Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.634
Filtrar
1.
J Histochem Cytochem ; 72(8-9): 551-568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39212098

RESUMO

Branched-chain amino acids (BCAAs) play vital roles in metabolic and physiological processes, with their catabolism initiated by two branched-chain aminotransferase isozymes: cytosolic (BCATc) and mitochondrial (BCATm). These enzymes have tissue and cell-specific compartmentalization and are believed to shuttle metabolites between cells and tissues. Although their expression and localization have been established in most tissues, ocular tissues remain unknown. In this study, we used immunohistochemical analyses to investigate the expression and localization of BCAT enzymes in the normal eye tissues. As expected, BCATc was highly expressed in the neuronal cells of the retina, particularly in the ganglion cell layers, inner nuclear layer, and plexiform layer, with little to no expression in Müller cells. BCATc was also present in the cornea, retinal pigment epithelium (RPE), choroid, ciliary body, and iris but not in the lens. In contrast, BCATm was expressed across all ocular tissues, with strong expression in the Muller cells of the retina, the endothelial and epithelial layers of the cornea, the choroid and iris, and the epithelial cells at the lens's front. The extensive expression and distribution of BCAT isozymes in the ocular tissue, suggests that BCAA transamination is widespread in the eye, potentially aiding in metabolite transport between ocular tissues. The findings provide new insights into the physiological role of BCATs in the eye, particularly within the neuronal retina.


Assuntos
Olho , Transaminases , Animais , Transaminases/metabolismo , Ratos , Masculino , Olho/metabolismo , Olho/enzimologia , Ratos Sprague-Dawley , Imuno-Histoquímica , Retina/metabolismo , Retina/enzimologia , Retina/citologia
2.
Protein J ; 43(3): 592-602, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733555

RESUMO

The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).


Assuntos
IMP Desidrogenase , Animais , Humanos , Camundongos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , IMP Desidrogenase/metabolismo , IMP Desidrogenase/química , IMP Desidrogenase/genética , Isoenzimas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Ligação Proteica , Retina/metabolismo , Retina/enzimologia
3.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323936

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.


Assuntos
Citoesqueleto , Guanosina Trifosfato , IMP Desidrogenase , Retina , Animais , Bovinos , Guanosina Trifosfato/biossíntese , Nucleotídeos , Fosforilação , Retina/enzimologia , IMP Desidrogenase/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(11): e2115202119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271391

RESUMO

SignificanceIn humans, genetic mutations in the retinal pigment epithelium (RPE) 65 are associated with blinding diseases, for which there is no effective therapy alleviating progressive retinal degeneration in affected patients. Our findings uncovered that the increased free opsin caused by enhancing the ambient light intensity increased retinal activation, and when compounded with the RPE visual cycle dysfunction caused by the heterozygous D477G mutation and aggregation, led to the onset of retinal degeneration.


Assuntos
Proteínas do Olho , Genes Dominantes , Distrofias Retinianas , cis-trans-Isomerases , Animais , Proteínas do Olho/genética , Camundongos , Camundongos Knockout , Mutação , Retina/enzimologia , Retina/patologia , Distrofias Retinianas/genética , Visão Ocular , cis-trans-Isomerases/genética
5.
Nat Struct Mol Biol ; 29(1): 47-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013599

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH), a key regulatory enzyme in purine nucleotide biosynthesis, dynamically assembles filaments in response to changes in metabolic demand. Humans have two isoforms: IMPDH2 filaments reduce sensitivity to feedback inhibition, while IMPDH1 assembly remains uncharacterized. IMPDH1 plays a unique role in retinal metabolism, and point mutants cause blindness. Here, in a series of cryogenic-electron microscopy structures we show that human IMPDH1 assembles polymorphic filaments with different assembly interfaces in extended and compressed states. Retina-specific splice variants introduce structural elements that reduce sensitivity to GTP inhibition, including stabilization of the extended filament form. Finally, we show that IMPDH1 disease mutations fall into two classes: one disrupts GTP regulation and the other has no effect on GTP regulation or filament assembly. These findings provide a foundation for understanding the role of IMPDH1 in retinal function and disease and demonstrate the diverse mechanisms by which metabolic enzyme filaments are allosterically regulated.


Assuntos
IMP Desidrogenase/genética , Retina/enzimologia , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , IMP Desidrogenase/química , IMP Desidrogenase/ultraestrutura , Modelos Moleculares , NAD/metabolismo , Doenças Retinianas/genética
6.
Exp Eye Res ; 213: 108845, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800480

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision impairment in working age adults. In addition to hyperglycemia, retinal inflammation is an important driving factor for DR development. Although DR is clinically described as diabetes-induced damage to the retinal blood vessels, several studies have reported that metabolic dysregulation occurs in the retina prior to the development of microvascular damage. The two most commonly affected metabolic pathways in diabetic conditions are glycolysis and the glutamate pathway. We investigated the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutamine synthetase (GS) in an in-vitro model of DR incorporating high glucose and pro-inflammatory cytokines. We found that GAPDH and GS enzyme activity were not significantly affected in hyperglycemic conditions or after exposure to cytokines alone, but were significantly decreased in the DR model. This confirmed that pro-inflammatory cytokines IL-1ß and TNFα enhance the hyperglycemic metabolic deficit. We further investigated metabolite and amino acid levels after specific pharmacological inhibition of GAPDH or GS in the absence/presence of pro-inflammatory cytokines. The results indicate that GAPDH inhibition increased glucose and addition of cytokines increased lactate and ATP levels and reduced glutamate levels. GS inhibition did not alter retinal metabolite levels but the addition of cytokines increased ATP levels and caused glutamate accumulation in Müller cells. We conclude that it is the action of pro-inflammatory cytokines concomitantly with the inhibition of the glycolytic or GS mediated glutamate recycling that contribute to metabolic dysregulation in DR. Therefore, in the absence of good glycemic control, therapeutic interventions aimed at regulating inflammation may prevent the onset of early metabolic imbalance in DR.


Assuntos
Retinopatia Diabética/enzimologia , Inibidores Enzimáticos/farmacologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Interleucina-1beta/farmacologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Retinopatia Diabética/patologia , Feminino , Glucose/farmacologia , Hiperglicemia/metabolismo , Ácido Iodoacético/farmacologia , L-Lactato Desidrogenase/metabolismo , Metionina Sulfoximina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Retina/enzimologia , Retina/patologia
7.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769100

RESUMO

After successful surgeries for patients with rhegmatogenous retinal detachment, the most common cause of retinal redetachment is proliferative vitreoretinopathy (PVR), which causes severe vision impairment and even blindness worldwide. Until now, the major treatment for PVR is surgical removal of the epiretinal membrane, while effective treatment to prevent PVR is still unavailable. Therefore, we investigated the potential of doxycycline, an antibiotic in the tetracycline class, to treat PVR using a mouse model. We used the human retinal pigment epithelial cell line, ARPE-19, for in vitro and in vivo studies to test doxycycline for PVR treatment. We found that doxycycline suppressed the migration, proliferation, and contraction of ARPE-19 cells with reduced p38 MAPK activation and total MMP activity. Intravitreal doxycycline and topical tetracycline treatment significantly ameliorated the PVR severity induced by ARPE-19 cells in mice. PVR increased the expression of MMP-9 and IL-4 and p38 MAPK phosphorylation and modestly decreased IL-10. These effects were reversed by doxycycline and tetracycline treatment in the mouse retina. These results suggest that doxycycline will be a potential treatment for PVR in the future.


Assuntos
Antibacterianos/administração & dosagem , Doxiciclina/administração & dosagem , Vitreorretinopatia Proliferativa/tratamento farmacológico , Animais , Linhagem Celular , Quimiocina CXCL9/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Injeções Intravítreas , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Retina/enzimologia , Vitreorretinopatia Proliferativa/metabolismo , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Oxid Med Cell Longev ; 2021: 1641717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725563

RESUMO

Clinical observations found vision-threatening diabetic retinopathy (DR) occurs in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients, but T1DM may perform more progressive retinal abnormalities at the same diabetic duration with or without clinical retinopathy. In the present study, T1DM and T2DM patients without manifestations of DR were included in our preliminary clinical retrospective observation study to investigate the differentiated retinal function at the preclinical stage. Then, T1DM and T2DM rat models with 12-week diabetic duration were constructed to explore the potential mechanism of the discrepancy in retinal disorders. Our data demonstrated T1DM patients presented a poor retinal function, a higher allele frequency for ALDH2GA/AA, and a depressed aldehyde dehydrogenase 2 (ALDH2) activity and silent information regulator 1 (SIRT1) level, compared to T2DM individuals. In line with this, higher amplitudes of neurovascular function-related waves of electroretinograms were found in T2DM rats. Furthermore, the retinal outer nuclear layers were reduced in T1DM rats. The levels of retinal oxidative stress biomarkers including total reactive oxygen species, NADPH oxidase 4 and mitochondrial DNA damage, and inflammatory indicators covering inducible/endothelial nitric acid synthase ratio, interleukin-1, and interleukin-6 were obviously elevated. Notably, the level of retinal ALDH2 and SIRT1 in T1DM rats was significantly diminished, while the expression of neovascularization factors was dramatically enhanced compared to T2DM. Together, our data indicated that the ALDH2/SIRT1 deficiency resulted in prominent oxidative stress and was in association with DR progression. Moreover, a differentiating ALDH2/SIRT1 expression may be responsible for the dissimilar severity of DR pathological processes in chronic inflammatory-related T1DM and T2DM.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/etiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Retina/enzimologia , Sirtuína 1/metabolismo , Adulto , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/enzimologia , Retinopatia Diabética/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Retina/patologia , Estudos Retrospectivos
9.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639157

RESUMO

Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 µs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.


Assuntos
Distrofia de Cones/patologia , GMP Cíclico/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Mutação , Retina/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Adolescente , Cálcio/metabolismo , Criança , Distrofia de Cones/genética , Distrofia de Cones/metabolismo , Feminino , Humanos , Transdução de Sinal Luminoso , Masculino , Pessoa de Meia-Idade , Linhagem , Transdução de Sinais
10.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360899

RESUMO

(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12-/- (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, ß and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.


Assuntos
Apoptose/genética , Caspase 12/deficiência , Retinite por Citomegalovirus/enzimologia , Imunidade Inata/genética , Muromegalovirus/fisiologia , Retina/enzimologia , Neurônios Retinianos/enzimologia , Animais , Caspase 12/genética , Retinite por Citomegalovirus/genética , Retinite por Citomegalovirus/virologia , Feminino , Marcação In Situ das Extremidades Cortadas/métodos , Interferons/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/virologia , Neurônios Retinianos/virologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/genética
11.
Invest Ophthalmol Vis Sci ; 62(7): 6, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34086044

RESUMO

Purpose: To investigate the expression of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 in human retina. Methods: Human post-mortem eyes from 13 non-diabetic control cases and 11 diabetic retinopathy cases were analyzed for the expression of ACE2. To compare the vascular ACE2 expression between different organs that involve in diabetes, the expression of ACE2 was investigated in renal specimens from nondiabetic and diabetic nephropathy patients. Expression of TMPRSS2, a cell-surface protease that facilitates SARS-CoV-2 entry, was also investigated in human nondiabetic retinas. Primary human retinal endothelial cells (HRECs) and primary human retinal pericytes (HRPCs) were further used to confirm the vascular ACE2 expression in human retina. Results: We found that ACE2 was expressed in multiple nonvascular neuroretinal cells, including the retinal ganglion cell layer, inner plexiform layer, inner nuclear layer, and photoreceptor outer segments in both nondiabetic and diabetic retinopathy specimens. Strikingly, we observed significantly more ACE2 positive vessels in the diabetic retinopathy specimens. By contrast, in another end-stage organ affected by diabetes, the kidney, ACE2 in nondiabetic and diabetic nephropathy showed apical expression of ACE2 tubular epithelial cells, but no endothelial expression in glomerular or peritubular capillaries. Western blot analysis of protein lysates from HRECs and HRPCs confirmed expression of ACE2. TMPRSS2 expression was present in multiple retinal neuronal cells, vascular and perivascular cells, and Müller glia. Conclusions: Together, these results indicate that retina expresses ACE2 and TMPRSS2. Moreover, there are increased vascular ACE2 expression in diabetic retinopathy retinas.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Retinopatia Diabética/enzimologia , Receptores Virais/metabolismo , Retina/enzimologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Western Blotting , Células Cultivadas , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/virologia , Retinopatia Diabética/patologia , Retinopatia Diabética/virologia , Endotélio Vascular/enzimologia , Endotélio Vascular/virologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Pericitos/enzimologia , Pericitos/virologia , Vasos Retinianos/enzimologia , Vasos Retinianos/patologia , Vasos Retinianos/virologia , Serina Endopeptidases/metabolismo
12.
J Neurochem ; 158(3): 694-709, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081777

RESUMO

Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.


Assuntos
Sensibilidades de Contraste/fisiologia , Deleção de Genes , Retina/enzimologia , Sialiltransferases/deficiência , Sialiltransferases/genética , Acuidade Visual/fisiologia , Animais , Eletrorretinografia/métodos , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Estimulação Luminosa/métodos
13.
Invest Ophthalmol Vis Sci ; 62(6): 24, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34036313

RESUMO

Purpose: To test the hypothesis that acutely correcting a sustained presence of outer retina free radicals measured in vivo in 24-month-old mice corrects their reduced visual performance. Methods: Male C57BL/6J mice two and 24 months old were noninvasively evaluated for unremitted production of paramagnetic free radicals based on whether 1/T1 in retinal laminae are reduced after acute antioxidant administration (QUEnch-assiSTed [QUEST] magnetic resonance imaging [MRI]). Superoxide production was measured in freshly excised retina (lucigenin assay). Combining acute antioxidant administration with optical coherence tomography (i.e., QUEST OCT) tested for excessive free radical-induced shrinkage of the subretinal space volume. Combining antioxidant administration with optokinetic tracking tested for a contribution of uncontrolled free radical production to cone-based visual performance declines. Results: At two months, antioxidants had no effect on 1/T1 in vivo in any retinal layer. At 24 months, antioxidants reduced 1/T1 only in superior outer retina. No age-related change in retinal superoxide production was measured ex vivo, suggesting that free radical species other than superoxide contributed to the positive QUEST MRI signal at 24 months. Also, subretinal space volume did not show evidence for age-related shrinkage and was unresponsive to antioxidants. Finally, visual performance declined with age and was not restored by antioxidants that were effective per QUEST MRI. Conclusions: An ongoing uncontrolled production of outer retina free radicals as measured in vivo in 24 mo C57BL/6J mice appears to be insufficient to explain reductions in visual performance.


Assuntos
Antioxidantes/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Radicais Livres/metabolismo , Azul de Metileno/uso terapêutico , Ácido Tióctico/uso terapêutico , Transtornos da Visão/tratamento farmacológico , Acridinas/metabolismo , Fatores Etários , Animais , Injeções Intraperitoneais , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nistagmo Optocinético/fisiologia , Retina/diagnóstico por imagem , Retina/enzimologia , Superóxidos/metabolismo , Tomografia de Coerência Óptica , Transtornos da Visão/diagnóstico por imagem , Transtornos da Visão/metabolismo , Transtornos da Visão/fisiopatologia
14.
Commun Biol ; 4(1): 248, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627831

RESUMO

ßA3/A1-crystallin, a lens protein that is also expressed in astrocytes, is produced as ßA3 and ßA1-crystallin isoforms by leaky ribosomal scanning. In a previous human proteome high-throughput array, we found that ßA3/A1-crystallin interacts with protein tyrosine phosphatase 1B (PTP1B), a key regulator of glucose metabolism. This prompted us to explore possible roles of ßA3/A1-crystallin in metabolism of retinal astrocytes. We found that ßA1-crystallin acts as an uncompetitive inhibitor of PTP1B, but ßA3-crystallin does not. Loss of ßA1-crystallin in astrocytes triggers metabolic abnormalities and inflammation. In CRISPR/cas9 gene-edited ßA1-knockdown (KD) mice, but not in ßA3-knockout (KO) mice, the streptozotocin (STZ)-induced diabetic retinopathy (DR)-like phenotype is exacerbated. Here, we have identified ßA1-crystallin as a regulator of PTP1B; loss of this regulation may be a new mechanism by which astrocytes contribute to DR. Interestingly, proliferative diabetic retinopathy (PDR) patients showed reduced ßA1-crystallin and higher levels of PTP1B in the vitreous humor.


Assuntos
Astrócitos/enzimologia , Retinopatia Diabética/enzimologia , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Retina/enzimologia , Cadeia A de beta-Cristalina/metabolismo , Animais , Astrócitos/patologia , Estudos de Casos e Controles , Células Cultivadas , Cristalinas/genética , Cristalinas/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Ratos Sprague-Dawley , Retina/patologia , Cadeia A de beta-Cristalina/genética
15.
J Biol Chem ; 296: 100437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610547

RESUMO

Mitochondria maintain a distinct pool of ribosomal machinery, including tRNAs and tRNAs activating enzymes, such as mitochondrial tyrosyl-tRNA synthetase (YARS2). Mutations in YARS2, which typically lead to the impairment of mitochondrial protein synthesis, have been linked to an array of human diseases including optic neuropathy. However, the lack of YARS2 mutation animal model makes us difficult to elucidate the pathophysiology underlying YARS2 deficiency. To explore this system, we generated YARS2 knockout (KO) HeLa cells and zebrafish using CRISPR/Cas9 technology. We observed the aberrant tRNATyr aminoacylation overall and reductions in the levels in mitochondrion- and nucleus-encoding subunits of oxidative phosphorylation system (OXPHOS), which were especially pronounced effects in the subunits of complex I and complex IV. These deficiencies manifested the decreased levels of intact supercomplexes overall. Immunoprecipitation assays showed that YARS2 bound to specific subunits of complex I and complex IV, suggesting the posttranslational stabilization of OXPHOS. Furthermore, YARS2 ablation caused defects in the stability and activities of OXPHOS complexes. These biochemical defects could be rescued by the overexpression of YARS2 cDNA in the YARS2KO cells. In zebrafish, the yars2KO larva conferred deficient COX activities in the retina, abnormal mitochondrial morphology, and numbers in the photoreceptor and retinal ganglion cells. The zebrafish further exhibited the retinal defects affecting both rods and cones. Vision defects in yars2KO zebrafish recapitulated the clinical phenotypes in the optic neuropathy patients carrying the YARS2 mutations. Our findings highlighted the critical role of YARS2 in the stability and activity of OXPHOS and its pathological consequence in vision impairments.


Assuntos
Proteínas Mitocondriais , Fosforilação Oxidativa , Retina/enzimologia , Tirosina-tRNA Ligase/deficiência , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Animais , Sistemas CRISPR-Cas , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Tirosina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Exp Eye Res ; 204: 108443, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453277

RESUMO

Hydrogen sulfide (H2S) is an important gasotransmitter expressed in various tissues of the organism, including the eye. It is known that H2S is localized especially in the retina and corneal layers in bovine eye. The enzymes that mediate H2S synthesis are 3-mercaptopyruvate sulfurtransferase (3-MST), cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE). Herein, we aimed to investigate the concentration levels and distribution profiles of these enzymes in bovine retina and retinal artery. Enzyme levels were measured by ELISA and distribution were determined by immunofluorescence microscopic analysis. Much higher concentrations of CBS and CSE have been detected in the retinal artery compared to the retina. In both tissues, particulary 3-MST was found at the lowest level while, CSE was determined to be the most abundant enzyme among the others. CBS distribution was shown in both endothelial and smooth muscle layers, while CSE was seen especially in the endothelial layer of the retinal artery. In the retina, CBS and CSE were expressed in cone-basil cells and retinal ganglion cells, while CSE was also present in bipolar cells. Our results indicated that H2S is synthesized endogenously in ocular tissues. The widespread expression of H2S synthesizing enzymes in the retina and retinal artery of the bovine eye, which has anatomical similarities with the human eye, may suggest a protective role for H2S against retinal vascular diseases as well as a regulatory role in the retinal vascular tone.


Assuntos
Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Retina/enzimologia , Artéria Retiniana/enzimologia , Animais , Bovinos , Cistationina beta-Sintase/metabolismo , Feminino , Masculino , Microscopia de Fluorescência , Sulfurtransferases/metabolismo
17.
Cells ; 10(1)2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435495

RESUMO

The Rpe65-deficient dog has been important for development of translational therapies of Leber congenital amaurosis type 2 (LCA2). The purpose of this study was to provide a comprehensive report of the natural history of retinal changes in this dog model. Rpe65-deficient dogs from 2 months to 10 years of age were assessed by fundus imaging, electroretinography (ERG) and vision testing (VT). Changes in retinal layer thickness were assessed by optical coherence tomography and on plastic retinal sections. ERG showed marked loss of retinal sensitivity, with amplitudes declining with age. Retinal thinning initially developed in the area centralis, with a slower thinning of the outer retina in other areas starting with the inferior retina. VT showed that dogs of all ages performed well in bright light, while at lower light levels they were blind. Retinal pigment epithelial (RPE) inclusions developed and in younger dogs and increased in size with age. The loss of photoreceptors was mirrored by a decline in ERG amplitudes. The slow degeneration meant that sufficient photoreceptors, albeit very desensitized, remained to allow for residual bright light vision in older dogs. This study shows the natural history of the Rpe65-deficient dog model of LCA2.


Assuntos
Retina/enzimologia , Retina/patologia , cis-trans-Isomerases/deficiência , Adaptação Ocular/efeitos da radiação , Envelhecimento/patologia , Animais , Cães , Eletrorretinografia , Fundo de Olho , Luz , Fenótipo , Retina/diagnóstico por imagem , Retina/fisiopatologia , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência Óptica , Visão Ocular , cis-trans-Isomerases/metabolismo
18.
PLoS One ; 16(1): e0245369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481867

RESUMO

Poly-ADP-ribose-polymerase (PARP) relates to a family of enzymes that can detect DNA breaks and initiate DNA repair. While this activity is generally seen as promoting cell survival, PARP enzymes are also known to be involved in cell death in numerous pathologies, including in inherited retinal degeneration. This ambiguous role of PARP makes it attractive to have a simple and fast enzyme activity assay, that allows resolving its enzymatic activity in situ, in individual cells, within complex tissues. A previously published two-step PARP activity assay uses biotinylated NAD+ and streptavidin labelling for this purpose. Here, we used the fluorescent NAD+ analogues ε-NAD+ and 6-Fluo-10-NAD+ to assess PARP activity directly on unfixed tissue sections obtained from wild-type and retinal degeneration-1 (rd1) mutant retina. In standard UV microscopy ε-NAD+ incubation did not reveal PARP specific signal. In contrast, 6-Fluo-10-NAD+ resulted in reliable detection of in situ PARP activity in rd1 retina, especially in the degenerating photoreceptor cells. When the 6-Fluo-10-NAD+ based PARP activity assay was performed in the presence of the PARP specific inhibitor olaparib, the activity signal was completely abolished, attesting to the specificity of the assay. The incubation of live organotypic retinal explant cultures with 6-Fluo-10-NAD+, did not produce PARP specific signal, indicating that the fluorescent marker may not be sufficiently membrane-permeable to label living cells. In summary, we present a new, rapid, and simple to use fluorescence assay for the cellular resolution of PARP activity on unfixed tissue, for instance in complex neuronal tissues such as the retina.


Assuntos
Ensaios Enzimáticos/métodos , Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Poli(ADP-Ribose) Polimerases/análise , Retina/enzimologia , Animais , Corantes Fluorescentes/metabolismo , Camundongos , NAD/análogos & derivados , NAD/análise , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
19.
Mol Cell Biochem ; 476(5): 2099-2109, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515385

RESUMO

NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.


Assuntos
Acetofenonas/farmacologia , Diabetes Mellitus Experimental/enzimologia , Retinopatia Diabética/enzimologia , Células Ependimogliais/enzimologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Retina/enzimologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Retina/patologia
20.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140555, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068755

RESUMO

Gyrate Atrophy (GA) of the choroid and retina (MIM# 258870) is an autosomal recessive disorder due to mutations of the OAT gene encoding ornithine-delta-aminotransferase (OAT), associated with progressive retinal deterioration and blindness. The disease has a theoretical global incidence of approximately 1:1,500,000. OAT is mainly involved in ornithine catabolism in adults, thus explaining the hyperornithinemia as hallmark of the disease. Patients are treated with an arginine-restricted diet, to limit ornithine load, or the administration of Vitamin B6, a precursor of the OAT coenzyme pyridoxal phosphate. Although the clinical and genetic aspects of GA are known for many years, the enzymatic phenotype of pathogenic variants and their response to Vitamin B6, as well as the molecular mechanisms explaining retinal damage, are poorly clarified. Herein, we provide an overview of the current knowledge on the biochemical properties of human OAT and on the molecular, cellular, and clinical aspects of GA.


Assuntos
Coenzimas/administração & dosagem , Atrofia Girata/dietoterapia , Atrofia Girata/enzimologia , Ornitina-Oxo-Ácido Transaminase/deficiência , Fosfato de Piridoxal/administração & dosagem , Vitamina B 6/administração & dosagem , Arginina/metabolismo , Corioide/enzimologia , Corioide/patologia , Cromossomos Humanos Par 10 , Dieta/métodos , Expressão Gênica , Atrofia Girata/genética , Atrofia Girata/patologia , Humanos , Modelos Moleculares , Mutação , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/genética , Multimerização Proteica , Estrutura Secundária de Proteína , Retina/enzimologia , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...