mass transfer were identified as the governing regimes for drying this material, depending on the use of ethanol. ET led to an increase in effective diffusivity, a reduction in cell wall thickness, and preservation of the color of the dried waste. The ET positively impacted the conservation of ascorbic acid compared to untreated dried samples but was not relevant to phenolic compounds, carotenoids, and antioxidant activity. The drying process increased the bioactivity of the anthocyanins. The best condition was drying at 60 °C, pretreated with ethanol.


Assuntos
Dessecação , Etanol , Etanol/química , Dessecação/métodos , Antioxidantes/análise , Sementes/química , Malpighiaceae/química , Resíduos Industriais , Antocianinas/análise , Manipulação de Alimentos/métodos , Ácido Ascórbico/química , Cinética , Fenóis/análise
19.
Food Chem ; 456: 139878, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38852455

RESUMO

This study aimed to upcycle a byproduct of the edible oil industry, cold-pressed nettle seed meal (CPNSM), into a plant-based emulsifier, thereby increasing the sustainability of the food system. The protein content of the nettle seed protein (NSP) powder was 48.3% with glutamic acid (16.6%), asparagine (10.7%), and arginine (9.7%) being the major amino acids. NSPs had a denaturation temperature of 66.6 °C and an isoelectric point of pH 4.3. They could be used as emulsifiers to form highly viscous coarse corn oil-in-water emulsions (10% oil, 4% NSP). Nevertheless, 10-fold diluted emulsions exhibited rapid creaming under different pH (2-9), salt (0-500 mM NaCl) and temperature (>40 °C) conditions, but they were relatively stable to aggregation. Our findings suggest that NSPs could be used as emulsifiers in highly viscous or gelled foods, like dressings, sauces, egg, cheese, or meat analogs.


Assuntos
Emulsificantes , Proteínas de Plantas , Sementes , Emulsificantes/química , Sementes/química , Proteínas de Plantas/química , Emulsões/química , Óleos de Plantas/química , Resíduos Industriais/análise , Concentração de Íons de Hidrogênio
20.
Sci Rep ; 14(1): 12655, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825597

RESUMO

Potato peel waste (PPW) is an underutilized substrate which is produced in huge amounts by food processing industries. Using PPW a feedstock for production of useful compounds can overcome the problem of waste management as well as cost-effective. In present study, potential of PPW was investigated using chemical and thermochemical treatment processes. Three independent variables i.e., PPW concentration, dilute sulphuric acid concentration and liberation time were selected to optimize the production of fermentable sugars (TS and RS) and phenolic compounds (TP). These three process variables were selected in the range of 5-15 g w/v substrate, 0.8-1.2 v/v acid conc. and 4-6 h. Whole treatment process was optimized by using box-behnken design (BBD) of response surface methodology (RSM). Highest yield of total and reducing sugars and total phenolic compounds obtained after chemical treatment was 188.00, 144.42 and 43.68 mg/gds, respectively. The maximum yield of fermentable sugars attained by acid plus steam treatment were 720.00 and 660.62 mg/gds of TS and RS, respectively w.r.t 5% substrate conc. in 0.8% acid with residence time of 6 h. Results recorded that acid assisted autoclaved treatment could be an effective process for PPW deconstruction. Characterization of substrate before and after treatment was checked by SEM and FTIR. Spectras and micrographs confirmed the topographical variations in treated substrate. The present study was aimed to utilize biowaste and to determine cost-effective conditions for degradation of PWW into value added compounds.


Assuntos
Resíduos Industriais , Extratos Vegetais , Solanum tuberosum , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Solanum tuberosum/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Resíduos Industriais/análise , Indústria Alimentícia , Fermentação , Açúcares/análise , Açúcares/isolamento & purificação , Fenóis/análise , Fenóis/isolamento & purificação , Ácidos/química , Vapor , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...