Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.683
Filtrar
1.
Nutrients ; 16(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39203884

RESUMO

Plant-based protein supplements are increasingly popular, yet their efficacy in enhancing athletic performance compared to animal protein, insect protein, or other protein types remains under investigation. This study aimed to assess the effectiveness of plant-based protein on athletic abilities such as muscle strength, endurance performance, and muscle protein synthesis (MPS) rate and compare it to no- or low-protein ingestion and non-plant protein sources. Randomized controlled trials (RCTs) evaluating the beneficial and harmful effects of plant-based protein ingestion on athletic ability in healthy individuals were considered. A systematic search of six databases yielded 2152 studies, which were screened using the Covidence systematic review tool. Thirty-one studies were included for meta-analysis after independent selection, data extraction, and risk of bias assessment by two reviewers. The meta-analysis employed a Bayesian approach using the Markov chain Monte Carlo (MCMC) method through a random-effects model. The results demonstrated that plant-based protein supplements provided greater benefits for athletic performance in healthy individuals compared to the no- or low-protein ingestion group [µ(SMD): 0.281, 95% CI: 0.159 to 0.412; heterogeneity τ: 0.18, 95% CI: 0.017 to 0.362]. However, when compared to other types of protein, plant-based protein ingestion was less effective in enhancing athletic ability [µ(SMD): -0.119, 95% CI: -0.209 to -0.028; heterogeneity τ: 0.076, 95% CI: 0.003 to 0.192]. A subgroup analysis indicated significant improvements in muscle strength and endurance performance in both young and older individuals consuming plant-based protein compared to those with no- or low-protein ingestion. Nonetheless, other protein types showed greater benefits in muscle strength compared to plant-based protein [µ(SMD): -0.133, 95% CI: -0.235 to -0.034; heterogeneity τ: 0.086, 95% CI: 0.004 to 0.214]. In conclusion, while plant-based protein ingestion demonstrates superior efficacy compared to low- or no-protein ingestion, it is not as effective as other protein types such as whey, beef, or milk protein in enhancing athletic performance in healthy individuals. Registration: Registered at the International Prospective Register of Systematic Reviews (PROSPERO) (identification code CRD42024555804).


Assuntos
Desempenho Atlético , Teorema de Bayes , Suplementos Nutricionais , Força Muscular , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Desempenho Atlético/fisiologia , Força Muscular/efeitos dos fármacos , Adulto , Masculino , Resistência Física/efeitos dos fármacos , Proteínas Alimentares/administração & dosagem , Proteínas Musculares/biossíntese , Adulto Jovem , Feminino , Proteínas de Plantas/administração & dosagem , Proteínas de Vegetais Comestíveis/administração & dosagem
2.
J Agric Food Chem ; 72(30): 16687-16699, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38990695

RESUMO

Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.


Assuntos
Flavonas , Camundongos Knockout , Músculo Esquelético , Receptores de Adiponectina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Flavonas/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais/efeitos dos fármacos , Resistência Física/efeitos dos fármacos
3.
Braz J Med Biol Res ; 57: e13217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896643

RESUMO

The purpose of this study was to verify the association between angiotensin-converting enzyme (ACE) genotypes DD, DI, and II and caffeine (CAF) ingestion on endurance performance, heart rate, ratio of perceived exertion (RPE), and habitual caffeine intake (HCI) of adolescent athletes. Seventy-four male adolescent athletes (age: DD=16±1.7; DI=16±2.0; II=15±1.7 years) ingested CAF (6 mg/kg) or placebo (PLA) one hour before performing the Yo-Yo Intermittent Recovery level 1 (Yo-Yo IR1) test. No difference was found among groups for HCI. However, CAF increased the maximal distance covered and VO2max in DI and II genotype carriers compared to PLA (DD: Δ=31 m and 0.3 mL·kg-1·min-1; DI: Δ=286 m and 1.1 mL·kg-1·min-1; II: Δ=160 m and 1.4 mL·kg-1·min-1). Heart rate of DI and II genotype carriers increased with CAF compared to PLA, while RPE was higher in the II and lower in the DD genotypes. The correlations between HCI and maximal distance covered or VO2max were significant in the II genotype carriers with CAF. CAF increased endurance capacity, heart rate, and RPE in adolescent athletes with allele I, while endurance performance and aerobic power had a positive correlation to HCI in the II genotype group. These findings suggested that DD genotype were less responsive to CAF and that genetic variations should be taken into account when using CAF supplementation to enhance exercise performance.


Assuntos
Atletas , Cafeína , Genótipo , Frequência Cardíaca , Peptidil Dipeptidase A , Esforço Físico , Humanos , Adolescente , Masculino , Frequência Cardíaca/efeitos dos fármacos , Cafeína/administração & dosagem , Esforço Físico/fisiologia , Peptidil Dipeptidase A/genética , Desempenho Atlético/fisiologia , Resistência Física/efeitos dos fármacos , Resistência Física/genética , Polimorfismo Genético/genética , Brasil , Consumo de Oxigênio/genética , Consumo de Oxigênio/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem
4.
J Int Soc Sports Nutr ; 21(1): 2363789, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38836626

RESUMO

BACKGROUND: Caffeine, widely recognized as an ergogenic aid, has undergone extensive research, demonstrating its effectiveness to enhance endurance performance. However, there remains a significant gap in systematically evaluating its effects on time trial (TT) performance in cyclists. PURPOSE: This meta-analysis aimed to determine the efficacy of caffeine ingestion to increase cycling TT performance in cyclists and to evaluate the optimal dosage range for maximum effect. METHODS: A search of four databases was completed on 1 December 2023. The selected studies comprised crossover, placebo-controlled investigations into the effects of caffeine ingestion on cycling TT performance. Completion time (Time) and mean power output (MPO) were used as performance measures for TT. Meta-analyses were performed using a random-effects model to assess the standardized mean differences (SMD) in individual studies. RESULTS: Fifteen studies met the inclusion criteria for the meta-analyses. Subgroup analysis showed that moderate doses of caffeine intake (4-6 mg/kg) significantly improved cycling performance (SMD Time = -0.55, 95% confidence interval (CI) = -0.84 ~ -0.26, p < 0.01, I2 = 35%; SMD MPO = 0.44, 95% CI = 0.09 ~ 0.79, p < 0.05, I2 = 39%), while the effects of low doses (1-3 mg/kg) of caffeine were not significant (SMD Time = -0.34, 95% CI = -0.84 ~ 0.17, p = 0.19, I2 = 0%; SMD MPO = 0.31, 95% CI = -0.02 ~ 0.65, p = 0.07, I2 = 0%). CONCLUSION: A moderate dosage (4-6 mg/kg) of caffeine, identified as the optimal dose range, can significantly improve the time trial performance of cyclists, while a low dose (1-3 mg/kg) does not yield improvement. In addition, the improvements in completion time and mean power output resulting from a moderate dose of caffeine are essentially the same in cycling time trails.


Assuntos
Desempenho Atlético , Ciclismo , Cafeína , Substâncias para Melhoria do Desempenho , Cafeína/administração & dosagem , Cafeína/farmacologia , Ciclismo/fisiologia , Humanos , Desempenho Atlético/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/farmacologia , Relação Dose-Resposta a Droga , Resistência Física/efeitos dos fármacos
5.
Nutrients ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892683

RESUMO

Astaxanthin, a potent antioxidant found in marine organisms such as microalgae and krill, may offer ergogenic benefits to endurance athletes. Originally used in fish feed, astaxanthin has shown a greater ability to mitigate various reactive oxygen species and maintain the structural integrity of mitochondria compared to other exogenous antioxidants. More recent work has shown that astaxanthin may improve: (1) cycling time trial performance, (2) cardiorespiratory measures such as submaximal heart rate during running or cycling, (3) recovery from delayed-onset muscle soreness, and (4) endogenous antioxidant capacity such as whole blood glutathione within trained populations. In this review, the history of astaxanthin and its chemical structure are first outlined before briefly describing the various adaptations (e.g., mitochondrial biogenesis, enhanced endogenous antioxidant capacity, etc.) which take place specifically at the mitochondrial level as a result of chronic endurance training. The review then concludes with the potential additive effects that astaxanthin may offer in conjunction with endurance training for the endurance athlete and offers some suggested practical recommendations for athletes and coaches interested in supplementing with astaxanthin.


Assuntos
Adaptação Fisiológica , Antioxidantes , Atletas , Suplementos Nutricionais , Resistência Física , Xantofilas , Xantofilas/farmacologia , Humanos , Resistência Física/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Treino Aeróbico , Desempenho Atlético/fisiologia , Animais
6.
Nutrients ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892692

RESUMO

BACKGROUND: This study assessed the impact of acute caffeine intake on muscular strength, power, and endurance performance between resistance-trained male and female individuals according to load in upper- and lower-body exercises. METHODS: Here, 76 resistance-trained individuals (38 females, 38 males) participated in a study comparing caffeine and a placebo. Each received either 3 mg/kg of caffeine or a placebo 60 min before tests measuring muscular strength and power through bench press and back squat exercises at different intensities (25%, 50%, 75%, 90% 1RM). Muscular endurance at 65% 1RM was also assessed by performing reps until reaching task failure. RESULTS: Compared to placebo, caffeine increased mean, peak and time to reach peak velocity and power output (p < 0.01, ηp2 = 0.242-0.293) in the muscular strength/power test in males and females. This effect was particularly observed in the back squat exercise at 50%, 75% and 90% 1RM (2.5-8.5%, p < 0.05, g = 1.0-2.4). For muscular endurance, caffeine increased the number of repetitions, mean velocity and power output (p < 0.001, ηp2 = 0.177-0.255) in both sexes and exercises (3.0-8.9%, p < 0.05, g = 0.15-0.33). CONCLUSIONS: Acute caffeine intake resulted in a similar ergogenic effect on muscular strength, power, and endurance performance in upper- and lower-body exercises for male and female resistance-trained participants.


Assuntos
Cafeína , Força Muscular , Resistência Física , Treinamento Resistido , Humanos , Cafeína/administração & dosagem , Cafeína/farmacologia , Feminino , Masculino , Força Muscular/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Adulto Jovem , Adulto , Fatores Sexuais , Substâncias para Melhoria do Desempenho/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Método Duplo-Cego , Caracteres Sexuais
7.
An Acad Bras Cienc ; 96(2): e20230559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747788

RESUMO

Creatine is consumed by athletes to increase strength and gain muscle. The aim of this study was to evaluate the effects of creatine supplementation on maximal strength and strength endurance. Twelve strength-trained men (25.2 ± 3.4 years) supplemented with 20 g Creatina + 10g maltodextrin or placebo (20g starch + 10g maltodextrin) for five days in randomized order. Maximal strength and strength endurance (4 sets 70% 1RM until concentric failure) were determined in the bench press. In addition, blood lactate, rate of perceived effort, fatigue index, and mood state were evaluated. All measurements were performed before and after the supplementation period. There were no significant changing in maximal strength, blood lactate, RPE, fatigue index, and mood state in either treatment. However, the creatine group performed more repetitions after the supplementation (Cr: Δ = +3.4 reps, p = 0.036, g = 0.53; PLA: Δ = +0.3reps, p = 0.414, g = 0.06), and higher total work (Cr: Δ = +199.5au, p = 0.038, g = 0.52; PLA: Δ = +26.7au, p = 0.402, g = 0.07). Creatine loading for five days allowed the subjects to perform more repetitions, resulting in greater total work, but failed to change the maximum strength.


Assuntos
Creatina , Suplementos Nutricionais , Ácido Láctico , Força Muscular , Resistência Física , Humanos , Masculino , Adulto , Creatina/administração & dosagem , Creatina/farmacologia , Creatina/sangue , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Ácido Láctico/sangue , Adulto Jovem , Treinamento Resistido/métodos , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Método Duplo-Cego
8.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732600

RESUMO

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Assuntos
Estudos Cross-Over , Sucos de Frutas e Vegetais , Interleucina-6 , Receptores de Lipopolissacarídeos , Malus , Corrida de Maratona , Resistência Física , Polifenóis , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Interleucina-6/sangue , Receptores de Lipopolissacarídeos/sangue , Corrida de Maratona/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lipopolissacarídeos/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Corrida/fisiologia , Adulto Jovem
9.
Nutrients ; 16(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794667

RESUMO

BACKGROUND: Various nutritional strategies are increasingly used in sports to reduce oxidative stress and promote recovery. Chokeberry is rich in polyphenols and can reduce oxidative stress. Consequently, chokeberry juices and mixed juices with chokeberry content are increasingly used in sports. However, the data are very limited. Therefore, this study investigates the effects of the short-term supplementation of a red fruit juice drink with chokeberry content or a placebo on muscle damage, oxidative status, and leg strength during a six-day intense endurance protocol. METHODS: Eighteen recreational endurance athletes participated in a cross-over high intensity interval training (HIIT) design, receiving either juice or a placebo. Baseline and post-exercise assessments included blood samples, anthropometric data, and leg strength measurements. RESULTS: A significant increase was measured in muscle damage following the endurance protocol in all participants (∆ CK juice: 117.12 ± 191.75 U/L, ∆ CK placebo: 164.35 ± 267.00 U/L; p = 0.001, η2 = 0.17). No group effects were detected in exercise-induced muscle damage (p = 0.371, η2 = 0.010) and oxidative status (p = 0.632, η2 = 0.000). The reduction in strength was stronger in the placebo group, but group effects are missing statistical significance (∆ e1RM juice: 1.34 ± 9.26 kg, ∆ e1RM placebo: -3.33 ± 11.49 kg; p = 0.988, η2 = 0.000). CONCLUSION: Although a reduction in strength can be interpreted for the placebo treatment, no statistically significant influence of chokeberry could be determined. It appears that potential effects may only occur with prolonged application and a higher content of polyphenols, but further research is needed to confirm this.


Assuntos
Atletas , Estudos Cross-Over , Sucos de Frutas e Vegetais , Força Muscular , Resistência Física , Polifenóis , Humanos , Polifenóis/farmacologia , Masculino , Adulto , Força Muscular/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Adulto Jovem , Feminino , Estresse Oxidativo/efeitos dos fármacos , Perna (Membro)/fisiologia , Método Duplo-Cego , Frutas/química , Photinia/química , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Treino Aeróbico/métodos
10.
Clin Exp Pharmacol Physiol ; 51(7): e13873, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815994

RESUMO

At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In Orm-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.


Assuntos
Eritromicina , Glicogênio , Fadiga Muscular , Músculo Esquelético , Orosomucoide , Resistência Física , Animais , Eritromicina/farmacologia , Eritromicina/análogos & derivados , Camundongos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Orosomucoide/metabolismo , Resistência Física/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
11.
Food Res Int ; 187: 114311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763626

RESUMO

The efficacy of amino acids as popular sports supplements has triggered debates, with their impact on athletic performance varying across sports disciplines due to diversity and heterogeneity in clinical trials. This review evaluates the ergogenic potential of amino acids, by critical appraisal of results of clinical trials of Branched chain amino acids (BCAAs), arginine, glutamine, citrulline, ß-alanine, and taurine, performed on elite sportsmen from various land and water sports. Clinical trials reviewed here confirm notable physiological benefits thereby supporting the claim that BCAA, citrulline and arginine in various doses can have positive effects on endurance and overall performance in sportsperson. Furthermore, results of clinical trials and metabolomic studies indicate that in future it would be more beneficial to design precise formulations to target the requirement of specific sports. For instance, some combinations of amino acids may be more suitable for long term endurance and some others may be suitable for short burst of excessive energy. The most important insights from this review are the identification of three key areas where research is urgently needed: a) Biomarkers that can identify the physiological end points and to distinguish the specific role of amino acid as anti-fatigue or reducing muscle soreness or enhancing energy b) In-depth sports-wise clinical trials on elite sportsperson to understand the ergogenic needs for the particular sports c) Design of precision formula for similar types of sports instead of common supplements.


Assuntos
Aminoácidos , Desempenho Atlético , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Esportiva , Humanos , Desempenho Atlético/fisiologia , Resistência Física/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/metabolismo , beta-Alanina , Arginina/metabolismo
12.
J Appl Physiol (1985) ; 136(6): 1507-1515, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660726

RESUMO

Ground-level ozone (O3) is a potent air pollutant well recognized to acutely induce adverse respiratory symptoms and impairments in pulmonary function. However, it is unclear how the hyperpnea of exercise may modulate these effects, and the subsequent consequences on exercise performance. We tested the hypothesis that pulmonary function and exercise capability would be diminished, and symptom development would be increased during peak real-world levels of O3 exposure compared with room air. Twenty aerobically trained participants [13 M, 7 F; maximal O2 uptake (V̇o2max), 64.1 ± 7.0 mL·kg-1·min-1] completed a three-visit double-blinded, randomized crossover trial. Following a screening visit, participants were exposed to 170 ppb O3 or room air (<10 ppb O3) on separate visits during exercise trials, consisting of a 25-min moderate-intensity warmup, 30-min heavy-intensity bout, and a subsequent time-to-exhaustion (TTE) performance test. No differences in O2 uptake or ventilation were observed during submaximal exercise between conditions. During the TTE test, we observed significantly lower end-exercise O2 uptake (-3.2 ± 4.3%, P = 0.004), minute ventilation (-3.2 ± 6.5%, P = 0.043), tidal volume (-3.6 ± 5.1%, P = 0.008), and a trend toward lower exercise duration in O3 compared with room air (-10.8 ± 26.5%, P = 0.092). As decreases in O2 uptake and alterations in respiratory pattern were also present at matched time segments between conditions, a limitation of oxygen transport seems likely during maximal exercise. A more comprehensive understanding of the direct mechanisms that limit oxygen transport during exercise in high-pollutant concentrations is key for mitigating performance changes.NEW & NOTEWORTHY We demonstrate that in highly trained endurance athletes, exposure to peak real-world levels of O3 air pollution (170 ppb) significantly diminishes O2 uptake along with corresponding changes in ventilation during maximal exercise. As no differences were observed during extended submaximal exercise, a combined effect of effective dose of pollution and exercise intensity on severity of responses seems likely.


Assuntos
Atletas , Estudos Cross-Over , Exercício Físico , Consumo de Oxigênio , Ozônio , Humanos , Masculino , Adulto , Método Duplo-Cego , Feminino , Consumo de Oxigênio/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Exercício Físico/fisiologia , Poluentes Atmosféricos/efeitos adversos , Resistência Física/fisiologia , Resistência Física/efeitos dos fármacos , Ciclismo/fisiologia , Adulto Jovem , Teste de Esforço/métodos
13.
Nutrients ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674836

RESUMO

This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.


Assuntos
Cafeína , Cápsulas , Força Muscular , Resistência Física , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Cafeína/administração & dosagem , Cafeína/farmacologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Resistência Física/efeitos dos fármacos
14.
Scand J Med Sci Sports ; 34(4): e14629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646853

RESUMO

BACKGROUND: Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS: Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS: Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION: While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.


Assuntos
Desempenho Atlético , Cafeína , Creatina , Substâncias para Melhoria do Desempenho , Bicarbonato de Sódio , Humanos , Cafeína/farmacologia , Cafeína/administração & dosagem , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/farmacologia , Masculino , Creatina/administração & dosagem , Creatina/farmacologia , Adulto , Feminino , Adulto Jovem , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/farmacologia , Desempenho Atlético/fisiologia , Resistência Física/efeitos dos fármacos , Treino Aeróbico , Método Duplo-Cego , Consumo de Oxigênio/efeitos dos fármacos
15.
Int J Sport Nutr Exerc Metab ; 34(4): 199-206, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458180

RESUMO

Carbohydrate (CHO) supplementation during endurance exercise can improve performance. However, it is unclear whether low glycemic index (GI) CHO leads to differential ergogenic and metabolic effects compared with a standard high GI CHO. This study investigated the ergogenic and metabolic effects of CHO supplementation with distinct GIs, namely, (a) trehalose (30 g/hr), (b) isomaltulose (30 g/hr), (c) maltodextrin (60 g/hr), and (d) placebo (water). In this double-blind, crossover, counterbalanced, placebo-controlled study, 13 male cyclists cycled a total of 100 min at varied exercise intensity (i.e., 10-min stages at 1.5, 2.0, and 2.5 W/kg; repeated three times plus two 5-min stages at 1.0 W/kg before and after the protocol), followed by a 20-min time trial on four separated occasions. Blood glucose and lactate (every 20 min), heart rate, and ratings of perceived exertion were collected throughout, and muscle biopsies were taken before and immediately after exercise. The results showed that trehalose improved time-trial performance compared with placebo (total work done 302 ± 39 vs. 287 ± 48 kJ; p = .01), with no other differences between sessions (all p ≥ .07). Throughout the 100-min protocol, blood glucose was higher with maltodextrin compared with the other supplements at all time points (all p < .05). Heart rate, ratings of perceived exertion, muscle glycogen content, blood glucose, and lactate were not different between conditions when considering the 20-min time trial (all p > .05). Trehalose supplementation throughout endurance exercise improved cycling performance and appears to be an appropriate CHO source for exercise tasks up to 2 hr. No ergogenic superiority between the different types of CHO was established.


Assuntos
Desempenho Atlético , Ciclismo , Glicemia , Estudos Cross-Over , Frequência Cardíaca , Isomaltose , Ácido Láctico , Polissacarídeos , Trealose , Humanos , Masculino , Ciclismo/fisiologia , Método Duplo-Cego , Trealose/administração & dosagem , Trealose/farmacologia , Desempenho Atlético/fisiologia , Adulto , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ácido Láctico/sangue , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Isomaltose/análogos & derivados , Isomaltose/administração & dosagem , Isomaltose/farmacologia , Suplementos Nutricionais , Índice Glicêmico , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenômenos Fisiológicos da Nutrição Esportiva , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/farmacologia , Carboidratos da Dieta/administração & dosagem , Adulto Jovem , Esforço Físico/fisiologia , Esforço Físico/efeitos dos fármacos , Glicogênio/metabolismo
16.
Appl Physiol Nutr Metab ; 49(7): 933-942, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502949

RESUMO

To examine the effects of 7-days juçara powder (JP) intake on oxidative stress biomarkers and endurance and sprint cycling performances. In a randomized, placebo-controlled, crossover, and triple-blind study, 20 male trained cyclists were assigned to intake 10 g of JP (240 mg anthocyanins) or placebo (PLA) for 7 days and performed a cycling time-to-exhaustion (TTE). A 5 s cycling sprint was performed before and after the cycling TTE. Blood oxidative stress biomarkers and lactate concentration where evaluated 1 h before (T-1), immediately after (T0), and 1 h after (T1) the cycling TTE. The mean duration time for the cycling TTE was 8.4 ± 6.0% (63 ± 17 s) longer in the JP condition (JP: 751 ± 283 s) compared to PLA (688 ± 266 s) (P < 0.019). Two-way repeated measures Analysis of variance showed an increase in the JP condition for reduced glutathione (GSH) (P = 0.049) at T0 (P = 0.039) and T1 (P = 0.029) compared to PLA with a moderate effect size at T0 (d = 0.61) and T1 (d = 0.57). Blood lactate levels increased over time in both conditions (P ≤ 0.001). No differences were observed for the post-TTE sprint fatigue index, total phenols, protein carbonyls, and glutathione peroxidase activity. Seven-day intake of JP improved cycling endurance performance and increased GSH levels but had no effect on lactate and cycling sprint-induced fatigue.


Assuntos
Desempenho Atlético , Ciclismo , Estudos Cross-Over , Glutationa , Ácido Láctico , Estresse Oxidativo , Resistência Física , Humanos , Masculino , Ciclismo/fisiologia , Glutationa/sangue , Estresse Oxidativo/efeitos dos fármacos , Desempenho Atlético/fisiologia , Adulto , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Ácido Láctico/sangue , Biomarcadores/sangue , Adulto Jovem , Antocianinas/administração & dosagem , Antioxidantes/administração & dosagem , Suplementos Nutricionais
17.
Sports Health ; 16(5): 711-721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406865

RESUMO

BACKGROUND: Taurine (TAU) and caffeine (CAF), as common ergogenic aids, are known to affect exercise performance; however, the effects of their combined supplementation, particularly in high temperature and humidity environments, have not been studied. HYPOTHESIS: The combination of TAU and CAF will have a greater effect on endurance cycle performance and improve changes in physiological indicators during exercise compared with TAU or CAF supplementation alone and placebo. STUDY DESIGN: Single-blind crossover randomized controlled study. LEVEL OF EVIDENCE: Level 1. METHODS: Twelve university students majoring in physical education volunteered to receive 4 different supplement ingestions: (1) placebo (maltodextrin), (2) TAU, (3) CAF, (4) TAU + CAF. After a 7-day washout period, participants completed a time to exhaustion (TTE) test in the heat (35°C, 65% relative humidity). RESULTS: All experimental groups improved TTE compared with the placebo group. Peak and mean power of countermovement jump were significantly higher in the CAF group compared with the placebo group before the exhaustion exercise (P = 0.02, d = 1.2 and P = 0.04, d = 1.1, respectively). Blood lactate was significantly lower after the exhaustion test in the TAU group compared with the CAF (P < 0.01, d = 0.8) and TAU + CAF (P < 0.01, d = 0.7) groups. Core temperature in the TAU group was significantly reduced in the placebo group later in the exhaustion test (P < 0.01, d = 1.9). CONCLUSION: In high temperature and humidity environments, acute TAU, CAF, and combined supplementation all improved TTE and did not affect recovery from lower limb neuromuscular fatigue compared with placebo, with TAU having the best effect. Combined supplementation failed to exhibit superimposed performance. CLINICAL RELEVANCE: The results provide suggestions for the effects of TAU, CAF, and their combined intake on exercise performance in high temperature and humidity environments.


Assuntos
Desempenho Atlético , Cafeína , Estudos Cross-Over , Temperatura Alta , Umidade , Ácido Láctico , Resistência Física , Taurina , Humanos , Cafeína/administração & dosagem , Cafeína/farmacologia , Método Simples-Cego , Adulto Jovem , Masculino , Taurina/administração & dosagem , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Desempenho Atlético/fisiologia , Ácido Láctico/sangue , Ciclismo/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Suplementos Nutricionais , Teste de Esforço
18.
Eur J Appl Physiol ; 124(7): 2111-2122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421429

RESUMO

PURPOSE: This study aimed to compare the effects of acute and multi-day low-dose sodium bicarbonate (SB) intake on high-intensity endurance exercise performance. METHODS: In a randomized, double-blind, cross-over design, twelve recreational male cyclists (age: 31.17 ± 4.91 years; V ˙ O2peak: 47.98 ± 7.68 ml·kg-1·min-1) completed three endurance performance tests following acute SB (ASB, 0.2 g·kg-1 SB), multi-day SB (MSB, 0.2 g·kg-1·day-1 SB for four days), and placebo (PLA) intake. The high-intensity endurance performance was assessed with a cycling exercise test, wherein participants cycled on a bicycle ergometer at 95% of the predetermined anaerobic threshold for 30 min, followed by a time-to-exhaustion test at 110% of the anaerobic threshold. Data were analyzed using one-way and two-way repeated-measures ANOVA. RESULTS: Significant main effects of supplementation protocol were evident in pre-exercise bicarbonate concentrations (F = 27.93; p < 0.01; partial eta squared (η2) = 0.72; false discovery rate (FDR)-adjusted p value = 0.001). Prior to performance test, blood bicarbonate concentrations were significantly higher in MSB (25.78 ± 1.63 mmol·L-1 [95% CI 26.55-28.44] (p < 0.001; FDR-adjusted p value = 0.001)) and ASB (27.49 ± 1.49 mmol·L-1 [95% CI 24.75-26.81] (p < 0.001; FDR-adjusted p value = 0.007)) compared to PLA (23.75 ± 1.40 mmol·L-1 [95% CI 22.86 to 24.64]). Time-to-exhaustion increased in MSB (54.27 ± 9.20 min [95% CI 48.43-60.12]) compared to PLA (49.75 ± 10.80 min [95% CI 42.89-56.62]) (p = 0.048); however, this increase in MSB did not reach the significance threshold of 1% FDR (FDR-adjusted p value = 0.040). No significant difference was noted in exhaustion times between ASB (51.15 ± 8.39 min [95% CI 45.82-56.48]) and PLA (p > 0.05). CONCLUSION: Both acute and multi-day administration of low-dose SB improves buffering system in cyclists; nevertheless, neither intervention demonstrates sufficient efficacy in enhancing high-intensity endurance performance.


Assuntos
Ciclismo , Resistência Física , Bicarbonato de Sódio , Humanos , Masculino , Adulto , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/farmacologia , Ciclismo/fisiologia , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Desempenho Atlético/fisiologia , Método Duplo-Cego , Estudos Cross-Over , Limiar Anaeróbio/efeitos dos fármacos , Suplementos Nutricionais , Consumo de Oxigênio/efeitos dos fármacos
19.
J Am Nutr Assoc ; 43(5): 437-451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38305833

RESUMO

OBJECTIVE: Previous studies have shown that oyster peptides (OPs) have antioxidant and anti-fatigue activities. This study aimed to investigate the effects of OPs on swimming endurance in mice and the underlying mechanisms. METHODS: The mice were subjected to gavage with OPs and subjected to exercise training. After 14 days, various biochemical indicators in the blood and gastrocnemius muscle of mice were assessed, and real-time PCR was utilized to detect the level of signal pathway regulation by OPs in the gastrocnemius muscle. Molecular docking technology was employed to observe the potential active components in OPs that regulate signal pathways. RESULTS: In this study, OPs supplementation combined with and without exercise significantly extended swimming time compared to the sedentary group. OPs supplementation with exercise also increased glycogen levels and decreased blood urea nitrogen, lactate dehydrogenase, and lactic acid levels. Additionally, mice in the exercise with OPs group exhibited higher activities of antioxidant enzymes. OPs can upregulate metabolic regulatory factors such as AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma coactivator-1 alpha, peroxisome proliferator-activated receptor delta, and glucose transporter 4, thereby increasing energy supply during exercise. Additionally, OPs enhances the expression of heme oxygenase 1 and superoxide dismutase 2, thereby reducing oxidative stress during physical activity. Molecular docking analyses revealed that peptides found in OPs formed hydrogen bonds with AMPK and HO-1, indicating that they can exert bioactivity by activating target proteins such as AMPK and HO-1. CONCLUSIONS: OPs supplementation improved energy reserves, modulated energy metabolism pathways, and coordinated antioxidative stress responses, ultimately enhancing swimming endurance. These findings suggest that OPs have the potential to improve exercise levels by promoting metabolism and improving energy utilization efficiency.


Assuntos
Proteínas Quinases Ativadas por AMP , Heme Oxigenase-1 , Músculo Esquelético , Condicionamento Físico Animal , Resistência Física , Natação , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Heme Oxigenase-1/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Resistência Física/efeitos dos fármacos , Masculino , Peptídeos/farmacologia , Simulação de Acoplamento Molecular , Glicogênio/metabolismo , Ostreidae , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Suplementos Nutricionais , Proteínas de Membrana
20.
Eur J Nutr ; 62(8): 3411-3422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665425

RESUMO

PURPOSE: This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS: In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS: Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION: Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC): RBR-75zt25z.


Assuntos
Mentha piperita , Óleos Voláteis , Resistência Física , Corrida , Exercício Físico , Mentha piperita/química , Óleos Voláteis/administração & dosagem , Água , Humanos , Masculino , Resistência Física/efeitos dos fármacos , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...