Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.879
Filtrar
1.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703356

RESUMO

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Assuntos
Esterases , Proteínas de Insetos , Insetos , Inseticidas , Malation , Animais , Malation/metabolismo , Malation/química , Malation/toxicidade , Malation/farmacologia , Inseticidas/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Esterases/metabolismo , Esterases/genética , Esterases/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Insetos/efeitos dos fármacos , Resistência a Inseticidas/genética , Inativação Metabólica , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo
2.
BMC Biol ; 22(1): 117, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764011

RESUMO

BACKGROUND: Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. RESULTS: The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. CONCLUSIONS: The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.


Assuntos
Anopheles , Resistência a Inseticidas , Malária , Mosquitos Vetores , Animais , Anopheles/parasitologia , Anopheles/genética , Resistência a Inseticidas/genética , Malária/transmissão , Mosquitos Vetores/parasitologia , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Fenótipo , Inseticidas/farmacologia , Análise Espaço-Temporal , África Subsaariana , Feminino
3.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709820

RESUMO

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Assuntos
Controle de Mosquitos , Animais , Controle de Mosquitos/métodos , Culicidae/genética , Culicidae/fisiologia , Biologia Computacional/métodos , Tecnologia de Impulso Genético/métodos , Mosquitos Vetores/genética , Aedes/genética , Resistência a Inseticidas/genética , Feminino
4.
Exp Parasitol ; 261: 108763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704016

RESUMO

The brown dog tick or Rhipicephalus sanguineus sensu lato is an ixodid tick, responsible for the dissemination of pathogens that cause canine infectious diseases besides inflicting the direct effects of tick bite. The hot humid climate of Kerala, a south Indian state, is favorable for propagation of tick vectors and acaricides are the main stay of tick control. Though the resistance against synthetic pyrethroids is reported among these species, the status of amitraz resistance in R. sanguineus s. l. in the country is uncertain due to the lack of molecular characterisation data and scarce literature reports. Hence the present study was focused on the phenotypic detection and preliminary genotypic characterisation of amitraz resistance in the R. sanguineus s. l. A modified larval packet test (LPT) on a susceptible isolate was performed to determine the discriminating dose (DD). Further LPT-DD on 35 tick isolates was carried out to detect amitraz resistance robustly, along with that full dose response bioassays on the resistant isolates were performed. The results indicated that amitraz resistance is prevalent with 49 per cent of the samples being resistant. Amplification of exon 3 of octopamine receptor gene from both the susceptible and resistant larval isolates was carried out. Amplicons of ten pooled amitraz susceptible and ten pooled amitraz resistant representative samples were sequenced and analysed, unveiling a total of three novel non-synonymous mutations in the partial coding region at positions V32A, N41D and V58I in phenotypically resistant larval DNA samples. In silico analysis by homology modelling and molecular docking of the mutated and unmutated receptors showed that these mutations had reduced the binding affinity to amitraz. However, lack of mutations in the octopamine receptor gene in three of the pooled low order resistant R. sanguineus s. l. larval samples could be suggestive of other mechanisms associated with amitraz resistance in the region. Hence, further association studies should be carried out to confirm the association of these mutations with target insensitivity in R. sanguineus s. l. ticks, along with exploring the status of metabolic resistance and other mechanisms of resistance.


Assuntos
Acaricidas , Receptores de Amina Biogênica , Rhipicephalus sanguineus , Toluidinas , Animais , Toluidinas/farmacologia , Receptores de Amina Biogênica/genética , Índia , Rhipicephalus sanguineus/genética , Rhipicephalus sanguineus/efeitos dos fármacos , Acaricidas/farmacologia , Larva/genética , Larva/efeitos dos fármacos , Resistência a Inseticidas/genética , Polimorfismo Genético , Genótipo , Cães , Feminino , Doenças do Cão/parasitologia , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Bioensaio
5.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760849

RESUMO

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Malária , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Tanzânia/epidemiologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Malária/transmissão , Malária/epidemiologia , Marcadores Genéticos , Piretrinas/farmacologia , Genótipo , Mutação
6.
PLoS One ; 19(5): e0303027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728353

RESUMO

Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.


Assuntos
Aedes , Resistência a Inseticidas , Inseticidas , Nitrilas , Piretrinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Piretrinas/farmacologia , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/metabolismo , Resistência a Inseticidas/genética , Nitrilas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Dengue/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino
7.
Sci Data ; 11(1): 471, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724521

RESUMO

We present a de novo transcriptome of the mosquito vector Culex pipiens, assembled by sequences of susceptible and insecticide resistant larvae. The high quality of the assembly was confirmed by TransRate and BUSCO. A mapping percentage until 94.8% was obtained by aligning contigs to Nr, SwissProt, and TrEMBL, with 27,281 sequences that simultaneously mapped on the three databases. A total of 14,966 ORFs were also functionally annotated by using the eggNOG database. Among them, we identified ORF sequences of the main gene families involved in insecticide resistance. Therefore, this resource stands as a valuable reference for further studies of differential gene expression as well as to identify genes of interest for genetic-based control tools.


Assuntos
Culex , Resistência a Inseticidas , Larva , Transcriptoma , Animais , Culex/genética , Larva/genética , Larva/crescimento & desenvolvimento , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Fases de Leitura Aberta
8.
J Agric Food Chem ; 72(14): 8180-8188, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556749

RESUMO

Juvenile hormone binding protein (JHBP) is a key regulator of JH signaling, and crosstalk between JH and 20-hydroxyecdysone (20E) can activate and fine-tune the mitogen-activated protein kinase cascade, leading to resistance to insecticidal proteins from Bacillis thuringiensis (Bt). However, the involvement of JHBP in the Bt Cry1Ac resistance of Plutella xylostella remains unclear. Here, we cloned a full-length cDNA encoding JHBP, and quantitative real-time PCR (qPCR) analysis showed that the expression of the PxJHBP gene in the midgut of the Cry1Ac-susceptible strain was significantly higher than that of the Cry1Ac-resistant strain. Furthermore, CRISPR/Cas9-mediated knockout of the PxJHBP gene significantly increased Cry1Ac susceptibility, resulting in a significantly shorter lifespan and reduced fertility. These results demonstrate that PxJHBP plays a critical role in the resistance to Cry1Ac protoxin and in the regulation of physiological metabolic processes associated with reproduction in adult females, providing valuable insights to improve management strategies of P. xylostella.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Feminino , Mariposas/genética , Mariposas/metabolismo , Larva/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Longevidade , Sistemas CRISPR-Cas , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética
9.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582599

RESUMO

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Assuntos
Inseticidas , Receptores Nicotínicos , Tisanópteros , Animais , Tisanópteros/metabolismo , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Agentes de Controle Biológico/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insetos/genética , Macrolídeos/farmacologia , Combinação de Medicamentos
10.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582836

RESUMO

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Malária , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Organofosfatos/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Perfilação da Expressão Gênica
11.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594617

RESUMO

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Assuntos
Bacillus thuringiensis , Mariposas , Praguicidas , Animais , Larva/genética , Larva/metabolismo , Glycine max/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromossomos/metabolismo , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas/genética
12.
Sci Rep ; 14(1): 8650, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622230

RESUMO

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Gana/epidemiologia , Inseticidas/farmacologia , Controle de Mosquitos
13.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622750

RESUMO

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Assuntos
Culex , Culicidae , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Inseticidas/farmacologia , Íntrons/genética , Mosquitos Vetores/genética , Culex/genética , Mutação , Canais de Sódio Disparados por Voltagem/genética , Resistência a Inseticidas/genética
14.
Ecotoxicol Environ Saf ; 276: 116291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581910

RESUMO

Myzus persicae is an important pest that has developed resistance to nearly all currently used insecticidal products. The employment of insecticide synergists is one of the effective strategies that need to be developed for the management of this resistance. Our study showed that treatment with a combination of the antibiotic, rifampicin, with imidacloprid, cyantraniliprole, or clothianidin significantly increased their toxicities against M. persicae, by 2.72, 3.59, and 2.41 folds, respectively. Rifampicin treatment led to a noteworthy reduction in the activities of multifunctional oxidases (by 32.64%) and esterases (by 23.80%), along with a decrease in the expression of the CYP6CY3 gene (by 58.57%) in M. persicae. It also negatively impacted the fitness of the aphids, including weight, life span, number of offspring, and elongation of developmental duration. In addition, bioassays showed that the combination of rifampicin and a detoxification enzyme inhibitor, piperonyl butoxide, or dsRNA of CYP6CY3 further significantly improved the toxicity of imidacloprid against M. persicae, by 6.19- and 7.55-fold, respectively. The present study suggests that development of active ingredients such as rifampicin as candidate synergists, show promise to overcome metabolic resistance to insecticides in aphids.


Assuntos
Afídeos , Guanidinas , Inseticidas , Neonicotinoides , Nitrocompostos , Butóxido de Piperonila , Rifampina , Tiazóis , Animais , Rifampina/toxicidade , Rifampina/farmacologia , Afídeos/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Butóxido de Piperonila/toxicidade , Pirazóis/toxicidade , Sinergismo Farmacológico , Resistência a Inseticidas/genética , Sinergistas de Praguicidas/toxicidade , ortoaminobenzoatos/toxicidade , Esterases/metabolismo
15.
Sci Total Environ ; 930: 172425, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643874

RESUMO

Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.


Assuntos
Aedes , Clorpirifos , Inseticidas , Animais , Clorpirifos/toxicidade , Aedes/efeitos dos fármacos , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Resíduos de Praguicidas
16.
Pestic Biochem Physiol ; 201: 105899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685208

RESUMO

This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.


Assuntos
Aedes , Proteínas de Insetos , Ivermectina , Animais , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/metabolismo , Ivermectina/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Tripsina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Fertilidade/efeitos dos fármacos , Resistência a Inseticidas/genética , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia , Simulação de Acoplamento Molecular , Inseticidas/farmacologia
17.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685219

RESUMO

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hemípteros , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Ivermectina/análogos & derivados , Pirazóis , Piridazinas , ortoaminobenzoatos , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Piridazinas/farmacologia , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Pirazóis/farmacologia , Filogenia , Neonicotinoides/farmacologia , Técnicas de Silenciamento de Genes , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Ivermectina/farmacologia , Ivermectina/toxicidade
18.
Pestic Biochem Physiol ; 201: 105863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685216

RESUMO

The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.


Assuntos
Glutationa Transferase , Hemípteros , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Hemípteros/metabolismo , Animais , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Interferência de RNA , Imidazóis/farmacologia , Imidazóis/metabolismo
19.
Pestic Biochem Physiol ; 201: 105894, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685221

RESUMO

Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.


Assuntos
Afídeos , Resistência a Inseticidas , Inseticidas , Piretrinas , Receptores Acoplados a Proteínas G , Piretrinas/farmacologia , Piretrinas/toxicidade , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Inseticidas/toxicidade , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Afídeos/efeitos dos fármacos , Afídeos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Nitrilas/farmacologia , Nitrilas/toxicidade
20.
Pestic Biochem Physiol ; 201: 105883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685249

RESUMO

Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Piretrinas , Tripsina , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Tripsina/genética , Tripsina/metabolismo , Piretrinas/farmacologia , Filogenia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Malária/transmissão , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA