Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.693
Filtrar
1.
CNS Neurosci Ther ; 30(7): e14839, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021040

RESUMO

BACKGROUND: The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS: This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS: The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION: Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Glioblastoma , Resposta a Proteínas não Dobradas , Humanos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Biochem Pharmacol ; 226: 116406, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969299

RESUMO

Cancer, being one of the most lethal illnesses, presents an escalating clinical dilemma on a global scale. Despite significant efforts and advancements in cancer treatment over recent decades, the persistent challenge of resistance to traditional chemotherapeutic agents and/or emerging targeted drugs remains a prominent issue in the field of cancer therapies. Among the frequently inactivated tumor suppressor genes in cancer, phosphatase and Tensin Homolog (PTEN) stands out, and its decreased expression may contribute to the emergence of therapeutic resistance. MicroRNAs (miRNAs), characterized by their short length of 22 nucleotides, exert regulatory control over target mRNA expression by binding to complementary sequences. Recent findings indicate that microRNAs play varied regulatory roles, encompassing promotion, suppression, and dual functions on PTEN, and their aberration is implicated in heightened resistance to anticancer therapies. Significantly, recent research has revealed that competitive endogenous RNAs (ceRNAs) play a pivotal role in influencing PTEN expression, and the regulatory network involving circRNA/lncRNA-miRNA-PTEN is intricately linked to resistance in various cancer types to anticancer therapies. Finally, our findings showcase that diverse approaches, such as herbal medicine, small molecule inhibitors, low-intensity ultrasound, and engineered exosomes, can effectively overcome drug resistance in cancer by modulating the miRNA-PTEN axis.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Neoplasias , PTEN Fosfo-Hidrolase , Transdução de Sinais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Biochem Pharmacol ; 225: 116253, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701869

RESUMO

Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Infecções por Helicobacter , Helicobacter pylori , Fator 3 de Transcrição de Octâmero , Osteopontina , Neoplasias Gástricas , Regulação para Cima , Neoplasias Gástricas/metabolismo , Humanos , Animais , Regulação para Cima/efeitos dos fármacos , Camundongos , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Osteopontina/metabolismo , Osteopontina/genética , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Masculino , Camundongos Nus
4.
Biochem Pharmacol ; 224: 116252, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38701866

RESUMO

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Assuntos
Família Aldeído Desidrogenase 1 , Resistencia a Medicamentos Antineoplásicos , Melanoma , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Retinal Desidrogenase , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Retinal Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Pirimidinonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Piridonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vemurafenib/farmacologia , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/genética , Antineoplásicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fenótipo
5.
Biochem Pharmacol ; 225: 116268, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723720

RESUMO

Although Janus kinase 2 (JAK2) plays a critical role in the progression of triple-negative breast cancer (TNBC), its inhibitors are incapable of eradicating these tumor cells, implicating drug resistance mechanisms exist. Our evidences show that TNBC cells express high level of Serine/Threonine Kinase 16 (STK16) when JAK2 signaling is blocked. Pharmacological inhibition or silencing of STK16 significantly enhances the sensitivity of TNBC cells to JAK2 inhibition, while over-expression of STK16 alleviates the anti-tumor effect of JAK2-inhibitor. Mechanistically, elevated STK16 expression rescues the phosphorylation status and transcriptional activity of STAT3, as STK16 is able to directly catalyze the phosphorylation of STAT3 at ser-727 residue. Our data indicate that upon JAK2 inhibition, TNBC cells express STK16 to maintain STAT3 transcriptional activity, dual-inhibition of JAK2/STK16 offers a potential way to treat TNBC patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Janus Quinase 2 , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Fosforilação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Linhagem Celular Tumoral , Feminino , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Camundongos Nus , Camundongos , Fenótipo , Inibidores de Proteínas Quinases/farmacologia
6.
Biochem Pharmacol ; 225: 116256, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38729448

RESUMO

Endocrine treatment, particularly tamoxifen, has shown significant improvement in the prognosis of patients with estrogen receptor-positive (ER-positive) breast cancer. However, the clinical utility of this treatment is often hindered by the development of endocrine resistance. Therefore, a comprehensive understanding of the underlying mechanisms driving ER-positive breast cancer carcinogenesis and endocrine resistance is crucial to overcome this clinical challenge. In this study, we investigated the expression of MICAL-L2 in ER-positive breast cancer and its impact on patient prognosis. We observed a significant upregulation of MICAL-L2 expression in ER-positive breast cancer, which correlated with a poorer prognosis in these patients. Furthermore, we found that estrogen-ERß signaling promoted the expression of MICAL-L2. Functionally, our study demonstrated that MICAL-L2 not only played an oncogenic role in ER-positive breast cancer tumorigenesis but also influenced the sensitivity of ER-positive breast cancer cells to tamoxifen. Mechanistically, as an estrogen-responsive gene, MICAL-L2 facilitated the activation of the AKT/mTOR signaling pathway in ER-positive breast cancer cells. Collectively, our findings suggest that MICAL-L2 could serve as a potential prognostic marker for ER-positive breast cancer and represent a promising molecular target for improving endocrine treatment and developing therapeutic approaches for this subtype of breast cancer.


Assuntos
Antineoplásicos Hormonais , Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Tamoxifeno , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Humanos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Estrogênios/farmacologia , Estrogênios/metabolismo , Camundongos Nus , Camundongos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células MCF-7 , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Progressão da Doença , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
7.
Biochem Pharmacol ; 225: 116274, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38735445

RESUMO

GOLPH3 has been identified as an oncoprotein, playing a crucial role on progression and chemoresistancein of colon adenocarcinoma (COAD). However, it is still unclear the regulation of GOLPH3 expression at protein level. We discovered ubiquitin-specific proteases 6 (USP6) directly regulated the deubiquitination of the GOLPH3 protein and enhanced its stability in COAD. Overexpression of USP6 promoted COAD cell viability, inhibited apoptosis, and accelerated the growth of transplanted tumors growth in vitro and in vivo by deubiquitinating GOLPH3. Additionally, circCYFIP2 showed high expression levels in DDP-resistant colon cancer cells, promoting the cell proliferation. Mechanically, circCYFIP2 binds to both GOLPH3 protein and USP6, strengthening the interaction between GOLPH3 and USP6, and consequently induced DDP resistance in vitro and in vivo. In conclusion, USP6 operates as a deubiquitinase, targeting the GOLPH3 protein in COAD and enhancing its stability. Meanwhile, circCYFIP2 is crucial for the deubiquitination of GOLPH3 protein mediated by USP6 and acts as a scaffold to confer platinum resistance. The discovery of circCYFIP2/USP6/GOLPH3 pathway offers a potential target for overcoming chemoresistance in COAD.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana , Ubiquitina Tiolesterase , Ubiquitinação , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação/efeitos dos fármacos
8.
Biochem Pharmacol ; 228: 116219, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38643907

RESUMO

The pivotal roles of ATP-binding cassette (ABC) transporters in drug resistance have been widely appreciated. Here we report that marein, a natural product from Coreopsis tinctoria Nutt, is a potent chemo-sensitizer in drug resistant cancer cells overexpressing ABCG2 transporter. We demonstrate that marein can competitively inhibit efflux activity of ABCG2 protein and increase the intracellular accumulation of the chemotherapeutic drugs that belong to substrate of this transporter. We further show that marein can bind to the conserved amino acid residue F439 of ABCG2, a critical site for drug-substrate interaction. Moreover, marein can significantly sensitize the ABCG2-expressing tumor cells to chemotherapeutic drugs such as topotecan, mitoxantrone, and olaparib. This study reveals a novel role and mechanism of marein in modulating drug resistance, and may have important implications in treatment of cancers that are resistant to chemotherapeutic drugs that belong to the substrates of ABCG2 transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Chalconas , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias , Humanos , Antineoplásicos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Chalconas/uso terapêutico
9.
Biochem Pharmacol ; 228: 116161, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38522556

RESUMO

Osimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug. In the current study, we investigated the metabolic adaptations associated with osimertinib-resistance in NSCLC cells under low glucose culture conditions. We demonstrated that, unlike osimertinib-sensitive cells, osimertinib-resistant cells were able to survive under low glucose conditions by increasing the rate of glucose and glutamine uptake and by shifting towards mitochondrial metabolism. Inhibiting glucose/pyruvate contribution to mitochondrial respiration, glutamine deamination to glutamate, and oxidative phosphorylation decreased the proliferation and survival abilities of osimertinib-resistant cells to glucose starvation. Our findings underscore the remarkable adaptability of osimertinib-resistant NSCLC cells in a low glucose environment and highlight the pivotal role of mitochondrial metabolism in mediating this adaptation. Targeting the metabolic adaptive responses triggered by glucose shortage emerges as a promising strategy, effectively inhibiting cell proliferation and promoting cell death in osimertinib-resistant cells.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glucose , Neoplasias Pulmonares , Humanos , Acrilamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Compostos de Anilina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glucose/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Indóis , Pirimidinas
10.
Curr Med Sci ; 43(4): 679-688, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326888

RESUMO

OBJECTIVE: Metabolic disorders are regarded as hallmarks of multiple myeloma (MM) and are responsible for rapid cancer cell proliferation and tumor growth. However, the exact biological roles of metabolites in MM cells have not been fully explored. This study aimed to explore the feasibility and clinical significance of lactate for MM and investigate the molecular mechanism of lactic acid (Lac) in the proliferation of myeloma cells and cell sensitivity to bortezomib (BTZ). METHODS: Metabolomic analysis of the serum was carried out to obtain metabolites expression and clinical characteristics in MM patients. The CCK8 assay and flow cytometry were used to detect cell proliferation, apoptosis, and cell cycle changes. Western blotting was used to detect the potential mechanism and apoptosis- and cycle-related protein changes. RESULTS: Lactate was highly expressed in both the peripheral blood and bone marrow of MM patients. It was significantly correlated with Durie-Salmon Staging (DS Staging) and the International Staging System (ISS Staging) and the serum and urinary involved/uninvolved free light chain ratios. Patients with relatively high lactate levels had a poor treatment response. Moreover, in vitro experiments showed that Lac could promote the proliferation of tumor cells and decrease the proportion of G0/G1-phase cells, which was accompanied by an increased proportion of S-phase cells. In addition, Lac could decrease tumor sensitivity to BTZ by disrupting the expression of nuclear factor kappa B subunit 2 (NFkB2) and RelB. CONCLUSION: Metabolic changes are important in MM cell proliferation and treatment response; lactate could be used as a biomarker in MM and as a therapeutic target to overcome cell resistance to BTZ.


Assuntos
Antineoplásicos , Bortezomib , Resistencia a Medicamentos Antineoplásicos , Ácido Láctico , Mieloma Múltiplo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Metaboloma , Mieloma Múltiplo/sangue , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Prognóstico
11.
Commun Biol ; 6(1): 382, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031307

RESUMO

Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after chemotherapy. Long read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution, and showed that the relapse methylome is characterized by hypermethylation at both CpG islands and sparse CpGs regions. Most differentially methylated genes, however, were not differentially expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory networks including 50% of all differentially expressed genes in the relapsed AMLs and highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs were poorly conserved in the relapsed AMLs, under-represented at their genomic positions and showed higher methylation entropy, as compared to CpG islands. Analyses of available datasets confirmed TF binding to their target genes and conservation of the same gene-regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations at sparse CpGs of a few transcription factors, which then induce reprogramming of the relapsing phenotype, independently of clonal genomic evolution.


Assuntos
Ilhas de CpG , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Epigenoma , Leucemia Mieloide Aguda , Nanoporos , Humanos , Ilhas de CpG/genética , Ilhas de CpG/fisiologia , DNA/genética , DNA/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Epigenoma/genética , Epigenoma/fisiologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Mol Cancer ; 22(1): 79, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120508

RESUMO

A major obstacle to chemotherapeutic success in cancer treatment is the development of drug resistance. This occurs when a tumour fails to reduce in size after treatment or when there is clinical relapse after an initial positive response to treatment. A unique and serious type of resistance is multidrug resistance (MDR). MDR causes the simultaneous cross resistance to unrelated drugs used in chemotherapy. MDR can be acquired through genetic alterations following drug exposure, or as discovered by us, through alternative pathways mediated by the transfer of functional MDR proteins and nucleic acids by extracellular vesicles (M Bebawy V Combes E Lee R Jaiswal J Gong A Bonhoure GE Grau, 23 9 1643 1649, 2009).Multiple myeloma is an incurable cancer of bone marrow plasma cells. Treatment involves high dose combination chemotherapy and patient response is unpredictable and variable due to the presence of multisite clonal tumour infiltrates. This clonal heterogeneity can contribute to the development of MDR. There is currently no approved clinical test for the minimally invasive testing of MDR in myeloma.Extracellular vesicles comprise a group of heterogeneous cell-derived membranous structures which include; exosomes, microparticles (microvesicles), migrasomes and apoptotic bodies. Extracellular vesicles serve an important role in cellular communication through the intercellular transfer of cellular protein, nucleic acid and lipid cargo. Of these, microparticles (MPs) originate from the cell plasma membrane and vary in size from 0.1-1um. We have previously shown that MPs confer MDR through the transfer of resistance proteins and nucleic acids. A test for the early detection of MDR would benefit clinical decision making, improve survival and support rational drug use. This review focuses on microparticles as novel clinical biomarkers for the detection of MDR in Myeloma and discusses their role in the therapeutic management of the disease.


Assuntos
Mieloma Múltiplo , Ácidos Nucleicos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/diagnóstico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Recidiva Local de Neoplasia , Resistência a Múltiplos Medicamentos/fisiologia
13.
Int J Oncol ; 62(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36524361

RESUMO

The epidermal growth factor receptor (EGFR) is commonly upregulated in multiple cancer types, including breast cancer. In the present study, evidence is provided in support of the premise that upregulation of the EGFR/MEK1/MAPK1/2 signaling axis during antiestrogen treatment facilitates the escape of breast cancer cells from BimEL­dependent apoptosis, conferring resistance to therapy. This conclusion is based on the findings that ectopic BimEL cDNA overexpression and confocal imaging studies confirm the pro­apoptotic role of BimEL in ERα expressing breast cancer cells and that upregulated EGFR/MEK1/MAPK1/2 signaling blocks BimEL pro­apoptotic action in an antiestrogen­resistant breast cancer cell model. In addition, the present study identified a pro­survival role for autophagy in antiestrogen resistance while EGFR inhibitor studies demonstrated that a significant percentage of antiestrogen­resistant breast cancer cells survive EGFR targeting by pro­survival autophagy. These pre­clinical studies establish the possibility that targeting both the MEK1/MAPK1/2 signaling axis and pro­survival autophagy may be required to eradicate breast cancer cell survival and prevent the development of antiestrogen resistance following hormone treatments. The present study uniquely identified EGFR upregulation as one of the mechanisms breast cancer cells utilize to evade the cytotoxic effects of antiestrogens mediated through BimEL­dependent apoptosis.


Assuntos
Apoptose , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Moduladores de Receptor Estrogênico , Feminino , Humanos , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Moduladores de Receptor Estrogênico/uso terapêutico , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Regulação para Cima , Transdução de Sinais
14.
Adv Sci (Weinh) ; 10(7): e2202956, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581470

RESUMO

Targeting CD96 that originates in immune cells has shown potential for cancer therapy. However, the role of intrinsic CD96 in solid tumor cells remains unknown. Here, it is found that CD96 is frequently expressed in tumor cells from clinical breast cancer samples and is correlated with poor long-term prognosis in these patients. The CD96+ cancer cell subpopulations exhibit features of both breast cancer stem cells and chemoresistance. In vivo inhibition of cancer cell-intrinsic CD96 enhances the chemotherapeutic response in a patient-derived tumor xenograft model. Mechanistically, CD96 enhances mitochondrial fatty acid ß-oxidation via the CD155-CD96-Src-Stat3-Opa1 pathway, which subsequently promotes chemoresistance in breast cancer stem cells. A previously unknown role is identified for tumor cell-intrinsic CD96 and an attractive target in improving the chemotherapeutic response.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos , Mitocôndrias , Neoplasias , Células-Tronco Neoplásicas , Animais , Humanos , Antígenos CD/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo
15.
Clin Transl Oncol ; 25(5): 1425-1435, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36512304

RESUMO

BACKGROUND: Gemcitabine (GEM)-based chemotherapy regimens is widely used in bladder cancer (BC) patients. However, GEM resistance may occur and result in treatment failure and disease progression. A disintegrin and metalloprotease 12 (ADAM12) plays a critical role in many cancers. However, the role of ADAM12 in GEM resistance of BC remains unclear. METHODS: We analyzed the relationship between ADAM12 expression and tumor characteristics using the data downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Then, we established GEM resistant BC cell lines and used quantitative real-time PCR, western blot, cell counting kit-8, immunohistochemistry, and xenograft mouse model to investigate the role of ADAM12 in GEM resistance. RESULTS: In general, ADAM12 was found to be upregulated in GEM resistant BC cells. ADAM12 knockdown increased the chemosensitivity of BC cells. We further proved that ADAM12 could promote GEM resistance by activating the epidermal growth factor receptor (EGFR) signaling pathway in BC. Furthermore, the epithelial-mesenchymal transition (EMT) phenotype was observed in GEM resistant BC cells. ADAM12 induced EMT process and promotes tumor progression in BC. CONCLUSION: Our findings suggested that ADAM12 was a key gene for GEM resistance and positively correlated with malignancy of BC. It might serve as a novel and valuable therapeutic target for BC.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Gencitabina , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
16.
Am J Pathol ; 193(3): 350-361, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586479

RESUMO

Cancer antigen 125 (CA125) is one of the mucin family proteins and is a serum tumor marker for various tumors, such as ovarian cancer, endometrial cancer, pancreatic cancer, and bladder cancer. CA125 is used to distinguish between benign and malignant tumors, monitor the response to chemotherapy, and detect relapse after initial treatment. Recently, CA125 was reported to be involved in chemoresistance through the physical characteristics of mucin or by modifying the immune tumor-microenvironment. However, the relationship between CA125 expression and chemoresistance in bladder cancer is still unclear. In this study, the clinicopathologic features of bladder cancer with CA125 expression and the status of the tumor-microenvironment related to gemcitabine/cisplatin resistance were investigated using publicly available data sets (Cancer Genome Atlas Expression, GSE169455 data set) from the cBioPortal website, the National Center for Biotechnology Information website, and an in-house case collection of bladder cancer. The cases with CA125 expression had poorer disease-free and overall survival rates than those without CA125 expression. A mucinous area surrounding cancer cells was frequently detected in cases with CA125 expression (81%; 13/16 cases). CA125 expression was also related to the immunosuppressive tumor-microenvironment through the infiltration of immunosuppressive immune cells, such as regulatory T cells and M2 macrophages. These results suggest that the status of tumor-microenvironment associated with CA125 is involved in gemcitabine/cisplatin resistance in bladder cancer.


Assuntos
Antígeno Ca-125 , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Mucinas/genética , Mucinas/metabolismo , Recidiva Local de Neoplasia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia
17.
J Transl Med ; 20(1): 556, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463238

RESUMO

BACKGROUND: Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics. This was validated in the platinum resistant versus sensitive parental cell lines, as well as platinum resistant versus sensitive human ovarian cancer patient samples. The prognostic significance of the different proteomics-identified marker proteins in prognosis prediction on survival as well as their correlative association and influence on immune cell infiltration was determined by public domain data bases. METHODS: We explored the proteomic differences between carboplatin-sensitive OVCAR5 cells (parental) and their carboplatin-resistant counterpart, OVCAR5 CBPR cells. qPCR and western blots were performed to validate differentially expressed proteins at the mRNA and protein levels, respectively. Association of the identified proteins with epithelial-mesenchymal transition (EMT) prompted the investigation of cell motility. Cellular bioenergetics and proliferation were studied to delineate any biological adaptations that facilitate cancer progression. Expression of differentially expressed proteins was assessed in ovarian tumors obtained from platinum-sensitive (n = 15) versus platinum-resistant patients (n = 10), as well as matching tumors from patients at initial diagnosis and following relapse (n = 4). Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) databases were used to determine the prognostic significance and influence of the different proteomics-identified proteins on immune cell infiltration in the tumor microenvironment (TME). RESULTS: Our proteomics study identified 2422 proteins in both cell lines. Of these, 18 proteins were upregulated and 14 were downregulated by ≥ twofold (p < 0.05) in OVCAR5 CBPR cells. Gene ontology enrichment analysis amongst upregulated proteins revealed an overrepresentation of biological processes consistent with EMT in the resistant cell line. Enhanced mRNA and/or protein expression of the identified EMT modulators including ITGA2, TGFBI, AKR1B1, ITGAV, ITGA1, GFPT2, FLNA and G6PD were confirmed in OVCAR5 CBPR cells compared to parental OVCAR5 cell line. Consistent with the altered EMT profile, the OVCAR5 CBPR cells demonstrated enhanced migration and reduced proliferation, glycolysis, and oxidative phosphorylation. The upregulation of G6PD, AKR1B1, ITGAV, and TGFß1 in OVCAR5 CBPR cells was also identified in the tumors of platinum-resistant compared to platinum-sensitive high grade serous ovarian cancer (HGSOC) patients. Matching tumors of relapsed versus newly diagnosed HGSOC patients also showed enhanced expression of AKR1B1, ITGAV, TGFß1 and G6PD protein in relapsed tumors. Among the identified proteins, significant enhanced expression of GFPT2, FLNA, TGFBI (CDGG1), ITGA2 predicted unfavorable prognosis in ovarian cancer patients. Further analysis suggested that the expression of TGFBI to correlate positively with the expression of identified and validated proteins such as GFPT2, FLNA, G6PD, ITGAV, ITGA1 and ITGA2; and with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells in the TME. CONCLUSIONS: Our research demonstrates proteomic-based discovery of novel EMT-related markers with an altered metabolic profile in platinum-resistant versus sensitive ovarian cancer cell lines. The study also confirms the expression of selected identified markers in the tumors of platinum-resistant versus sensitive, and in matching relapsed versus newly diagnosed HGSOC patients. The study provides insights into the metabolic adaptation of EMT-induced carboplatin resistant cells that confers on them reduced proliferation to provide effective migratory advantage; and the role of some of these identified proteins in ovarian cancer prognosis. These observations warrant further investigation of these novel target proteins in platinum-resistant patients.


Assuntos
Carboplatina , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Feminino , Humanos , Aldeído Redutase , Carboplatina/metabolismo , Carcinoma Epitelial do Ovário/genética , Linfócitos T CD8-Positivos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Platina , Proteômica , RNA Mensageiro , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia
18.
Clin Transl Med ; 12(9): e1042, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36116131

RESUMO

BACKGROUND: NF-κB signaling is widely linked to the pathogenesis and treatment resistance in cancers. Increasing attention has been paid to its anti-oncogenic roles, due to its key functions in cellular senescence and the senescence-associated secretory phenotype (SASP). Therefore, thoroughly understanding the function and regulation of NF-κB in cancers is necessary prior to the application of NF-κB inhibitors. METHODS: We established glioblastoma (GBM) cell lines expressing ectopic TCF4N, an isoform of the ß-catenin interacting transcription factor TCF7L2, and evaluated its functions in GBM tumorigenesis and chemotherapy in vitro and in vivo. In p65 knock-out or phosphorylation mimic (S536D) cell lines, the dual role and correlation of TCF4N and NF-κB signaling in promoting tumorigenesis and chemosensitivity was investigated by in vitro and in vivo functional experiments. RNA-seq and computational analysis, immunoprecipitation and ubiquitination assay, minigene splicing assay and luciferase reporter assay were performed to identify the underlying mechanism of positive feedback regulation loop between TCF4N and the p65 subunit of NF-κB. A eukaryotic cell-penetrating peptide targeting TCF4N, 4N, was used to confirm the therapeutic significance. RESULTS: Our results indicated that p65 subunit phosphorylation at Ser 536 (S536) and nuclear accumulation was a promising prognostic marker for GBM, and endowed the dual functions of NF-κB in promoting tumorigenesis and chemosensitivity. p65 S536 phosphorylation and nuclear stability in GBM was regulated by TCF4N. TCF4N bound p65, induced p65 phosphorylation and nuclear translocation, inhibited its ubiquitination/degradation, and subsequently promoted NF-κB activity. p65 S536 phosphorylation was essential for TCF4N-led senescence-independent SASP, GBM tumorigenesis, tumor stem-like cell differentiation and chemosensitivity. Activation of p65 was closely connected to alterative splicing of TCF4N, a likely positive feedback regulation loop between TCF4N and p65 in GBM. 4N increased chemosensitivity, highlighting a novel anti-cancer strategy. CONCLUSION: Our study defined key roles of TCF4N as a novel regulator of NF-κB through mutual regulation with p65 and provided a new avenue for GBM inhibition.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Proteína 2 Semelhante ao Fator 7 de Transcrição , Fator de Transcrição RelA , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Peptídeos Penetradores de Células , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Luciferases , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , beta Catenina
19.
Theranostics ; 12(12): 5574-5595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910798

RESUMO

The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Proteína Forkhead Box M1 , Proteína Forkhead Box O3 , Microbioma Gastrointestinal , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Antimetabólitos Antineoplásicos/metabolismo , Azoximetano , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cumarínicos/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
20.
BMC Cancer ; 22(1): 725, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780096

RESUMO

BACKGROUND: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms. We recently described a dominant-negative ASPP2 isoform (ASPP2κ), that is overexpressed in human leukemias to promote therapy resistance. However, ASPP2κ  has never been studied in STS.  MATERIALS AND METHODS: Expression of ASPP2κ was quantified in human rhabdomyosarcoma tumors using immunohistochemistry and qRT-PCR from formalin-fixed paraffin-embedded (FFPE) and snap-frozen tissue. To study the functional role of ASPP2κ in rhabdomyosarcoma, isogenic cell lines were generated by lentiviral transduction with short RNA hairpins to silence ASPP2κ expression. These engineered cell lines were used to assess the consequences of ASPP2κ silencing on cellular proliferation, migration and sensitivity to damage-induced apoptosis. Statistical analyses were performed using Student's t-test and 2-way ANOVA. RESULTS: We found elevated ASPP2κ mRNA in different soft tissue sarcoma cell lines, representing five different sarcoma sub-entities. We found that ASSP2κ mRNA expression levels were induced in these cell lines by cell-stress. Importantly, we found that the median ASPP2κ expression level was higher in human rhabdomyosarcoma in comparison to a pool of tumor-free tissue. Moreover, ASPP2κ levels were elevated in patient tumor samples versus adjacent tumor-free tissue within individual patients. Using isogenic cell line models with silenced ASPP2κ expression, we found that suppression of ASPP2κ enhanced chemotherapy-induced apoptosis and attenuated cellular proliferation. CONCLUSION: Detection of oncogenic ASPP2κ in human sarcoma provides new insights into sarcoma tumor biology. Our data supports the notion that ASPP2κ promotes sarcomagenesis and resistance to therapy. These observations provide the rationale for further evaluation of ASPP2κ as an oncogenic driver as well as a prognostic tool and potential therapeutic target in STS.


Assuntos
Proteínas Reguladoras de Apoptose , Carcinogênese , Rabdomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Processamento Alternativo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...