Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.682
Filtrar
3.
J Spec Oper Med ; 24(2): 34-38, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38837173

RESUMO

INTRODUCTION: Maximizing the capabilities of available lowflow oxygen is key to providing adequate oxygen to prevent/treat hypoxemia and conserve oxygen. We designed a closed-circuit system that allows rebreathing of gases while scrubbing carbon dioxide (CO2) in conjunction with portable mechanical ventilators in a bench model. METHODS: We evaluated the system using two portable mechanical ventilators currently deployed by the Department of Defense-Zoll 731 and AutoMedx SAVe II-over a range of ventilator settings and lung models, using 1 and 3L/min low-flow oxygen into a reservoir bag. We measured peak inspired oxygen concentration (FiO2), CO2-absorbent life, gas temperature and humidity, and the effect of airway suctioning and ventilator disconnection on FiO2 on ground and at altitude. RESULTS: FiO2 was =0.9 across all ventilator settings and altitudes using both oxygen flows. CO2-absorbent life was >7 hours. Airway humidity range was 87%-97%. Mean airway temperature was 25.4°C (SD 0.5°C). Ten-second suctioning reduced FiO2 22%-48%. Thirtysecond ventilator disconnect reduced FiO2 29%-63% depending on oxygen flow used. CONCLUSION: Use of a rebreathing system with mechanical ventilation has the potential for oxygen conservation but requires diligent monitoring of inspired FiO2 and CO2 to avoid negative consequences.


Assuntos
Dióxido de Carbono , Desenho de Equipamento , Oxigênio , Ventiladores Mecânicos , Humanos , Dióxido de Carbono/análise , Oxigênio/administração & dosagem , Respiração Artificial/instrumentação , Umidade , Temperatura , Altitude
4.
Crit Care Explor ; 6(7): e1113, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916647

RESUMO

CONTEXT: Amid the COVID-19 pandemic, this study delves into ventilator shortages, exploring simple split ventilation (SSV), simple differential ventilation (SDV), and differential multiventilation (DMV). The knowledge gap centers on understanding their performance and safety implications. HYPOTHESIS: Our hypothesis posits that SSV, SDV, and DMV offer solutions to the ventilator crisis. Rigorous testing was anticipated to unveil advantages and limitations, aiding the development of effective ventilation approaches. METHODS AND MODELS: Using a specialized test bed, SSV, SDV, and DMV were compared. Simulated lungs in a controlled setting facilitated measurements with sensors. Statistical analysis honed in on parameters like peak inspiratory pressure (PIP) and positive end-expiratory pressure. RESULTS: Setting target PIP at 15 cm H2O for lung 1 and 12.5 cm H2O for lung 2, SSV revealed a PIP of 15.67 ± 0.2 cm H2O for both lungs, with tidal volume (Vt) at 152.9 ± 9 mL. In SDV, lung 1 had a PIP of 25.69 ± 0.2 cm H2O, lung 2 at 24.73 ± 0.2 cm H2O, and Vts of 464.3 ± 0.9 mL and 453.1 ± 10 mL, respectively. DMV trials showed lung 1's PIP at 13.97 ± 0.06 cm H2O, lung 2 at 12.30 ± 0.04 cm H2O, with Vts of 125.8 ± 0.004 mL and 104.4 ± 0.003 mL, respectively. INTERPRETATION AND CONCLUSIONS: This study enriches understanding of ventilator sharing strategy, emphasizing the need for careful selection. DMV, offering individualization while maintaining circuit continuity, stands out. Findings lay the foundation for robust multiplexing strategies, enhancing ventilator management in crises.


Assuntos
COVID-19 , Respiração Artificial , Ventiladores Mecânicos , Humanos , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Volume de Ventilação Pulmonar , SARS-CoV-2 , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/instrumentação
5.
Nurs Open ; 11(6): e2187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837558

RESUMO

AIM: The commonly recommended endotracheal tube cuff pressure is 20-30 cmH2O. However, some patients require a cuff pressure of >30 cmH2O to prevent air leakage. The study aims to determine the risk factors that contribute to the endotracheal tube cuff pressure of >30 cmH2O to prevent air leakage. DESIGN: A multi-centre prospective observational study. METHODS: Eligible patients undergoing mechanical ventilation in the intensive care unit of three hospitals between March 2020 and July 2022 were included. The endotracheal tube cuff pressure to prevent air leakage was determined using the minimal occlusive volume technique. The patient demographics and clinical information were collected. RESULTS: A total of 284 patients were included. Among these patients, 55 (19.37%) patients required a cuff pressure of >30 cmH2O to prevent air leakage. The multivariate logistic regression results revealed that the surgical operation (odds ratio [OR]: 8.485, 95% confidence interval [CI]: 1.066-67.525, p = 0.043) was inversely associated with the endotracheal tube cuff pressure of >30 cmH2O, while the oral intubation route (OR: 0.127, 95% CI: 0.022-0.750, p = 0.023) and cuff inner diameter minus tracheal area (OR: 0.949, 95% CI: 0.933-0.966, p < 0.001) were negatively associated with the endotracheal tube cuff pressure of >30 cmH2O. Therefore, a significant number of patients require an endotracheal tube cuff pressure of >30 cmH2O to prevent air leakage. Several factors, including the surgical operation, intubation route, and difference between the cuff inner diameter and tracheal area at the T3 vertebra, should be considered when determining the appropriate cuff pressure during mechanical ventilation.


Assuntos
Intubação Intratraqueal , Respiração Artificial , Humanos , Estudos Prospectivos , Masculino , Feminino , Respiração Artificial/efeitos adversos , Respiração Artificial/instrumentação , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/instrumentação , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Pressão/efeitos adversos , Unidades de Terapia Intensiva
6.
Am J Vet Res ; 85(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901463

RESUMO

OBJECTIVE: To investigate the effects of FLow-controlled EXpiration (FLEX) ventilation expiration time and speed on respiratory and pulmonary mechanics in anesthetized horses in dorsal recumbency. ANIMALS: 6 healthy adult research horses. METHODS: In this randomized crossover experimental study, horses were anesthetized 3 times and were ventilated each time for 60 minutes using conventional volume-controlled ventilation (VCV), linear emptying of the lung over 50% of the expiratory time (FLEX50), or linear emptying of the lung over 100% of the expiratory time (FLEX100) in a randomized order. The primary outcome variables were dynamic compliance (Cdyn), hysteresis, and alveolar dead space. The data was analyzed using two-factor ANOVA. Significance was set to P < .05. RESULTS: Horses ventilated using FLEX50 and FLEX100 showed significantly higher Cdyn and significantly lower hysteresis values compared to horses ventilated using VCV. Horses ventilated using FLEX50 had significantly lower alveolar dead space compared to horses ventilated using FLEX100 or VCV. Horses ventilated using FLEX100 had significantly lower alveolar dead space compared to VCV horses. CLINICAL RELEVANCE: Our results demonstrate improved Cdyn, hysteresis, and alveolar dead space in horses ventilated with either FLEX50 or FLEX100 relative to traditional VCV. The use of FLEX with a faster exhalation speed (FLEX50) offers additional respiratory advantages.


Assuntos
Estudos Cross-Over , Respiração Artificial , Animais , Cavalos/fisiologia , Respiração Artificial/veterinária , Respiração Artificial/instrumentação , Mecânica Respiratória/fisiologia , Masculino , Feminino , Ventiladores Mecânicos/veterinária , Expiração/fisiologia
7.
Resuscitation ; 200: 110240, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735361

RESUMO

Achievement of adequate ventilation skills during training courses is mainly based on instructors' perception of attendees' capability to ventilate with correct rate and chest compression:ventilation ratio, while leading to chest raising, as evidence of adequate tidal volume. Accuracy in evaluating ventilation competence was assessed in 20 ACLS provider course attendees, by comparing course instructors' evaluation with measures from a ventilation feedback device. According to course instructors, all candidates acquired adequate ventilation competence. However, data from the feedback device indicated a ventilation not aligned with current guidelines, with higher tidal volume and lower rate (p < 0.01). Deploying quality ventilation during CPR is a skill whose acquisition starts with effective training. Therefore, course instructors' capability to accurately evaluate attendees' ventilation maneuvers is crucial.


Assuntos
Reanimação Cardiopulmonar , Competência Clínica , Humanos , Competência Clínica/normas , Reanimação Cardiopulmonar/educação , Reanimação Cardiopulmonar/normas , Reanimação Cardiopulmonar/métodos , Respiração Artificial/normas , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Avaliação Educacional/métodos , Masculino , Feminino , Manequins , Volume de Ventilação Pulmonar/fisiologia
9.
PLoS One ; 19(5): e0303443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753734

RESUMO

INTRODUCTION: During the COVID-19 pandemic, ventilator shortages necessitated the development of new, low-cost ventilator designs. The fundamental requirements of a ventilator include precise gas delivery, rapid adjustments, durability, and user-friendliness, often achieved through solenoid valves. However, few solenoid-valve assisted low-cost ventilator (LCV) designs have been published, and gas exchange evaluation during LCV testing is lacking. This study describes the development and performance evaluation of a solenoid-valve assisted low-cost ventilator (SV-LCV) in vitro and in vivo, focusing on gas exchange and respiratory mechanics. METHODS: The SV-LCV, a fully open ventilator device, was developed with comprehensive hardware and design documentation, utilizing solenoid valves for gas delivery regulation. Lung simulator testing calibrated tidal volumes at specified inspiratory and expiratory times, followed by in vivo testing in a porcine model to compare SV-LCV performance with a conventional ventilator. RESULTS: The SV-LCV closely matched the control ventilator's respiratory profile and gas exchange across all test cycles. Lung simulator testing revealed direct effects of compliance and resistance changes on peak pressures and tidal volumes, with no significant changes in respiratory rate. In vivo testing demonstrated comparable gas exchange parameters between SV-LCV and conventional ventilator across all cycles. Specifically, in cycle 1, the SV-LCV showed arterial blood gas (ABG) results of pH 7.54, PCO2 34.5 mmHg, and PO2 91.7 mmHg, compared to the control ventilator's ABG of pH 7.53, PCO2 37.1 mmHg, and PO2 134 mmHg. Cycle 2 exhibited ABG results of pH 7.53, PCO2 33.6 mmHg, and PO2 84.3 mmHg for SV-LCV, and pH 7.5, PCO2 34.2 mmHg, and PO2 93.5 mmHg for the control ventilator. Similarly, cycle 3 showed ABG results of pH 7.53, PCO2 32.1 mmHg, and PO2 127 mmHg for SV-LCV, and pH 7.5, PCO2 35.5 mmHg, and PO2 91.3 mmHg for the control ventilator. CONCLUSION: The SV-LCV provides similar gas exchange and respiratory mechanic profiles compared to a conventional ventilator. With a streamlined design and performance akin to commercially available ventilators, the SV-LCV presents a viable, readily available, and reliable short-term solution for overcoming ventilator supply shortages during crises.


Assuntos
COVID-19 , Troca Gasosa Pulmonar , Mecânica Respiratória , Ventiladores Mecânicos , Animais , Suínos , Desenho de Equipamento , Respiração Artificial/instrumentação , Respiração Artificial/métodos , SARS-CoV-2 , Volume de Ventilação Pulmonar
10.
Med Sci (Basel) ; 12(2)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38804382

RESUMO

The humidification process of medical gases plays a crucial role in both invasive and non-invasive ventilation, aiming to mitigate the complications arising from bronchial dryness. While passive humidification systems (HME) and active humidification systems are prevalent in routine clinical practice, there is a pressing need for further evaluation of their significance. Additionally, there is often an incomplete understanding of the operational mechanisms of these devices. The current review explores the historical evolution of gas conditioning in clinical practice, from early prototypes to contemporary active and passive humidification systems. It also discusses the physiological principles underlying humidity regulation and provides practical guidance for optimizing humidification parameters in both invasive and non-invasive ventilation modalities. The aim of this review is to elucidate the intricate interplay between temperature, humidity, and patient comfort, emphasizing the importance of individualized approaches to gas conditioning.


Assuntos
Umidade , Ventilação não Invasiva , Humanos , Ventilação não Invasiva/instrumentação , Umidificadores , Respiração Artificial/instrumentação
11.
Eur J Anaesthesiol ; 41(7): 513-521, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38769936

RESUMO

BACKGROUND: Atelectasis has been reported in 68 to 100% of children undergoing general anaesthesia, a phenomenon that persists into the recovery period. Children receiving recruitment manoeuvres have less atelectasis and fewer episodes of oxygen desaturation during emergence. The optimal type of recruitment manoeuvre is unclear and may be influenced by the airway device chosen. OBJECTIVE: We aimed to investigate the different effects on lung mechanics as assessed by the forced oscillation technique (FOT) utilising different recruitment strategies: repeated inflations vs. one sustained inflation and different airway devices, a supraglottic airway device vs. a cuffed tracheal tube. DESIGN: Pragmatic enrolment with randomisation to the recruitment strategy. SETTING: We conducted this single-centre trial between February 2020 and March 2022. PARTICIPANTS: Seventy healthy patients (53 boys) aged between 2 and 16 years undergoing general anaesthesia were included. INTERVENTIONS: Forced oscillations (5 Hz) were superimposed on the ventilator waveform using a customised system connected to the anaesthesia machine. Pressure and flow were measured at the inlet of the airway device and used to compute respiratory system resistance and reactance. Measurements were taken before and after recruitment, and again at the end of surgery. MAIN OUTCOME MEASURES: The primary endpoint measured is the change in respiratory reactance. RESULTS: Statistical analysis (linear model with recruitment strategy and airway device as factors) did not show any significant difference in resistance and reactance between before and after recruitment. Baseline reactance was the strongest predictor for a change in reactance after recruitment: prerecruitment Xrs decreased by mean (standard error) of 0.25 (0.068) cmH 2 O s l -1 per  1 cmH 2 O -1  s l -1 increase in baseline Xrs ( P  < 0.001). After correcting for baseline reactance, the change in reactance after recruitment was significantly lower for sustained inflation compared with repeated inflation by mean (standard error) 0.25 (0.101) cmH 2 O ( P  = 0.0166). CONCLUSION: Although there was no significant difference between airway devices, this study demonstrated more effective recruitment via repeated inflations than sustained inflation in anaesthetised children. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12619001434189.


Assuntos
Anestesia Geral , Mecânica Respiratória , Humanos , Anestesia Geral/instrumentação , Anestesia Geral/métodos , Criança , Masculino , Feminino , Adolescente , Pré-Escolar , Mecânica Respiratória/fisiologia , Intubação Intratraqueal/instrumentação , Intubação Intratraqueal/métodos , Manuseio das Vias Aéreas/instrumentação , Manuseio das Vias Aéreas/métodos , Pulmão/fisiologia , Atelectasia Pulmonar/prevenção & controle , Atelectasia Pulmonar/etiologia , Atelectasia Pulmonar/fisiopatologia , Respiração Artificial/instrumentação , Respiração Artificial/métodos
12.
J Clin Monit Comput ; 38(3): 679-690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557919

RESUMO

This study aims to resolve the unmet need for ventilator surge capacity by developing a prototype device that can alter patient-specific flow in a shared ventilator setup. The device is designed to deliver a predictable tidal volume (VT), requiring minimal additional monitoring and workload. The prototyped device was tested in an in vitro bench setup for its performance against the intended use and design criteria. The ventilation parameters: VT and airway pressures, and ventilation profiles: pressure, flow and volume were measured for different ventilator and device settings for a healthy and ARDS simulated lung pathology. We obtained VTs with a linear correlation with valve openings from 10 to 100% across set inspiratory pressures (IPs) of 20 to 30 cmH2O. Airway pressure varied with valve opening and lung elastance but did not exceed set IPs. Performance was consistent in both healthy and ARDS-simulated lung conditions. The ventilation profile diverged from traditional pressure-controlled profiles. We present the design a flow modulator to titrate VTs in a shared ventilator setup. Application of the flow modulator resulted in a characteristic flow profile that differs from pressure- or volume controlled ventilation. The development of the flow modulator enables further validation of the Individualized Shared Ventilation (ISV) technology with individualization of delivered VTs and the development of a clinical protocol facilitating its clinical use during a ventilator surge capacity problem.


Assuntos
Desenho de Equipamento , Pulmão , Respiração Artificial , Síndrome do Desconforto Respiratório , Volume de Ventilação Pulmonar , Ventiladores Mecânicos , Humanos , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Pulmão/fisiopatologia , Pressão
13.
J Aerosol Med Pulm Drug Deliv ; 37(3): 125-131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563958

RESUMO

Background: Some experts recommend specific ventilator settings during nebulization for mechanically ventilated patients, such as inspiratory pause, high inspiratory to expiratory ratio, and so on. However, it is unclear whether those settings improve aerosol delivery. Thus, we aimed to evaluate the impact of ventilator settings on aerosol delivery during mechanical ventilation (MV). Methods: Salbutamol (5.0 mg/2.5 mL) was nebulized by a vibrating mesh nebulizer (VMN) in an adult MV model. VMN was placed at the inlet of humidifier and 15 cm away from the Y-piece of the inspiratory limb. Eight scenarios with different ventilator settings were compared with endotracheal tube (ETT) connecting 15 cm from the Y-piece, including tidal volumes of 6-8 mL/kg, respiratory rates of 12-20 breaths/min, inspiratory time of 1.0-2.5 seconds, inspiratory pause of 0-0.3 seconds, and bias flow of 3.5 L/min. In-line suction catheter was utilized in two scenarios. Delivered drug distal to the ETT was collected by a filter, and drug was assayed by an ultraviolet spectrophotometry (276 nm). Results: Compared to the use of inspiratory pause, the inhaled dose without inspiratory pause was either higher or similar across all ventilation settings. Inhaled dose was negatively correlated with inspiratory flow with VMN placed at 15 cm away from the Y-piece (rs = -0.68, p < 0.001) and at the inlet of humidifier (rs = -0.83, p < 0.001). The utilization of in-line suction catheter reduced inhaled dose, regardless of the ventilator settings and nebulizer placements. Conclusions: When VMN was placed at the inlet of humidifier, directly connecting the Y-piece to ETT without a suction catheter improved aerosol delivery. In this configuration, the inhaled dose increased as the inspiratory flow decreased, inspiratory pause had either no or a negative impact on aerosol delivery. The inhaled dose was greater with VMN placed at the inlet of humidifier than 15 cm away the Y-piece.


Assuntos
Aerossóis , Albuterol , Broncodilatadores , Sistemas de Liberação de Medicamentos , Nebulizadores e Vaporizadores , Respiração Artificial , Respiração Artificial/instrumentação , Humanos , Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Administração por Inalação , Sistemas de Liberação de Medicamentos/instrumentação , Catéteres , Intubação Intratraqueal/instrumentação , Desenho de Equipamento , Vibração , Sucção , Adulto , Inalação , Fatores de Tempo , Volume de Ventilação Pulmonar
14.
Respir Care ; 69(7): 839-846, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38626951

RESUMO

BACKGROUND: Tracheostomies provide many advantages for the care of patients who are critically ill but may also result in complications, including tracheostomy-related pressure injuries. Research efforts into the prevention of these pressure injuries has resulted in specialized clinical care teams and pathways. These solutions are expensive and labor intensive, and fail to target the root cause of these injuries; namely, pressure at the device-skin interface. Here we measure that pressure directly and introduce a medical device, the tracheostomy support system, to reduce it. METHODS: This was a cross-sectional study of 21 subjects in the ICU, each with a tracheostomy tube connected to a ventilator. A force-sensing resistor was used to measure baseline pressures at the device-skin interface along the inferior flange. This pressure was then measured again with the use of the tracheostomy support system in the inactive and active states. Resultant pressures and demographics were compared. RESULTS: Fifteen male and 6 female subjects, with an average age of 47 ± 14 (mean ± SD) years, were included in this study. Average pressures at the tracheostomy-skin interface at baseline in these 21 ICU subjects were 273 ± 115 (mean ± SD) mm Hg. Average pressures were reduced by 59% (median 62%, maximum 98%) with the active tracheostomy support system to 115 ± 83 mm Hg (P < .001). All the subjects tolerated the tracheostomy support system without issue. CONCLUSIONS: Despite best clinical practice, pressure at the tracheostomy-skin interface can remain quite high. Here we provide measures of this pressure directly and show that a tracheostomy support system can be effective at minimizing that pressure.


Assuntos
Úlcera por Pressão , Traqueostomia , Humanos , Traqueostomia/instrumentação , Traqueostomia/efeitos adversos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Úlcera por Pressão/prevenção & controle , Úlcera por Pressão/etiologia , Pressão , Desenho de Equipamento , Unidades de Terapia Intensiva , Respiração Artificial/instrumentação , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos
15.
Respir Care ; 69(8): 924-930, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38688544

RESUMO

BACKGROUND: The bag-valve-mask (BVM) or manual resuscitator bag is used as a first-line technique to ventilate patients with respiratory failure. Volume-restricted manual resuscitator bags (eg, pediatric bags) have been suggested to minimize overventilation and associated complications. There are studies that both support and caution against the use of a pediatric resuscitator bag to ventilate an adult patient. In this study, we evaluated the ability of pre-hospital clinicians to adequately ventilate an adult manikin with both an adult- and pediatric-size manual resuscitator bag without the assistance of an advanced airway or airway adjunct device. METHODS: This study was conducted at an international conference in 2022. Conference attendees with pre-hospital health care experience were recruited to ventilate an adult manikin using a BVM for 1 min with both an adult and pediatric resuscitator bag, without the use of adjunct airway devices, while 6 ventilatory variables were collected or calculated: tidal volume (VT), breathing frequency, adequate breaths (VT > 150 mL), proportion of adequate breaths, peak inspiratory pressure (PIP), and estimated alveolar ventilation (EAV). RESULTS: A total of 208 participants completed the study. Ventilation with the adult-sized BVM delivered an average VT of 290.4 mL compared to 197.1 mL (P < .001) when using the pediatric BVM. PIP with the adult BVM was higher than with the pediatric BVM (10.6 cm H2O vs 8.6 cm H2O, P < .001). The median EAV with the adult bag (1,138.1 [interquartile range [IQR] 194.0-2,869.9] mL/min) was markedly greater than with the pediatric BVM (67.7 [IQR 0-467.3] mL/min, P < .001). CONCLUSIONS: Both pediatric- and adult-sized BVM provided lower ventilation volumes than those recommended by professional guidelines for an adult. Ventilation with the pediatric BVM was significantly worse than with the adult bag when ventilating a simulated adult subject.


Assuntos
Manequins , Respiração Artificial , Volume de Ventilação Pulmonar , Humanos , Adulto , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Insuficiência Respiratória/terapia , Masculino , Feminino , Desenho de Equipamento , Taxa Respiratória
16.
Mil Med ; 189(7-8): e1393-e1396, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38430525

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is the leading cause of combat casualties in modern war with an estimated 20% of casualties experiencing head injury. Since the release of the Brain Trauma Foundation's Guidelines for the Management of Severe Traumatic Brain Injury in 1995, recommendations for management of TBI have included the avoidance of routine hyperventilation. However, both published and anecdotal data suggest that many patients with TBI are inappropriately ventilated during transport, thereby increasing the risk of morbidity and mortality from secondary brain injury. MATERIALS AND METHODS: Enlisted Air Force personnel with prior emergency medical technician training completing a 3-week trauma course were evaluated on their ability to provide manual ventilation. Participants provided manual ventilation using either an in-situ endotracheal tube (ETT) or standard face mask on a standardized simulated patient manikin with TBI on the first and last days of the course. Manual ventilation was provided via a standard manual ventilator and a novel manual ventilator designed to limit tidal volume (VT) and respiratory rate (RR). Participants were given didactic and hands-on training on the third day of the course. Half of the participants were given simulator feedback during the hands-on training. All students provided 2 minutes of manual ventilation with each respirator. Data were collected on the breath-to-breath RR, VT, and peak airway pressures generated by the participant for each trial and were averaged for each trial. A minute ventilation (MV) was then derived from the calculated RR and VT. RESULTS: One hundred fifty-six personnel in the trauma course were evaluated in this study. Significant differences were found in the participant's performance with manual ventilation with the novel compared to the traditional ventilator. Before training, MV with the novel ventilator was less than with the traditional ventilator by 2.1 ± 0.4 L/min (P = .0003) and 1.6 ± 0.5 L/min (P = .0489) via ETT and face mask, respectively. This effect persisted after training with a difference between the devices of 1.8 ± 0.4 L/min (P = .0069) via ETT. Both traditional education interventions (didactics with hands-on training) and simulator-based feedback did not make a significant difference in participant's performance in delivering MV. CONCLUSIONS: The use of a novel ventilator that limits RR and VT may be useful in preventing hyperventilation in TBI patients. Didactic education and simulator-based feedback training may not have significant impact on improving ventilation practices in prehospital providers.


Assuntos
Hiperventilação , Manequins , Respiração Artificial , Humanos , Hiperventilação/complicações , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Masculino , Adulto , Feminino , Ventiladores Mecânicos/normas , Ventiladores Mecânicos/estatística & dados numéricos , Militares/estatística & dados numéricos , Militares/educação , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia
17.
Eur J Anaesthesiol ; 41(6): 438-446, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385449

RESUMO

BACKGROUND: Lung protective ventilation is considered standard of care in the intensive care unit. However, modifying the ventilator settings can be challenging and is time consuming. Closed loop modes of ventilation are increasingly attractive for use in critically ill patients. With closed loop ventilation, settings that are typically managed by the ICU professionals are under control of the ventilator's algorithms. OBJECTIVES: To describe the effectiveness, safety, efficacy and workload with currently available closed loop ventilation modes. DESIGN: Systematic review of randomised clinical trials. DATA SOURCES: A comprehensive systematic search in PubMed, Embase and the Cochrane Central register of Controlled Trials search was performed in January 2023. ELIGIBILITY CRITERIA: Randomised clinical trials that compared closed loop ventilation with conventional ventilation modes and reported on effectiveness, safety, efficacy or workload. RESULTS: The search identified 51 studies that met the inclusion criteria. Closed loop ventilation, when compared with conventional ventilation, demonstrates enhanced management of crucial ventilator variables and parameters essential for lung protection across diverse patient cohorts. Adverse events were seldom reported. Several studies indicate potential improvements in patient outcomes with closed loop ventilation; however, it is worth noting that these studies might have been underpowered to conclusively demonstrate such benefits. Closed loop ventilation resulted in a reduction of various aspects associated with the workload of ICU professionals but there have been no studies that studied workload in sufficient detail. CONCLUSIONS: Closed loop ventilation modes are at least as effective in choosing correct ventilator settings as ventilation performed by ICU professionals and have the potential to reduce the workload related to ventilation. Nevertheless, there is a lack of sufficient research to comprehensively assess the overall impact of these modes on patient outcomes, and on the workload of ICU staff.


Assuntos
Unidades de Terapia Intensiva , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial , Ventiladores Mecânicos , Carga de Trabalho , Humanos , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Cuidados Críticos/métodos , Resultado do Tratamento
18.
J Intensive Care Med ; 39(9): 829-839, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38374617

RESUMO

OBJECTIVE: This study aimed to evaluate the effect of continuous control cuff pressure (CCCP) versus intermittent control cuff pressure (ICCP) for the prevention of ventilator-associated pneumonia (VAP) in critically ill patients. METHODS: Relevant literature was searched in several databases, including PubMed, Embase, Web of Science, ProQuest, the Cochrane Library, Wanfang Database and China National Knowledge Infrastructure between inception and September 2022. Randomized controlled trials were considered eligible if they compared CCCP with ICCP for the prevention of VAP in critically ill patients. This meta-analysis was performed using the RevMan 5.3 and Trial Sequential Analysis 0.9 software packages. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework was used to assess the level of evidence. RESULTS: We identified 14 randomized control trials with a total of 2080 patients. Meta-analysis revealed that CCCP was associated with a significantly lower incidence of VAP compared with ICCP (relative risk [RR] = 0.52; 95% confidence interval [CI]: 0.37-0.74; P < 0.001), although considerable heterogeneity was observed (I2 = 71%). Conducting trial sequential analysis confirmed the finding, and the GRADE level was moderate. Subgroup analysis demonstrated that CCCP combined with subglottic secretion drainage (SSD) had a more significant effect on reducing VAP (RR = 0.39; 95% CI = 0.29-0.52; P < 0.001). The effect of CCCP on ventilator-associated respiratory infection (VARI) incidence was uncertain (RR = 0.81; 95% CI = 0.53-1.24; P = 0.34; I2 = 61%). Additionally, CCCP significantly reduced the duration of mechanical ventilation (MV) (mean difference [MD] = -2.42 days; 95% CI = -4.71-0.12; P = 0.04; I2 = 87%). Descriptive analysis showed that CCCP improved the qualified rate of cuff pressure. However, no significant differences were found in the length of intensive care unit (ICU) stay (MD = 2.42 days; 95% CI = -1.84-6.68; P = 0.27) and ICU mortality (RR = 0.86; 95% CI = 0.74-1.00; P = 0.05). CONCLUSION: Our findings suggest that the combination of CCCP and SSD can reduce the incidence of VAP and the duration of MV and maintain the stability of cuff pressure. A combination of CCCP and SSD applications is suggested for preventing VAP.


Assuntos
Estado Terminal , Pneumonia Associada à Ventilação Mecânica , Ensaios Clínicos Controlados Aleatórios como Assunto , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Humanos , Estado Terminal/terapia , Respiração Artificial/efeitos adversos , Respiração Artificial/instrumentação , Unidades de Terapia Intensiva , Masculino , Feminino , Pressão , Pessoa de Meia-Idade
19.
Chest ; 165(6): 1406-1414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38295948

RESUMO

BACKGROUND: Reconnection to the ventilator for 1 h following a successful spontaneous breathing trial (SBT) may reduce reintubation rates compared with direct extubation. However, the physiologic mechanisms leading to this effect are unclear. RESEARCH QUESTION: Does reconnection to the ventilator for 1 h reverse alveolar derecruitment induced by SBT, and is alveolar derecruitment more pronounced with a T-piece than with pressure-support ventilation (PSV)? STUDY DESIGN AND METHODS: This is an ancillary study of a randomized clinical trial comparing SBT performed with a T-piece or with PSV. Alveolar recruitment was assessed by using measurement of end-expiratory lung volume (EELV). RESULTS: Of the 25 patients analyzed following successful SBT, 11 underwent SBT with a T-piece and 14 with PSV. At the end of the SBT, EELV decreased by -30% (95% CI, -37 to -23) compared with baseline prior to the SBT. This reduction was greater with a T-piece than with PSV: -43% (95% CI, -51 to -35) vs -20% (95% CI, -26 to -13); P < .001. Following reconnection to the ventilator for 1 h, EELV accounted for 96% (95% CI, 92 to 101) of baseline EELV and did not significantly differ from prior to the SBT (P = .104). Following 10 min of reconnection to the ventilator, EELV wasted at the end of the SBT was completely recovered using PSV (P = .574), whereas it remained lower than prior to the SBT using a T-piece (P = .010). INTERPRETATION: Significant alveolar derecruitment was observed at the end of an SBT and was markedly more pronounced with a T-piece than with PSV. Reconnection to the ventilator for 1 h allowed complete recovery of alveolar derecruitment. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04227639; URL: www. CLINICALTRIALS: gov.


Assuntos
Desmame do Respirador , Humanos , Masculino , Feminino , Desmame do Respirador/métodos , Pessoa de Meia-Idade , Idoso , Fatores de Tempo , Extubação/métodos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/instrumentação , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Medidas de Volume Pulmonar
20.
Pediatr Pulmonol ; 59(8): 2210-2215, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38251866

RESUMO

BACKGROUND: Developments and technological advances in neonatal and pediatric intensive care units have led to a prolonged life expectancy of pediatric patients with chronic respiratory failure. Therefore, the number of hemodynamically stable pediatric patients with chronic respiratory failure who need mechanical ventilator assistance throughout the day has significantly increased. AIMS: Numerous conditions, including parenchymal lung diseases, airway disorders, neuromotor disorders, or respiratory defects, can lead to chronic respiratory failure. For individuals who cannot tolerate non-invasive mechanical ventilation (NIMV), invasive mechanical ventilation (IMV) is the only suitable choice. Due to increasing need, mechanical ventilator technology is continuously evolving. RESULTS: As a result of this process, home-type mechanical ventilators have been produced for patients requiring long-term IMV. Patients with chronic respiratory failure can be safely monitored at home with these ventilators. DISCUSSION: Home follow-up of these patients has many benefits such as an increase in general quality of life and a positive contribution to their emotional and cognitive development. CONCLUSION: In this compilation, indications for home-based IMV, features of home invasive mechanical ventilators (HMVs), patient monitoring, and the detailed advantages of using IMV at home will be elucidated.


Assuntos
Serviços de Assistência Domiciliar , Respiração Artificial , Insuficiência Respiratória , Humanos , Respiração Artificial/métodos , Respiração Artificial/instrumentação , Criança , Insuficiência Respiratória/terapia , Ventiladores Mecânicos , Doença Crônica/terapia , Qualidade de Vida , Lactente , Pré-Escolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...